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ABSTRACT 

Ethnopharmacological relevance : Fungal and bacterial infections remain a major problem 

worldwide, requiring the development of effective therapeutic strategies. Solanum 

mammosum L. (Solanaceae) (“teta de vaca”) is used in traditional medicine in Peru to treat 

fungal infections and respiratory disorders via topical application. However, the mechanism 

of action remains unknown, particularly in light of its chemical composition. 

Materials and methods : The antifungal activity of TDV was determined against Trichophyton 

mentagrophytes and Candida albicans using bioautography-TLC-HRMS to rapidly identify 

the active compounds. Then, the minimum inhibitory concentration (MIC) of the fruit crude 

extract and the active compound was determined to precisely evaluate the antifungal activity. 

Additionally, the effects of the most active compound on the formation of Pseudomonas 

aeruginosa biofilms and pyocyanin production were evaluated. Finally, a LC-HRMS profile 

and a molecular network of TDV extract were created to characterize the metabolites in the 

fruits' ethanolic extract. 

Results: Bioautography-TLC-HRMS followed by isolation and confirmation of the structure 

of the active compound by 1D and 2D NMR allowed the identification solamargine as the 

main compound responsible for the anti-Trichophyton mentagrophytes (MIC = 64 µg.mL-1) 

and anti-Candida albicans (MIC = 64 µg.mL-1) activities. In addition, solamargine led to a 

significant reduction of about 20% of the Pseudomonas aeruginosa biofilm formation. This 

effect was observed at a very low concentration (1.6 µg.mL-1) and remained fairly consistent 

regardless of the concentration. In addition, solamargine reduced pyocyanin production by 

about 20% at concentrations of 12.5 and 50 µg.mL-1. Furthermore, the LC-HRMS profiling of 

TDV allowed us to annotate seven known compounds that were analyzed through a molecular 

network.  
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Conclusions: Solamargine has been shown to be the most active compound against T. 

mentoagrophytes and C. albicans in vitro. In addition, our data show that this compound 

affects significantly P. aeruginosa pyocyanin production and biofilm formation in our 

conditions. Altogether, these results might explain the traditional use of S. mammosum fruits 

to treat a variety of fungal infections and respiratory disorders.  

Keywords: Solanum mammosum, Candida albicans, Trichophyton mentagrophytes, 

Pseudomonas aeruginosa, Bioautography, Solamargine, LC-HRMS 
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1. INTRODUCTION 

Solanum mammosum L. (Solanaceae) is an annual or tender perennial plant, reputed to be a 

tropical American plant, considered native to Central and South America (Acevedo-

Rodriguez and Strong, 2012), named in the traditional medicine of Peruvian Amazon “teta de 

vaca” (TDV). 

S. mammosum was introduced to the Old World tropics for ornamental use as well as 

medicinal and food purposes (Lim, 2013) and reported as invasive in Cuba, Philippines, Fiji, 

Tonga, and Hawaii (Oviedo et al., 2012; Space and Flynn, 2002; Pier, 2014). The fruit, 

decorative, is a toxic piriform berry, initially light green, to a bright yellow color when, 

tending over time to orange-yellow with white spongy mesocarp and numerous semi 

lenticular seeds. S. mammosum has traditionally been used to treat athlete’s foot among hunter 

groups in Peru (Jovel et al., 1996 ; Polesna et al., 2011), Belize (Arnason et al., 1980) and 

Trinidad (Lans et al., 2001), by rubbing leaf juice or cut fruit onto afflicted areas. In Bolivia, 

the fruits are mashed and rubbed over the affected area to treat skin ulcer, scabies, 

furunculosis and rashes (Muñoz et al., 2000 ; Hajdu and Hohmann, 2012). In Guatemala and 

in the Philippines, leaves, fruits and seeds are also used in the treatment of respiratory 

disorders such as asthma, cough, cold and sinusitis (Caceres et al., 1991). Other studies have 

reported various pharmacological properties of the plant including antioxidant, anticancer, 

antimalarial and molluscicidal activities (Burkill 1966; Grieve 1971; Muñoz et al. 2000; Wiart 

2000; DeFilipps et al. 2004; Chaiyasit 2006; Stuart 2010; Crommett 2011). Additionally, due 

to its toxicity, it has been used in the past as an insecticide, rat poison (Flores, 1984) and for 

fish catching (Levin et al., 2005). Litterature data reports the presence of many potentially 

toxic substances, including alkaloids and saponins that give the plant its pharmacological 

properties. S. mammosum fruit was found to contain solasodine along with other steroidal 

glycoalkaloids, including solasonine, solamargine and β-solamarginine (Tarigan, 1980), as 
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well as diosgenin and phytosterols (Sawariam 1986). As S. mammosum fruits and/or leaf 

juices are rubbed onto afflicted areas to treat various health ailments related to the possible 

presence of T. mentagrophytes (athlete’s foot) and C. albicans, we designed a study to 

identify the major antifungal compounds in S. mammosum fruit using bioautography-TLC-

HRMS, a combination of cutting-edge microbiological, chromatographic, and spectrometric 

tools. Additionally, we evaluated the main active compound of the fruit extract (i.e., 

solamargine) for the first time on P. aeruginosa pyocanin production and biofilm formation, 

since Solanum mammosum is used in the treatment of respiratory disease due to its 

antimicrobial activity (Caceres et al. 1991). Finally, a dereplication and molecular network 

analysis strategy was used to explore the chemical composition of S. mammosum fruit through 

UHPLC-ESI-MS/MS.  

2. Material and methods 

2.1. Plant material  

S. mammosum fruits were collected in the Allpahuayo Mishana National Reserve, Iquitos, 

Maynas Province (Peru) (3°58'02.3"S 73°25'03.9"W ; -3.967295, -73.417754) by Billy 

Cabanillas and Mohamed Haddad. Plant identification was performed by the botanist C.A. 

Amasifuen Guerra (Voucher N° 26646, Museum of Natural History of Lima, Peru). 

Authorization to collect the plant was obtained from relevant authorities (authorization 

SERNANP N° 010-2017-SERNANP-RNAM/JRR). 

2.2. Drug and chemicals 

Methanol, ethanol, chloroform and all solvents used for extraction, TLC development and 

LC/MS grade solvents as well as MHA, glucose anhydrous, SDA, and LB were purchased 

from Fisher Chemicals (Leicestershire, UK). MTT and DMSO were obtained from Sigma-
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Aldrich (Saint-Louis, MO, USA). Water was deionized using Milli-Q water purification 

system (Millipore, Bedford, MA, USA). PBS Gibco® was obtained from Thermo Fisher 

Scientific (Waltham, MA, USA). RPMI 1640 was purchased from Corning (Corning, NY, 

USA).  

2.3. Preparation of extracts, sample preparation and stock solutions for bioautography 

The pulp of 20 fresh fruits (~150 g) was extracted by maceration in MeOH (1 L) at room 

temperature for 24 h using an orbital shaker from Thermo Scientific (Waltham, MA, USA). 

After filtration and evaporation to dryness under reduced pressure (Rotavapor R-100 (Buchi, 

Flawil, Switzerland), the concentrated residual extracts (21.6 g) was stored at - 20 °C in a dry 

airtight container until further use. A stock solution of S. mammosum in MeOH (10 mg.mL-1) 

was prepared, aliquoted in different vials (2 mL), then stored at - 80 °C for further analysis. 

Individual stock solutions of amphotericin B (0.5 mg.mL-1, Sigma) (200 µL aliquot, positive 

control) were prepared in DMSO (analytical grade, Sigma) and used as a positive control by 

spotting onto the plate 1 µL of the stock solution with disposable micropipettes.  

2.4. Fungal and bacterial strains, media, and growth conditions 

Trichophyton mentagrophytes (18748) and Candida albicans strains (10231, 90028) were 

purchased from ATCC. The fungi were subcultured and routinely maintained on SDA at 

4°C in a cold room until use. A sterile swap was used to inoculate the fungi into the liquid 

medium (MHA). 

Pseudomonas aeruginosa H103 is a derivative of P. aeruginosa wild-type PAO1 strain 

(Hancock and Carey, 1979). Planktonic cultures were grown aerobically for 24 h at 37 ºC in 

LB broth on a rotary shaker (180 rpm) from an initial inoculum adjusted to an absorbance at 

580 nm of 0.08.  
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2.5. Inoculum for the bioautography assay 

Inoculum is prepared by picking five distinct colonies of approximately 1 mm from 24 hours 

old culture grown on SDA and incubated at 25 ± 2 °C for T. mentagrophytes and 35 ± 2 °C 

for the Candida albicans strains. Colonies were suspended in 5 mL of sterile 0.85% saline 

solution and the turbidity of the resulting suspension was adjusted to yield 1 x 106 - 5 x 106 

cells.mL-1 (i.e. 0.5 McFarland standard). MHA was used as the solid media for the T. 

mentagrophytes and C. albicans overlays. The molten media were maintained in a water bath 

at 45 °C and inoculated with the inoculum. The final concentration in the solid medium was 

approx. 105 cells.mL-1. The suspension was prepared immediately before carrying out the test. 

2.6. Thin-layer chromatography (TLC) 

TLC were carried out on a precoated silica gel 60 F254 (Merck, Darmstadt, Germany), with 

an appropriate solvent system in a classical TLC chamber. One µL of the amphotericin B 

stock solution and 5 µL of S. mammosum extract at the concentrations of 10, 20 and 30 

mg.mL-1were spotted on TLC plates. Standard mobile phases CHCl3/MeOH/H2O (65:40:10, 

v/v/v) and CHCl3/MeOH (50:50, v/v) were used to separate components over a wide range of 

polarities. The standard solutions/extract samples were applied to the TLC plate by using an 

automatic TLC sampler ATS4 (CAMAG, Muttenz, Switzerland) with the following 

application conditions: filling speed: 15 μL.s-1, pre-dosage volume: 200 nL, dosage 

application speed: 150 nL/s, rinsing cycle 1 with methanol/water (9:1, v/v), rinsing vacuum 

time: 4 s, filling vacuum time: 1 s. The TLC plates were prepared in triplicate: after 

examination of all developed chromatograms under ultra-violet light at 254 and 366 nm 

(CAMAG Universal UV lamp TL 600), one plate was sprayed with vanillin–sulphuric acid 

reagent, while others were kept for bioautography and TLC-MS, respectively. 
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2.7. Bioautography: agar-overlay method 

Bioautographic agar overlay method was used following the protocol described in Rahalison 

et al. (1991) with slight modifications. Briefly, TLC plate was placed in a Petri dish and 

covered with approximately 10 mL of a thin layer of MHA inoculated with T. mentagrophytes 

or C. albicans. After solidification of the medium, TLC plates were incubated overnight at 25 

± 2 °C or 35 ± 2 °C in polyethylene boxes lined with moist chromatography paper. The 

bioautograms were sprayed with an aqueous solution (2.5 mg.mL-1) of MTT and incubated 

for 4 h at 30 °C. Dehydrogenases of living microorganisms convert these salts into colored 

formazans, and as a result yellow zones of inhibition are observed on a purple 

background.Then, the bioautography assay was analyzed by observing inhibition zones (no 

color) and non-inhibition zone (purple color). Amphotericin B was used as a reference 

compound for the determination of inhibition zone. 

2.8. Characterization of bioactive compounds using mass spectrometry 

A TLC-MS Interface with an oval extraction head of 4 × 2 mm (CAMAG, Muttenz, 

Switzerland) was connected between an UHPLC (Dionex UltiMate3000, Dionex, USA) and 

an Orbitrap mass spectrometer (LTQ XL, 21880, Thermo Fisher Scientific, USA). The 

bioactive zones on the TLC plate were marked with a soft pencil based on their RF value and 

extraction was performed with a mixture of methanol and water (95:5, v/v) at a flow rate of 

0.5 mL/min provided by the UHPLC pumps. Mass spectrometric analysis was carried out in 

negative- and positive-ion modes. ESI parameters were set as follows: heater temperature 

300.0 °C, capillary temperature 350.0 °C, capillary voltage 10.0 V, sheath gas flow rate 10 

arbitrary units, aux gas flow rate 5 arbitrary units, tube lens 80 V, Ion spray voltage 3.50 kV. 

Data was acquired and recorded by Thermo Xcalibur Qual Browser software. Different 
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collision energies were applied for MS/MS analysis in order to obtain more information about 

fragment ions of the target constituents. 

2.9. Isolation of the active compound 

The methanolic extract (1 g) of the fruit of S. mammosum was subjected to a flash 

chromatography instrument (Spot Ultimate, Armen, France) on a silica column 

(Chromabond® Flash RS 25 SiOH 40–63 μm) eluted with the solvent systems 

CHCl3/MeOH/H2O (80:20:2, v/v/v) to give six main sub-fractions (B1-B6), including pure 

solamargine (34.7 mg). 

2.10. Minimum inhibitory concentrations (MIC) assays 

C. albicans strains (10231, 90028) were purchased from American Type Culture Collection 

(ATCC). MIC values were determined by the broth microdilution method according to the 

CLSI (2008). The yeast was grown at 35 °C on SDA plates for 48 h. The inoculum was 

prepared by suspending scraped cell mass in 0.85 % NaCl solution, adjusted to 0.5 Mc 

Farland standard with a spectrophotometer at 530 nm, then diluted to obtain a final 

suspension of 5.0 x 102 to 2.5 x 103 cells per mL. RPMI 1640 medium buffered with MOPS 

and supplemented with dextrose was used as a growth media. In a 96-well plate, plant extracts 

(10 mg.mL-1 in DMSO) were serial diluted in RPMI 1640 medium so that 8 concentrations in 

the range of 4-512 µg.mL-1 were obtained. The working culture was then added to all wells, 

and the plates were incubated at 35 °C for 48 h. A spectrophotometer was used to determine 

the MIC by reading the 96-well plate at 600 nm. The MIC was defined as the lowest 

concentration of plant extract that completely inhibits growth of C. albicans in the wells as 

detected by the unaided eye (CLSI 2008). Each test was performed in triplicates. 

Amphotericin B was used as a positive control. Cultures without plant extracts or antifungal 

were employed as negative control.  



10 
 

2.11. Pyocyanin quantification assay 

Pyocyanin quantification assay was carried out as described previously by Tahrioui et al. 

(2020). P. aeruginosa H103 cells untreated and treated with solamargine were grown in a 96-

well microtiter plate at 37 ℃ for 24 h on a rotary shaker (180 r.p.m). One volume of 

chloroform was used to extract free-cell supernatants samples. Then, ½ volume of 0.5 M HCl 

was added to the chloroform layer (blue layer). The absorbance of the HCl layer (red-pink 

layer) was recorded at 520 nm and the data were normalized for bacterial cell density (A580 

nm). 

2.12. Quantitative biofilm assay  

To assess the propensity of P. aeruginosa H103 strain to form biofilms in the presence of 

solamargine, we performed crystal-violet-adhesion assays as described by O’Toole (2011). 

Briefly, overnight cultures were inoculated into a fresh medium and grown for 24 h in a 96-

well microtiter plate. Cell growth was determined from A580 nm. Biofilm was measured by 

discarding the medium, rinsing the wells with water and staining any bound cells with crystal 

violet at 0.1 %. The dye was dissolved in 30 % w/v acetic acid and A595 nm was determined 

in each experiment, background staining was adjusted by subtracting the crystal violet bound 

to inoculated controls. 

2.13. LCMS analytical methodology  

The methanolic extract of S. mammosum was carried out by UHPLC-DAD-LTQ Orbitrap XL 

instrument (Ultimate 3000, Thermo Fisher Scientific), which was equipped with an 

electrospray ionization probe (ESI). Chromatographic separations were performed on an 

Acquity BEH C18 column (100 × 2.1 mm i.d., 1.7 μm, Waters, USA). The mobile phase 

comprised acidified solvents (0.1% formic acid), water (A) and acetonitrile (B) respectively. 
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A stepwise gradient method at constant flow rate of 0.3 mL/min was used to elute the column 

using the following conditions: 0–0.5 min, 95% A; 0.5–12 min, 95–5% A; 12–15 min, 5% A; 

15–15.5 min, 5–95% A; 15.5–19 min, 95% A. Analyses of the samples (2 μL injected) were 

performed by a diode array detector (DAD) from 210 to 400 nm. The column temperature 

was maintained at 40 °C. Mass parameter settings were: negative ESI mode, under the 

following conditions: capillary voltage at 3.0 kV, capillary temperature at 300 °C. Full mass 

spectra were recorded between 100 and 1500 Da. CID mass spectra were obtained in the data 

dependent mode for the four most intense ions (top 4) of each MS full scan using the 

following parameters: 35% normalized collision energy, isolation width 2 Da, activation 

Q0.250. External mass calibration was performed before starting the experiment. 

2.14. Data processing  

Data obtained from high resolution mass spectrometry (.raw) were first processed with 

MZmine 2.52 (Pluskal et al., 2010). Briefly, as a first step, the transformation of 

chromatograms in a peak list was realized following mass detection for the extract. Then, the 

chromatogram was built and deconvolutioned using ADAP chromato-builder and wavelets 

(ADAP) algorithms ; grouping of isotope patterns (peak grouper algorithm) and a unique 

peaks list aligned was created. The gap filling (peak finder algorithm) in the list was also 

performed. Cleaning of the peaks list was carried out as follows: merge of duplicates in the 

list, attribution of scans MS2 to MS1 using group MS2 scans with features algorithm and 

finally the peak list was filtered using the peak list rows filter by keeping only the peaks with 

MS2 scan.  

In the peaks list, the features annotations of known compounds, by looking for compounds 

corresponding to the molecular formula derived from HRMS data, were realized as follows: 

1) identification of fragments and complexes ; 2) comparison with an in-house database 

compiled from literature data to gather secondary metabolites isolated from Solanum genus 
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and Solanaceae family (Data not shown) for the annotation of known compounds ; 3) 

Pubchem online database was screened for annotating the other compounds. Before the 

exportation of the peaks list data, these latter were normalized using the linear normalizer 

parameters. Finally, the exportation of generated MS/MS spectra was made in MGF format 

and the list of mass compounds, retention times, row ID and peak heights was exported in 

CSV (comma-separated value). Molecular network (mass spectra similarity) was carried out 

using the open-source software MetGem (Olivon et al., 2018) from final MS/MS data. Values 

used were MS2 m/z tolerance = 0.1 Da, minimum matched peaks = 4 and minimal cosine 

score value = 0.65. Visualization of the network was performed on Cytoscape version 3.8.2 

(Shannon, et al. 2003). Compounds with the same fragmentation pathway were grouped into 

the same cluster.  

3. Results  

3.1. Bioautography-TLC-HRMS/MS, Isolation and structural determination of the bioactive 

compound 

As a preliminary assay, a bioautography-TLC-HRMS/MS of S. mammosum fruit extract was 

initially performed in order to identify the potential anti-Trichophyton mentagrophytes and 

anti-Candida albicans metabolites present in S. mammosum, as it relates to its traditional use. 

One main inhibition zone with Rf = 0.72 was identified in both bioautographies and marked 

with a pencil on the duplicate TLC plate and extracted for MS analysis, using the TLC-MS 

interface. The workflow is shown in Figure 1. Solamargine (1, Figure 2) was identified as the 

main compound by TLC‐HRMS (m/z = 868.5057 [M+H]+ ; calcd for C45H73NO15 867.4980). 

Further confirmation was obtained by the isolation of the active spot through Combiflash® on 

Si60 followed by structure determination by 1D and 2D NMR and comparison with literature 

(Burger et al., 2018).   
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3.2. Minimum inhibitory concentrations assays 

The results of MIC determination from TDV fruits crude extract and solamargine against T. 

mentagrophytes and two strains of C. albicans are shown in Table 1. TDV exhibited weak 

anti-Trichophyton and anti-Candida albicans activities (MIC = 256 µg.mL-1) when compared 

to Amphotericin B (100% inhibition at 8 µg.mL-1) whereas solamargine exhibited a moderate 

activity against the three strains (MIC = 64 µg.mL-1).  

3.3. Effect of solamargine on pyocyanin production and biofilm formation 

To assess the impact of solamargine on P. aeruginosa physiology, its effect on virulence 

through the pyocyanin production as well as on biofilm formation were studied. The effect of 

solamargine against P. aeruginosa was evaluated at concentrations ranging from 0.8 to 100 

µg.mL-1, in a liquid medium using the model bacterium P. aeruginosa H103, a prototroph 

derivative of PAO1 wild-type strain. Solamargine reduced pyocyanin production by about 

20% at 50 µg.mL-1 (Figure 3a). However, no impact was observed at low concentrations. 

Solamargine also led to a significant reduction of about 20% of the biofilm formation (Figure 

3b). This effect was observed for a very low concentration (1.6 µg.mL-1) and was quite 

similar for the other solamargine concentrations tested (data not shown). Altogether, our data 

show that solamargine moderately affects virulence traits of P. aeruginosa at 50 µg.mL-1.   

 
3.4. Chemical composition of TDV MeOH extract and annotation 

A list of 143 peaks (Rt-m/z) which corresponded to the retention times and pseudomolecular 

ion masses of compounds were obtained from methanolic extract of S. mammosum, created 

using the MZmine software. Top priority for the annotation of the compounds in the peaks list 

was made for the Solanum genus in-house database. Thus, seven compounds were annotated 

(Table 2), including the active compound solamargine. Then, we crossed the information 
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between compounds annotated and bibliographic data (activity on T. mentagrophytes, C. 

albicans and P. aeruginosa). Visualization of chemical class of compounds annotated from S. 

mammosum were placed in network according to MS/MS fragmentation similarity (Figure 4). 

4. Discussion  

In this study, we investigated the anti-Trichophyton mentagrophytes and anti-Candida 

albicans activity of TDV MeOH extract through bioautography-TLC-HRMS and isolated the 

most active compound, solamargine.  

S. mammosum, named in the traditional medicine of Peruvian Amazon chucho de vaca, teta 

de vaca, tinta uma, cocona venenosa, tintuma, tinctona, resalgal, tintonilla, cocoán and chuf-

cha (Pinedo et al., 1997; Vasquez, 1997; Vega, 2001) is commonly used in Peru to treat 

mycosis and scabies (Roumy et al., 2020), to relieve headaches (Luziatelli et al., 2010) and as 

a poison to kill rats (Ayala Flores, 1984). Among the available ethnopharmacological data, 

several authors have reported the traditional use of different botanical parts of S. mammosum 

against fungal skin infections (Roumy et al., 2020 ; Hajdu and Hohmann, 2012 ; Polesna et 

al., 2011 ; Lim, 2013). Particularly, S. mammosum is specifically used to treat athlete’s foot 

infection (Muñoz et al., 2000), a superficial inflammatory infection of the feet skin caused by 

dermatophyte fungi, especially Trichophyton rubrum, T. mentagrophytes, and 

Epidermophyton floccosum (Hsu 2012; Rinaldi 2000). In this study, our result showed that 

solamargine is the main active ingredients of S. mammosum, exhibiting a moderate activity 

against T. mentagrophytes and C. albicans (MIC = 64 µg.mL-1 against both strains), which 

might confirm its traditional use to treat skin fungal infections. In addition, S. mammosum is 

also traditionally used in the treatment of respiratory diseases but but few studies have been 

done to better understand the mechanism of action. Caceres et al. (1991) carried out a 

screening of 68 plants used in Guatemala for the treatment of respiratory diseases. They have 

shown that several plants used for the treatment of respiratory infections have some in vitro 
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activity against pathogenic gram-positive bacteria, including S. mammosum (moderate 

activity against Streptococcus pneumonias). P. aeruginosa is a pathogenic gram-positive 

bacteria responsible of repiratory infections. It is known to produce a range of virulence 

factors that enhance its ability to damage the host tissue. One of the most important virulence 

factors is pyocyanin that is highly toxic because of its redox-active and zwitterionic 

properties, contributing to tissue damage (Lau et al., 2004) and inducing pulmonary 

pathophysiology in mice (Caldwell et al., 2009). Pyocyanin  is a blue redox-active secondary 

metabolite that is readily recovered in large quantities in sputum from patients with cystic 

fibrosis. Pyocyanin can cross the cell membrane and causes oxidative stress by generating 

reactive oxygen and nitrogen species, which allow P. aeruginosa to kill competitor microbes 

inhabiting the same niche, as well as damaging host cells or modulating their immune 

signaling (Morin 2021). In this study, our data indicate that Solamargine has a significant 

effect on P. aeruginosa biofilm formation and pyocyanin production under our conditions, 

which brings new insights about the potential of this plant to treat respiratory problems.  

From a chemical point of view, S. mammosum was shown to contain metabolites which are 

both highly toxic to humans but medicinally useful. It is a source of solasodine (Telek et al., 

1977; Roddick, 1986; Hanelt et al., 2001; Lim, 2013), a poisonous, teratogenic, alkaloidal 

compound that is a precursor to pharmaceutical production of contraceptive pills and has also 

been the subject of recent research for its diuretic, anticancer, antifungal, cardiotonic, 

antispermatogenetic, antiandrogenic, immunomodulatory, and antipyretic effects on the 

central nervous system (Patel et al., 2013). Also, solamargine is a major glycoalkaloid in 

Solanum species and especially in S. mammosum, which has been less studied for its 

antibacterial and antifungal activities and more for its anticancer properties (Kalalinia 

and Karimi‐Sani (2017). Thus, our study provides new data with regards to its antimicrobial 

properties and show that solamargine plays a key role in the pharmacological action of S. 
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mammosum. Through LC-HRMS and data analyses of compounds from S. mammosum 

extract, seven compounds were annotated, among which four metabolites that matched with 

flavonoid compounds: kaempferol (m/z 285.0396), sorbifolin (m/z 299.0553), tobaflavone E 

(m/z 347.0976) and rutin (m/z 609.1449). Flavonoids are associated with a broad spectrum of 

health-promoting effects and are indispensable components in a variety of nutraceutical, 

pharmaceutical, medicinal and cosmetic applications (Panche et al., 2016). An important 

effect of flavonoids is the scavenging of oxygen-derived free radicals (Nijveldt et al., 2001). 

Studies about flavonoids reported that several of these compounds exhibit anti-oxidant, 

antitumoral, anti-inflammatory and antimicrobial activities including antifungal, antiviral, and 

antibacterial effects (Middleton, 1998; Nijveldt et al., 2001). Kaempferol, which is one of 

most representative natural flavonol, was reported to have moderate activity on C. albicans 

strains with values of MIC between 128 – 441 µg.mL-1 (449-1547 µM) (Seleem et al., 2017; 

Shao et al., 2016), but to be inactive against P. aeruginosa (MIC > 1000 µg.mL-1) (Adamczak 

et al., 2020). Sorbifolin, a flavone previously isolated from Astragalus trimestris L. 

(Fabaceae) displayed mild antibacterial activity on Escherichia coli and C. albicans with MIC 

value of 125 µg.mL-1 (417 µM) (El-Hawiet et al., 2010). Plants containing rutin (quercetin-3-

O-rutinoside), a flavonol glycoside, are traditionally used as antimicrobial, antiarthritic or 

antiallergic (Sharma et al., 2013). Nonetheless, these compounds displayed lack of activities 

on C. albicans (Han, 2009; Tempesti et al., 2012) and P. aeruginosa (Lou et al., 2015) with 

MIC > 1000 µg.mL-1. Another flavonoid annotated was tobaflavone E, that expressed activity 

on virus such as TMV (Tobacco Mosaic Virus) with 35.3 ± 3.2 % of inhibition (Miao et al., 

2015). TMV is one of the most damaging plant virus, causing significant yield losses in crop 

production worldwide (Rybicki, 2015). Moreover, three additional compounds were 

annotated and placed in the network: ethyl caffeate (m/z 207.0658), viarumacid A (m/z 

851.2234) and solamargine (m/z 867.3099). First, ethyl caffeate is a compound previously 
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isolated from Cnestis palala (Lour.) Merr. (Connaraceae), which has been tested on 

Staphylococcus aureus and S. epidermidis with MIC value at 500 µg.mL-1 (2.41 mM) against 

both microorganisms (Dej-adisai et al., 2015). Secondly, viarumacid A, a glucosylated 

caffeoylquinic acid derivative isolated from S. viarum has been showed to display antioxidant 

activity (Wu et al., 2012). The diversity of class of compounds visualized in the polar extract 

from S. mammosum leaves a door open for further exploration in the laboratory. 

Conclusion 

The findings of the present investigation conclude that solamargine is the main active 

compound against T. mentagrophytes, C. albicans in vitro. In addition, our data indicate that 

this compound has a significant effect on P. aeruginosa biofilm formation and pyocyanin 

production under our conditions. Taken together, these findings may help to explain why S. 

mammosum fruits have been traditionally used to treat a variety of fungal infections and 

respiratory disorders. 
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Legends  
 

Figure 1. Bioautography-TLC-MS workflow for anti-Trichophyton mentagrophytes and anti-Candida 

albicans activities 

Figure 2. Structure of solamargine 1 

Figure 3. Effect of solamargine on pyocyanin production and biofilm formation by P. aeruginosa. 

Statistics were achieved by a two-tailed t-test using Prism GraphPad. The mean with SEM were 

calculated and plotted. ★, p=0.01 to 0.05; NS (Not Significant), p≥0.05. 

Figure 4. Molecular networking and visualization of compounds annotated from S. mammosum. The 

compounds classification was carried out using Classy-Fire (Feunang et al., 2016). 
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Legends  
 

 

Table 1. Antifungal activity (MIC values) of solamargine on two Candida albicans strains 
and one Trichophyton mentagrophytes strain 

 

 

Table 2. Principal molecular ions determined in the methanolic extract of S. mammosum by 
LCMS and corresponding compounds. 
 

  



Table 1.  

 
MIC (µg.mL-1) 

T. mentagrophytes C. albicans 90028 C. albicans 10231 

TDV crude fruit extract 256 256 256 
Solamargine 64 64 64 
 
 
 
Table 2.  

m/z [M-H]- RT Compound Main fragments 

851.2234 3.7337 Viarumacid A 689.220 ; 515.227 ; 497.196 

207.0658 5.91 Ethyl caffeate 179.018 ; 135.162 ; 207.072 

285.0396 4.79 Kaempferol 257.099 ; 199.109 ; 217.064 

347.0976 1.5402 Tabaflavone E 161.090 ; 139.120 ; 223.017 

299.0553 5.1537 Sorbifolin 284.094 ; 271.135 ; 267.188 

609.1449 3.5785 Rutin 447.210 ; 285.054 ; 489.332 

867.3099 5.8119 Solamargine 720.4147 ; 469.243 ; 549.159 
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