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Abstract

A dilute random distribution of identical elastic spheres in a poroelastic

isotropic matrix obeying Biot’s theory is considered. Using Luppe, Conoir

and Norris (LCN) multiple scattering formula up to the corrective second

order term in concentration, approximations are sought in the low frequency

domain (Rayleigh limit) for the fast and slow effective wavenumbers. The

contribution of the corrective second order term - which contains the cou-

pling (i.e. mode conversions) between the fast, slow and shear waves and

accounts for multiple scattering - is discussed. Considering the fast and slow

wavenumbers, some effective quantities (bulk modulus, mass density and dif-

fusion coefficient) are estimated.

Keywords: Poroelastic matrix, Random distribution of spheres, Scattering,

Low frequency, Bulk modulus, Diffusion coefficient.

1. Introduction

Important advances have been made in the understanding of dynamic
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properties of composite materials. In particular, the particulate composites -

generally man-made - are particles of one type material embedded in a matrix

of another. While the case of elastic matrices has received great attention,

the same is not true for matrices having more complex properties at low

frequency such as poroelastic media. Composite materials whose matrix is

poroelastic can exhibit a certain number of properties which can be of interest

and which we will examine here.

A heterogeneous medium made of a random distribution of identical elas-

tic spheres in a poroelastic matrix saturated by a viscous liquid is then con-

sidered. The poroelastic medium obeys Biot’s theory [1] [2], [3] and the radius

of the spherical inclusions is assumed far greater than that of the mean pore

radius. According to Biot’s theory, three dispersive and attenuated plane

waves - fast, slow and transverse (shear), the two first being of longitudinal

type - exist in an infinite poroelastic medium free of scatterers. Fast and

shear waves are propagative regardless of frequency. Slow waves are diffusive

at low frequencies, only becoming propagative as the frequency increases.

When each of these waves hits a sphere, the latter scatters fast, slow

and transverse waves. This problem of scattering by a single obstacle in a

poroelastic medium has been studied by several authors. Using the transition

matrix method [10], Kargl and Lim [5] presented general results (extinction,

scattering and absorption cross-sections) for porous scatterers of any shape.

Zimmerman and Stern [6] examined the problem of fast and slow wave scat-

tering by a spherical inclusion (fluid or elastic), while Berryman [7] performed

a multipole expansion of the scattered field by a spherical inhomogeneity ex-

cited by fast waves.
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During an incidence on the heterogeneous medium each of these waves

undergoes multiple scattering and by an elaborate averaging process gives

rise to an effective (coherent) wave of the same type than the incoming wave.

Thereby, there are two effective longitudinal waves (fast and slow) and one

shear wave assumed all to be plane waves evolving in a homogeneous con-

tinuous medium -the effective medium. The associated wavenumbers - the

effective wavenumbers - depend on both the concentration of spheres and

on the properties of the involved materials, causing the effective medium to

remain dispersive like the porous medium free of scatterers, however with its

own specificities.

The effects of the multiple scattering on the propagation of the coherent

waves - with host media sustaining either one wave (case of perfect fluids), two

waves (case of elastic solids) or three waves (case of poroelastic materials) -

raised a lot of questions in the past. Attempts to answer them led to famous

formulas for the coherent wavenumbers and to the issue of obtaining the

physical parameters of effective media. Scattering and multiple scattering

have been studied extensively over the past 75 years (i) in perfect fluids [8],

[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], (ii) in elastic

matrix sustaining two waves ; see for example the papers by Kuster and

Toksöz [21] on propagation of seismic waves in two phase media, Norris [22] on

composites containing dilute concentration of spherical inclusions, Varadan

et al. [23] on fiber reinforced composite materials and Aristégui and Angel

[24] on composites of cylinders or spheres and the book by Christensen [25].

(iii) in thermo-visco-elastic liquids sustaining three waves (compressional,

shear and thermal) ; see for example Epstein and Cahart [26], Allegra and
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Cawley [27]. These authors proposed the ECAH formulation.

Among the most famous formulas for expressing the coherent wavenum-

bers are those of the ISA (Independent Scattering approximation) [8] and

of Waterman and Truell (WT) [10], both derived from the QCA (Quasi

Cristalline Approximation) of Lax [9]. An application of the ISA when using

an equivalent fluid model to describe the acoustic propagation in the host

porous medium (air saturated polymer foam) with parallel rigid cylinders as

scatterers was made by Tournat et al. [28]. From 2005, Linton and Martin

(LM) revisited and applied to acoustics (considering distributions of spheres

[16] and of cylinders [17] in a fluid) the Lloyd and Berry [12] formula. Their

works constitute an improvement of WT’s [10] formula in the case of low

concentrations. Extensions of LM works are avalaible in the case of cylinders

in an elastic matrix [29] and spheres in a thermo-visco-elastic medium [30]

the latter, referred to as the LCN model being an extension of the ECAH

formulation to account for higher order multiple scattering events.

Our objective is to identify, from the propagation of fast and slow waves

across the random medium described above, some effective properties at low

frequency. Based on the work of Ref. [30], we present briefly in sec. 2

the multiple scattering model in the case of a poroelastic host matrix and

the general formulas for the fast and slow effective wavenumbers. These

formulas needing the scattering coefficients by one sphere. Sec. 3 is therefore

devoted to the calculation of these coefficients and to the low frequency

expansions in dimensionless wavenumbers. These approximations form the

basis which will subsequently make it possible, via additional expansions,

to determine the effective quantities from the effective wavenumbers. In
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Sec. 4, a numerical study considering aluminum spheres in QF20 R© a water-

saturated porous material described in Ref. [31] - allow us to check the

validity of the first set of low frequency approximations obtained in sec. 3.

The fast and slow effective wavenumbers are computed and the resulting

velocities and attenuations compared with those of the poroelastic medium

free of scatterers. In sec. 5, explicit low frequency expressions supplementing

the low frequency approximations in dimensionless wavenumbers of sec. 3

are considered to further simplify the formulas of the wavenumbers. This

allows, to extract in sec. 6 the static effective bulk modulus, mass density as

a consequence of the fast wave and in sec. 7 the effective diffusion coefficient

as a consequence of the slow wave.

2. The multiple scattering model

2.1. Far-field scattered amplitudes for a sphere

Consider an elastic sphere of radius R centred at the origin of the axes

and set in a fluid-saturated poroelastic matrix. The physical properties of

the poroelastic matrix are listed in Table 1. The mean pore radius ap is

such that ap � R(= 4 × 10−3). The elastic sphere has Lamé coefficients

λs, µs and mass density ρs (cL =
√

(λs + 2µs)/ρs and cT =
√
µs/ρs denote

longitudinal and transverse velocities, see values used in Table 2). When a

plane harmonic wave of type α (= 1 or 2) - time dependance of the form e−iωτ

with ω the angular frequency and τ the time - hits the sphere, it gives rise to

scattered spherical waves of type β (= 1, 2 (longitudinal) or t (transverse)).
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The far-field scattered amplitudes of a sphere are given by

fαβ(θ) =
+∞∑
n=0

(2n+ 1)tαβn Pn(cos θ) (1)

if α = 1, 2 and

f tβ(θ, φ) =
+∞∑
n=1

(2n+ 1)

n(n+ 1)
ttβn P1

n(cos θ) cosφ (2)

if α = t ; see Brill and Gaunaurd [36] in the case of a sphere in an elastic ma-

trix. Above, tαβn denotes the scattering coefficient for the mode n. It is calcu-

lated by solving the linear system derived from the open pore boundary condi-

tions, see Eq. (A.1) ; θ is the polar angle, φ the azimuthal angle, Pn(cos θ) the

Legendre polynomial of index n and P1
n(cos θ) = sin θ × dPn(cos θ)/d(cos θ)

the associated Legendre function (of the first kind) [37]. Equation (2) shows

that none of the coefficients ttβ0 is involved in the scattering of a transverse

wave by a sphere.

2.2. Multiple scattering equations

In LCN’s formula of multiple scattering for randomly distributed spheres

in themo-visco-elastic fluids [30], the square of the effective wavenumbers ζα

is given by

ζ2α = k2α + n0δ
α
1 + n2

0(δ
α,0
2 + δα,c2 ) +O(n3

0), (3)

where kα is the wavenumber of the incident plane wave (α=1 or 2) . These

expansions with respect to n0 -the number of spheres per unit volume- assume

low concentrations of scatterers, so that terms of order n3
0 (and the followings)
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accounting for higher orders of interactions between the spheres, can be left

out. In Eq. (3),

δα1 =
4π

ikα

+∞∑
n=0

(2n+ 1)tααn , (4)

δα,02 = −1

2
(
4π

kα
)4

+∞∑
n,m=0

Knmt
αα
n tααm , (5)

δα,c2 = −1

2
(
4π

kα
)4

+∞∑
n=0,m=0

∑
β 6=α

LαβKαβ
nmt

βα
n tαβm , (6)

where

Lαβ =
2k3α

kβ(k2α − k2β)
, (7)

Knm = (
1

4π
)
3
2

√
(2n+ 1)(2m+ 1)

∑
q

q
√

2q + 1G(n, 0;m, 0; q), (8)

and

Kαβ
nm = (

1

4π
)
3
2

√
(2n+ 1)(2m+ 1)

∑
q

(
kα
kβ

)q
√

2q + 1G(n, 0;m, 0; q). (9)

Above, G(n, 0;m, 0; q) represents Gaunt’s function [38] and the summation

on q runs from |n−m| to n+m in steps of two, with m+ n+ q even. The

presenting of Eqs. (5) and (6) differs from Refs [30] and [40]. The calculation

of the first coefficients Knm and Kαβ
nm yields

K00 = 0, K01 = K10 =
3

16π2
, K11 =

3

4π2
, (10)

Kαβ
00 =

1

16π2
, Kαβ

01 =
3

16π2

kα
kβ

(≡ Kαβ
10 ), (11)

Kαβ
11 =

3

16π2
[1 + 2(

kα
kβ

)2]. (12)

By expanding δα,c2 , one can note the presence of scattering coefficients such

as tαtn and ttαn due to t waves generated from spheres to spheres during the

multiple scattering process.
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3. Low frequency expansions in dimensionless wavenumbers for the

scattering coefficients tαβn

In this section, the parameters that characterize wave propagation in the

poroelastic medium - namely kα
ω
, γα - are assumed constant (see definition

in the Appendix). This allows to perform the Taylor series expansions of the

Bessel and Hankel functions about ω = 0, that is to say, for dimensionless

wavenumbers |xα| = |kαR| � 1 (α=1, 2, t, L, T ). All kαR products are small

for all modes. The calculations show that tαβ0 = xpαx
q
β(...) + O(x5) (α=1, 2),

tαt0 = −1 (α=1, 2, t), ttβ0 = 0 (β=1, 2), tαβ1 = xpαx
q
β(...) + O(x5) (α, β=1, 2, t).

The integers p and q are such that p+q = 3. For n ≥ 2, tαβn is O(x5). Thence,

the contribution of the modes n ≥ 2 are neglected from now on. The notation

x5 means any monomial constituted with products of xα (α = 1, 2, t, T, L)

and reaching a power of five such as for exemple, x1x2xtxTxL or x31x2T ,...etc.

The signs (...) denote quantities independent of the radius of the spheres.

Explicitly,

t110 =
ix31
3

(
b110
d0
− 1), b110 = −6γ2c, (13)

t120 =
ix21x2

3

b120
d0
, b120 = 6γ1c, (14)

t220 =
ix32
3

(
b220
d0
− 1), b220 = 6γ1b, (15)

t210 = −ix1x
2
2

3

b210
d0
, b210 = 6γ2b, (16)

d0 = −2γ21[3λs(µ− µs) + 4µ2 − 2µs(µ+ µs)], (17)

for the mode n = 0 and

t111 =
−ix31

3

b111
d1
, t121 =

−ix1x22
3

b121
d1
, t1t1 =

−ix1x2t
3

b1t1
d1
, (18)
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t211 =
−ix2x21

3

b211
d1
, t221 =

−ix32
3

b221
d1
, t2t1 =

−ix2x2t
3

b2t1
d1
, (19)

tt11 =
−ix21xt

3

bt11
d1
, tt21 =

−ix22xt
3

bt21
d1
, ttt1 =

−ix3t
3

btt1
d1
, (20)

for the mode n = 1, where

d1 = 4γ21a
x2t
x2T

+ 8γt1b
x22
x2T

+ 8γ2tc
x21
x2T

+ 8γ21f
x2t
x2L

+ 2γt1d
x22
x2L

+ 2γ2te
x21
x2L
, (21)

b111 = 2γ1a
x2t
x2T

+4γ1b
x22
x2T

+8γ2tc
x21
x2T

+4γ1f
x2t
x2L

+γ1d
x22
x2L

+2γ2te
x21
x2L
−2γ2th, (22)

b121 = −2γ1a
x2t
x2T

+ 4(2γt− 3γ1)c
x21
x2T
− 4γ1f

x2t
x2L

+ (2γt− 3γ1)e
x21
x2L
− 2γt1h, (23)

b1t1 = 4γ1b
x22
x2T

+ 4(2γ2 − 3γ1)c
x21
x2T

+ γ1d
x22
x2L

+ (2γ2 − 3γ1)e
x21
x2L
− 2γ21h, (24)

b211 = 2γ2a
x2t
x2T
− 4(2γt − 3γ2)b

x22
x2T

+ 4γ2f
x2t
x2L
− (2γt − 3γ2)d

x22
x2L
− 2γ2th, (25)

b221 = −2γ2a
x2t
x2T
−4γ2c

x21
x2T

+8γt1b
x22
x2T
−4γ2f

x2t
x2L
−γ2e

x21
x2L

+2γt1d
x22
x2L
−2γt1h, (26)

b2t1 = −4γ2c
x21
x2T

+ 4(3γ2 − 2γ1)b
x22
x2T
− γ2e

x21
x2L

+ (3γ2 − 2γ1)d
x22
x2L
− 2γ21h, (27)

bt11 = 8γtb
x22
x2T

+ 4γ2a
x2t
x2T

+ γtd
x22
x2L

+ 8γ2f
x2t
x2L
− 4γ2th, (28)

bt21 = −8γtc
x21
x2T
− 4γ1a

x2t
x2T
− γte

x21
x2L
− 8γ1f

x2t
x2L
− 4γt1h, (29)

btt1 = 8γt(b
x22
x2T
− c x

2
1

x2T
) + 4γ21a

x2t
x2T

+ 2γt(d
x22
x2L
− e x

2
1

x2L
) + 8γ21f

x2t
x2L
− 4γ21h. (30)

The following abbreviations were used

a = µ(5λs + 4µ+ 6µs), (31)

b = (H2 + 2µ)(µ− µs), (32)
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c = (H1 + 2µ)(µ− µs), (33)

d = (H2 + 2µ)(2µ+ 3µs), (34)

e = (H1 + 2µ)(2µ+ 3µs), (35)

f = µ(µ− µs), (36)

h = λs(2µ+ 3µs) + 2µs(4µ+ µs), (37)

and

γ21 = γ2 − γ1, γt1 = γt − γ1, γ2t = γ2 − γt. (38)

The moduli µ, Hj (j = 1, 2, Eq. (A.32)), the dimensionless factors γj (j =

1, 2, Eq. (A.30)) and γt (Eq. (A.31)) were defined in the Appendix. The

magnitudes of the scattering coefficients tαt0 are given here for information,

but according to the definition of the scattering cross section by Yin and

Truell [39], they should be excluded - see also the discussion in Ref. [40].

3.1. Formulas for the fast effective wavenumber

Since we are only interested in terms up to O(x3) in the scattering coef-

ficients, the series Eqs. (4 - 6) can be truncated to contain tαβ0 and tαβ1 only.

Substituting for the approximations of tαβn , Eqs. (13-16) and Eqs. (18-20),

in the formulas for δ11, δ
1,0
2 and δ1,c2 , we obtain after some rearrangements

n0

k21
δ11 = C[

b110
d0
− 1− 3

b111
d1

], (39)

n2
0

k21
δ1,02 = C2[3(1− b110

d0
)
b111
d1

+ 6(
b111
d1

)2], (40)

n2
0

k21
δ1,c2 = −1

2
C2 × {L12[(

k2
k1

)3
b210 b

12
0

d20
+ 3

k1
k2

(−(
k2
k1

)4
b210 b

12
1

d0d1
+ (

k2
k1

)2
b211 b

12
0

d1d0
)

−3(1 + 2(
k1
k2

)2)(
k2
k1

)3
b121 b

21
1

d21
]
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−L1t[(1 + 2(
k1
kt

)2)(
kt
k1

)3
b1t1 b

t1
1

d21
]}, (41)

where C = n0(4πR
3/3) is the particle volume fraction. A formula of the

effective wavenumber, correct to the first order in C (the contributions from

δ1,c2 are then ignored), is given as a product of two factors

ζ21
k21

= [1− 3C
b111
d1

][1 + C(
b110
d0
− 1)], (42)

Eq. (42) is a form allowing to extract later effective density and modulus

[18]. Note that it contains a term 3C2(1 − b110
d0

)
b111
d1

present in n2
0

k21
δ1,02 which

accounts for mulptiple scattering without mode conversions.

3.2. Formulas for the slow effective wavenumber

In the case of an incident slow wave on the random distribution, we obtain

the following expressions for the δs

n0

k22
δ21 = C[

b220
d0
− 1− 3

b221
d1

], (43)

n2
0

k22
δ2,02 = C2[3(1− b220

d0
)
b221
d1

+ 6(
b221
d1

)2], (44)

n2
0

k22
δ2,c2 = −1

2
C2{L21[(

k1
k2

)3
b120 b

21
0

d20
+ 3

k2
k1

((
k1
k2

)4
b120 b

21
1

d0d1
− (

k1
k2

)2
b121 b

21
0

d1d0
)

−3(1 + 2(
k2
k1

)2)(
k1
k2

)3
b121 b

21
1

d21
]

−L2t[(1 + 2(
k2
kt

)2)(
kt
k2

)3
b2t1 b

t2
1

d21
]}. (45)

In the same way as above, one could factorize the slow effective wavenum-

ber and write a valid first order concentration formula similar to Eq. (42).

The difficulty encountered here is the radically different behavior of the slow

wave with respect to the fast wave. Clearly, factorization seems justified for
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extracting two effective quantities from the same formula, that is modulus

and mass density. From the effective slow wavenumber it will be possible to

extract only one effective quantity (the behavior of the terms b220 , Eq. (15),

and b221 , Eq. (26), at very low frequencies leads to this conclusion, see sec.

7).

Parameters for the poroelastic medium [31] Units Values

Kb bulk modulus of (dry) porous frame Pa 9.47 ×109

K̄s bulk modulus of solid grains Pa 3.66 ×1010

Kf bulk modulus of water Pa 2.22 ×109

µ shear modulus of (dry) porous frame Pa 7.63 ×109

ρ̄s mass density of solid grains kg m−3 2760

ρf mass density of water (saturating fluid) kg m−3 1000

φ porosity - 0.402

κ permeability m2 1.68 ×10−11

ap mean pore radius (or pore size parameter) m 3.26 ×10−5

η dynamic viscosity kg m−1 s−1 1.14 ×10−3

τ0 tortuosity - 1.89

Table 1: Parameters for the poroelastic matrix - QF20 R© by Filtros, Ref. [31] - and the

saturating fluid (water).

4. Numerical study

4.1. Scattering coefficients

The data in Tables 1 and 2 were used all along the paper. Additional

information regarding the poroelastic medium QF20 R© manufactured by

12



Parameters for elastic spheres Units aluminum epoxy

ρs mass density kg m−3 2761 1180

cL velocity of longitudinal waves m s−1 6363 2540

cT velocity of transverse waves m s−1 3161 1160

Table 2: Parameters for the elastic spheres (aluminum from Ref. [34], epoxy from Ref.

[35]).

Filtros, can be found in Ref. [31].

The numerical calculations were performed using Matlab R© . Figure 1

shows the dimensionless wavenumbers |xα| (α = 1, 2, t) vs. the frequency.

At frequencies larger than 38kHz, |x2| exceeds one. As already pointed out

in a previous paper, cf. sec. II.B of Ref. [41], it very often happens that

in physics predictions drawn from a low frequency theory agree with exper-

imental results obtained at higher frequencies. This is the reason why we

go here up to the value fmax = 50kHz (although, approching this value,

the divergences become non negligible between some of the exact formulas

of the scattering coefficients and their approximations from Taylor expan-

sions about ω = 0). To fulfill |x2| << 1, it would be necessary to consider

only frequencies f < 10kHz, which is very restrictive (note that with x2 fixed,

spheres smaller than those considered here make it possible to consider higher

frequencies).

Figure 2 shows the modulus of the exact and approximate scattering co-

efficients t1β0 , t2β0 , t1β1 and t2β1 (β = 1, 2) vs. the frequency for an aluminum

sphere of radius R = 4× 10−3m. In the case of the scattering coefficients t210
and t211 , the difference between the exact and approximate scattering coeffi-
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cients grows very quickly past f = 30kHz. This discrepancy originates from

the handling of the second member of Eq.(A.1). For t210 and t211 , errors accu-

mulate in the approximation of the scattering coefficients because of Taylor

expansions also performed on Bessel functions of the argument x2 lying in

the second member ~S2
n (for n = 0 as well as for n = 1). To highlight simply

the most influential parameters of the fluid-saturated poroelastic matrix and

the elastic spheres, and the way they act, approximations rather than exact

formulas are useful.
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Figure 1: Modulus of the dimensionless wavenumbers xα = kαR (in logarithmic scale) vs.

the frequency : α = 1, fast wave (solid), α = t, shear wave (dotdashed) and α = 2, slow

wave (dashed). The radius of the spheres is R = 4× 10−3m.
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Figure 2: From top to bottom, modulus of the scattering coefficients t1β0 , t2β0 , t1β1 and

t2β1 vs. the frequency (logarithmic scale). Exact formulas (solid line) and low frequency

approximations (dashed line). Black β = 1, gray β = 2. Radius of sphere R = 4× 10−3m.
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4.2. Effective wavenumbers

4.2.1. Characteristics of the medium without scatterers

Velocities ω/Re(kα) and attenuations Im(kα)/Re(kα) of the fast and slow

waves in absence of scatterers are shown in Figs. 3 to 6 (solid curves).

Note the low frequency limits for the fast and slow wave velocities : 3313

m/s and 0 m/s ; and that of the shear wave (curves not furnished here but

the behavior is similar to the fast wave) : 1928 m/s. The three velocities

increase as the frequency goes from 0 to 50kHz. The dispersion is large in

the range 0.30 − 30kHz. Regarding the attenuation, that of the fast wave,

Fig. 4, are very moderate compared to the slow wave, Fig. 6, because

during their propagation, the motion of the solid frame and saturating fluid

is nearly in phase, whereas during the propagation of the slow wave the

motion of the fluid in the pores is out of phase with the solid frame. At very

low frequency, the slow wave has a non-zero attenuation that characterizes

its diffusive nature. Note also that, as the frequency increases from zero to

50kHz, the attenuation of the slow wave decreases from 1 to 0. The frequency

for maximum damping of the fast wave is near 2kHz. It depends on two main

factors : the physical parameters of the skeleton and the damping resulting

from the friction of the fluid in the pores.

4.2.2. Effects caused by the scatterers on the waves

Let us examine now the effect on the fast and slow waves of a random

distribution of aluminum spheres (radius R = 4 × 10−3 m, particle volume

fraction C = 20%). Results of calculations for ω/Re(ζα) and Im(ζα)/Re(ζα)

are presented in Figures 3 to 6. They were obtained using the approxima-

tions, Eqs. (39) and subsequent, of sec. 3.1 for the fast wave and Eqs. (43)
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and subsequent, of sec. 3.2 for the slow wave. Dashed, dotted and dotdashed

lines illustrate the account of only the first order in concentration δ11, of go-

ing up to the second order in concentration without mode conversions δ1,c2 ,

and finally of going up to the second order in concentration with inclusion of

mode conversions δ1,02 +δ1,c2 . As it can be seen, mode conversions take place in

a meaningful way whatever the frequency. The inclusion of metallic spheres

in the QF20 causes significant modifications in the fast wave : (i) its phase

velocity increases of about 160m/s for frequencies lower than 1kHz, (ii) the

peak of attenuation decreases in magnitude from 0.0086 to about 0.0079.

The effect of the metallic spheres is less substantial for the slow wave. Its

phase velocity and attenaution are weakly sensitive to the presence of spheres.

The various orders of concentration show nonetheless in the 1-50 kHz fre-

quency range a decrease in velocity, Fig. 5. Concerning the attenuation of

the slow wave, the changes are not perceptible in Fig. 6. Note that the

curves of the velocities and attenuations of the effective wavenumbers are

drawn according to the approximations we have provided. Although these

approximations are in principle limited in precision, they do not differ sig-

nificantly in their appearance from the fast and slow wave velocities and

attenuations in the QF20 without spheres.

The result of replacing aluminum by epoxy which is a softer material is pre-

sented in Fig. 7 for the fast wave. The comparison with Fig. 3 shows clearly

the influence of the material constitutive of the spheres. The presence of

epoxy spheres lowers the attenuation and increases the velocity. For the slow

wave (not shown here), the change of properties for the spheres does not

affect neither the velocity nor the attenuation (virtually nothing is modified
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compared to the case with the aluminum spheres).
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Figure 3: Fast wave phase velocities in a fluid-saturated poroelastic medium (QF20) con-

taining randomly distributed aluminum spheres of radius R = 4× 10−3m with a particle

volume fraction C = 20%. Matrix free of spheres (solid), considering only the first or-

der in concentration (dashed), going up to the second order of concentration with only

δ1,02 (dotted) and finally going up to the second order of concentration with δ1,02 + δ1,c2

(dotdashed).
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Figure 4: Fast wave attenuations in a fluid-saturated poroelastic medium (QF20) con-

taining randomly distributed aluminum spheres of radius R = 4× 10−3m with a particle

volume fraction C = 20%. Solid, dashed, dotted and dotdashed lines (see Fig. 5 for

correspondences).
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Figure 5: Slow wave phase velocities in a fluid-saturated poroelastic medium (QF20) con-

taining randomly distributed aluminum spheres of radius R = 4× 10−3m with a particle

volume fraction C = 20%. Matrix free of spheres (solid), considering only the first or-

der in concentration (dashed), going up to the second order of concentration with only

δ1,02 (dotted) and finally going up to the second order of concentration with δ1,02 + δ1,c2

(dotdashed).
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Figure 6: Slow wave attenuations in a fluid-saturated poroelastic medium (QF20) con-

taining randomly distributed aluminum spheres of radius R = 4× 10−3m with a particle

volume fraction C = 20%. Solid, dashed, dotted and dotdashed lines are confounded (see

Fig. 5 for correspondences) .
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Figure 7: Fast wave phase velocities in a fluid-saturated poroelastic medium (QF20) con-

taining randomly distributed epoxy spheres of radius R = 4×10−3m with a particle volume

fraction C = 20%. Matrix free of spheres (solid), considering only the first order in con-

centration (dashed), going up to the second order of concentration with only δ1,02 (dotted)

and finally going up to the second order of concentration with δ1,02 + δ1,c2 (dotdashed).
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Figure 8: Fast wave phase attenuations in a fluid-saturated poroelastic medium (QF20)

containing randomly distributed epoxy spheres of radius R = 4 × 10−3m with a particle

volume fraction C = 20%. Solid, dashed, dotted and dotdashed lines (see Fig. 7 for

correspondences).

5. Explicit low frequency expressions for the effective wavenumbers

At the end of sec. 3, formulas have been found for the various constitu-

tive terms of the fast and slow effective wavenumbers. These formulas were

expressed in terms of dimensionless quantities xα and γα (α = 1, 2, t) de-

pending on the angular frequency ω. The status of these formulas was the

provision of approximate formulas for the effective wavenumbers valid in the

relatively low frequency domain where the dispersive effects take place. Now,

the objective is to go a step further to formulas of effective wavenumbers close

to the static limit (dispersive effects are then left aside) in order to extract

effective quantities describing the composite medium. In this second step of
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approximations, the low frequency expansions of the wavenumbers kα and

of the coefficients γα are introduced in the formulas. Let ωc = η
ρfκ

(= 67.85

kHz with data of Table 1) represent a characteristic angular frequency. It is

recalled at first that as ω becomes small, that is ω � ωc, the wavenumbers

take the forms k21 = ω2ρ
H

+ O(ω3), k22 = ωε− ω2(
mH+ρM−2ρfC

C2−HM + ρ
H

) + O(ω3),

k2t = ω2ρ
µ

+O(ω3), where

ε =
iωcρfH

HM − C2
. (46)

It follows that γ1 = O(ω), γ2 = −H
C

+ ( ρ
Cε
− Hρf

C2ε
)ω + O(ω2), γt = O(ω) and

that H1 = H − 2µ+O(ω), H2 = −2µ+ (ρ
ε
− Hρf

Cε
)ω +O(ω2). The constants

H, M and C are detailed in the Appendix. In the light from above, we get

b = ω(1− Hρf
Cρ

)
ρ

ε
(µ− µs) +O(ω2), c = H(µ− µs) +O(ω), (47)

d = ω(1− Hρf
Cρ

)
ρ

ε
(2µ+ 3µs) +O(ω2), e = H(2µ+ 3µs) +O(ω), (48)

and

γ21 =
−H
C

+O(ω), γt1 = O(ω), γ2t =
−H
C

+O(ω). (49)

Therefore, as ω → 0, for the mode n = 0

b110
d0
→ 3H

3λs + 4µ+ 2µs
, (50)

and

(
b120
d0
,
b210
d0
,
b220
d0

)→ (0, 0, 0), (51)

while for the mode n = 1

(
b111
d1
,
b121
d1
,
b1t1
d1

)→ (
ρ− ρs

3ρ
, 0,

ρ− ρs
3ρ

), (52)

(
b211
d1
,
b221
d1
,
b2t1
d1

)→ (
ρ− ρs

3ρ
+

3

2
(1− Hρf

Cρ
),−1

2
,−ρ+ 2ρs

6ρ
+

1

2
(1− Hρf

Cρ
)), (53)
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(
bt11
d1
,
bt21
d1
,
btt1
d1

)→ 2(
ρ− ρs

3ρ
, 0,

ρ− ρs
3ρ

), (54)

and

L1t → 2(µ/H)
3
2

(µ/H)2 − 1
. (55)

For the various δ terms - Eq. (39) and subsequent - involved in the fast

effective wavenumber, we obtain to the first approximation

n0δ
1
1 = ω2 ρ

H
C[

3H

3λs + 2µs + 4µ
− 1− ρ− ρs

ρ
], (56)

n2
0δ

1,0
2 = ω2 ρ

H
C2[(1− 3H

3λs + 2µs + 4µ
)
ρ− ρs
ρ

+ (
ρ− ρs

3ρ
)2], (57)

and

n2
0δ

1,c
2 =

1

2
ω2 ρ

H
C2L1t(1 + 2

µ

H
)(
H

µ
)
3
2 (
ρ− ρs

3ρ
)2. (58)

For the δ terms - Eqs. (43) and subsequent - useful to built the slow effective

wavenumber, we obtain to the first approximation

n0δ
2
1 =

1

2
ωεC, (59)

n2
0δ

2,0
2 =

−5

4
ωεC2, (60)

and

n2
0δ

2,c
2 = O(ω2). (61)

In the fast wave, the δs depend both on the parameters of the matrix and

the spheres. Moreover, δ1,c2 is of the same order as δ1,02 showing that at low

frequency the mode conversions 1 ↔ 2 and 1 ↔ t are as important as the

non-conversions 1↔ 1 in the fast effective wavenumber.

In the slow wave, the first terms in the expansion of the δs only depend

on the poroelastic medium through ε. The first non-zero term obtained for

δ2,c2 is O(ω2), Eq. (61). At low frequency, because |δ2,c2 | � |δ
2,0
2 |, the mode

conversions 2↔ 1 and 2↔ t participate very few in the slow wavenumber.
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6. Effective bulk modulus and mass density

In this section and the next, we investigate the effective moduli, densities

and diffusion coefficient of the composite material. The formulas obtained

are general and allow an independent discussion of the numerical data of

Table 1. For example, in sec. 6, the limits where the porosity is zero or equal

to one are examined, while in sec. 7, The effects of skeletal elasticity on the

slow wave are discussed. Let us expand the ratio of the fast wavenumbers

as ζ21
k21

=
ζ21
ω2

ω2

k21
. For ω � ωc, let us also admit that ζ21 must behave like k21,

that is ζ21 = ω2ρ1,e
H1,e

where ρ1,e and H1,e denote the effective mass density and

bulk modulus, respectively. Thence, ζ21
k21

= ρ1,e
ρ

H
H1,e

. Identifying next with the

factor decomposition Eq. (42), we deduce the following expressions

ρ1,e = ρ(1− 3C
b111
d1

) = (1− C)[(1− φ)ρ̄s + φρf ] + Cρs, (62)

and
H

H1,e

= 1 + C(
b110
d0
− 1) = 1 + C(

3H

3λs + 2µs + 4µ
− 1). (63)

An alternative form of this last relation is

1

H1,e

=
1− C

H
+

C

λs + 2
3
µs + 4

3
µ
. (64)

For a low porosity matrix (φ→ 0), we have ρ→ ρ̄s, H → K̄s+
4
3
µ̄s (Kb → K̄s,

µ→ µ̄s, σ → 0). It follows that

ρ1,e
ρ
→ ρel,e

ρ̄s
= 1− C

ρ̄s − ρs
ρ̄s

, (65)

1

H1,e

→ 1

Hel,e

=
1− C

K̄s + 4
3
µ̄s

+
C

Ks + 4
3
µ̄s
, (66)

where ρel,e and Hel,e ≡ Kel,e + 4
3
µel,e represent effective quantities for the

distribution of elastic spheres buried in an elastic matrix (barred quantities
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are for the matrix). For ρs < ρ̄s, we get ρ1,e/ρs < 1, i.e. an effective medium

less dense than the elastic host medium. The shear modulus µs of the spheres

is absent in Eq. (66). Thus, two phases (matrix and sphere) equal by their

bulk moduli but different by their shear moduli lead to the same effective

modulus. If in the left hand side of Eq. (66), µel,e is replaced by µ̄s, the

resulting formula looks like the Kuster-Töksoz estimate for two constituants

with particle volume concentrations C and 1− C, Eq.(19) of Ref. [42].

For a high porosity matrix (φ → 1), we have ρ → ρf , H → Kf (Kb → 0,

µ→ 0, σ → 1) from which follow the limits

ρ1,e
ρ
→ ρliq,e

ρf
= 1− C

ρf − ρs
ρf

, (67)

1

H1,e

→ 1

Hliq,e

=
1− C

Kf

+
C

Ks

, (68)

where ρliq,e and Hliq,e ≡ Kliq,e are effective mass density and bulk modulus

for the distribution of elastic spheres in a liquid. Equation (68) is typical of

the Reuss average [25], found by assuming that the stress at every position

of the effective medium is equal to the macroscopic stress of the sample.

7. Effective diffusion coefficient

In a Biot poroelastic medium, the conditions that favor the propagation of

a slow high amplitude wave are as follows : continuity of the two phases (fluid

and solid), high acoustic frequency, high fluid permeability and low viscosity

[43], [44]. At low frequency (ω << ωc), the slow wave is of the diffusive type,

i.e. governed by a diffusion equation with a hydraulic diffusivity coefficient.

With these facts in mind, we now deal with the slow effective wavenumber.
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By using the results of sec. 5, it can be shown that :

ζ22 =
iω

χ
(1 +

1

2
C− 5

4
C2), (69)

where

χ = iε−1 =
HM − C2

ωcρfH
. (70)

This result suggests a diffusion process in the time domain governed by the

partial differential equation

De~∇2φ2 =
∂φ2

∂τ
, (71)

where φ2 is a displacement potential for the slow wave (with time dependence

e−iωτ ) and

De =
iω

ζ22
=

χ

1 + 1
2
C− 5

4
C2
, (72)

the effective diffusion coefficient. The mechanical stability requierement

HM − C2 ≥ 0 imposes De > 0. On the other hand, since C < 2
5
(in the

frame of the dilute case imposed all along the paper for using the LCN

formula), the effective diffusion coefficient is such that De < De|C=0 = χ.

Clearly, the presence of elastic spheres in the poroelastic matrix lowers the

diffusion coefficient. The expression of De|C=0 was given by Berryman, see

Eq. (73) of Ref. [3].

Note that "the soft sediment case" where HM − C2 ≈ 0 yields De ≈ 0,

a value also obtained for high porosity frames where H ≈ M ≈ C. If

the poroelastic matrix is made of regular spherical grains, the permeability

is generally approximated by the Kozeny-Carman formula κ =
φa2p
20

where

ap = φdg
3(1−φ) is the pore size parameter corresponding to spherical grains of

diameter dg.
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For an infinitely rigid frame (H →∞, M → Kf
φ
)

De → Drige =
Kfa

2
p

20η

1

1 + 1
2
C− 5

4
C2
, (73)

with Drige tending to zero as ap or the porosity tends to zero. From Eq. (69)

and by retaining only the positive values for the real part, we find that

ζ2 = (1 + i)

√
ω

2χ
(1 +

1

2
C− 5

4
C2). (74)

This result shows that the slow wave is quickly damped inside the effective

porous medium. The damping depends on the concentration. The distance

at which the amplitude is reduced by e times is

∆e =

√
2χ

ω(1 + 1
2
C− 5

4
C2)

, (75)

an effective depth of penetration. With data of Table 1 and f = 10kHz,

∆e = 4.5 × 10−2m for C = 20%. This value can be compared with other

characteristic lengths, namely the viscous skin depth ds =
√

2η
ωρ

= 4.2 ×

10−6m, the mean pore radius 3.26 × 10−5m and the radius of the spheres

4 × 10−3m. Since C = n0(4πR
3/3), the larger the size of the scatterers, the

smaller ∆e for a fixed number of spheres per unit volume. To conclude this

section, we can note the absence of contribution from the δ2,c2 term for wave

conversions. Such a result is due to the fact that we considered the lower

terms of the expansions in powers of ω. Further calculations should make it

possible to introduce the effects of conversions.

8. Conclusion

Fast and slow waves behave very differently from each other in a poroe-

lastic medium obeying Biot’s theory. The fast wave is propagative at all
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frequencies, while the slow wave is diffusive at very low frequencies, only be-

coming propagative when the frequency is sufficiently high. In the presence

of spherical scatterers distributed randomly in the poroelastic medium, the

frequency behaviors of the fast and slow waves remain but are nevertheless

influenced by the concentration of scatterers. From Luppe, Conoir and Nor-

ris (LCN) effective wavenumber formula extended to the poroelastic case,

we derived expressions for the fast and slow effective wave numbers at low

frequency. On the one hand, the analysis of the effective fast wave allowed

us to highlight the importance of the mode conversions and to extract the ef-

fective bulk modulus and mass density of the poroelastic composite medium.

On the other hand, the analysis of the slow wave allowed us to extract an

effective diffusion coefficient depending on the particle volume fraction (up to

the second order) and to estimate a penetration depth. At low frequency, the

physical properties of the spheres have very little influence on the effective

properties of the slow wave.

Potential working applications are expected to be in particulate composites

and metamaterials. The use of a poroelastic matrix instead of an elastic

matrix has the effect of introducing low frequency absorption. In this, the

present study also offers an alternative to the use of viscoelastic matrices.

Viscoelastic materials have fixed properties whereas a poroelastic medium

can undergo transformations acting on the acoustic characteristics: modifi-

cation of the porosity (therefore of the permeability) via invasion or erosion

processes, modification of the scatterers by a chemical process, modification

of the saturating fluid. In fact, poroelastic matrices (the skeleton of which

can be made with a viscoelastic material) could allow the advent of new types
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of metamaterials with modifiable performance at will.
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Appendix : Derivation of the scattering coefficients

Let (r, θ, ϕ) be spherical coordinates with orthonormal basis vectors (~er,

~eθ, ~eϕ). Consider an elastic isotropic sphere of radius R placed at the ori-

gin of the axes. In this paper, ρs, λs and µs denote the mass density and

the Lamé constants of the constitutive material. Let usr, usθ be the radial

and tangential displacements. Let also σsrr, σsrθ be radial and tangential

components of the stress tensor in the sphere. The wavenumber of the lon-

gitudinal wave is kL = ω/cL, that of the transverse wave kT = ω/cT , where

cL =
√

(λs + 2µs)/ρs and cT =
√
µs/ρs denote velocities and ω the angular

frequency.

The sphere is embedded in a poroelastic isotropic medium obeying Biot’s

theory (a full account of the theory can be found in Refs. [1], [45] and

[3]). Wavelengths are assumed very large compared to the pore size, so

that average values of the local displacements in the solid and the fluid are

accounted for. Let ur and uθ be the displacement components of the frame,

and wr and wθ be those of the relative motion of the fluid with respect

to the solid. The components of the stress tensor are denoted by σrr and

σrθ. The poroelastic medium sustains two longitudinal waves with respective

wavenumber k1 (fast wave) and k2 (slow wave), and a transverse wave with

wavenumber kt.

The application of the boundary conditions usr = ur, usθ = uθ, wr = 0,

σsrr = σrr and σsrθ = σrθ at r = R yields a linear system

Mn
~Xα
n = ~Sαn (A.1)

of 5 equations with 5 unknowns where the superscript α indicates the type
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of the incident wave (α = 1, 2 or t). The elements of the 5x5 matrix Mn are

given by

mn,11 = x1h
′
n(x1), (A.2)

mn,12 = x2h
′
n(x2), (A.3)

mn,13 = n(n+ 1)hn(xt), (A.4)

mn,14 = −xLj′n(xL), (A.5)

mn,15 = −n(n+ 1)jn(xT ), (A.6)

mn,21 = hn(x1), (A.7)

mn,22 = hn(x2), (A.8)

mn,23 = hn(xt) + xth
′
n(xt), (A.9)

mn,24 = −jn(xL), (A.10)

mn,25 = −xT j′n(xT )− jn(xT ), (A.11)

mn,31 = γ1x1h
′
n(x1), (A.12)

mn,32 = γ2x2h
′
n(x2), (A.13)

mn,33 = γtn(n+ 1)hn(xt), (A.14)

mn,34 = 0, (A.15)

mn,35 = 0, (A.16)

mn,41 = [−H1x
2
1 + 2µ(n(n+ 1)− x21)]hn(x1)− 4µx1h

′
n(x1), (A.17)

mn,42 = [−H2x
2
2 + 2µ(n(n+ 1)− x22)]hn(x2)− 4µx2h

′
n(x2), (A.18)

mn,43 = 2µn(n+ 1)[−hn(xt) + xth
′
n(xt)], (A.19)

mn,44 = −[−λsx2L + 2µs(n(n+ 1)− x2L)]jn(xL) + 4µsxLj
′
n(xL),(A.20)

mn,45 = −2µsn(n+ 1)[−jn(xT ) + xT j
′
n(xT )], (A.21)
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mn,51 = 2µ[−hn(x1) + x1h
′
n(x1)], (A.22)

mn,52 = 2µ[−hn(x2) + x2h
′
n(x2)], (A.23)

mn,53 = 2µ[−xth′n(xt) + (n(n+ 1)− 1− x2t
2

)hn(xt)], (A.24)

mn,54 = −2µs[−jn(xL) + xLj
′
n(xL)], (A.25)

mn,55 = −2µs[−xT j′n(xT ) + (n(n+ 1)− 1− x2T
2

)jn(xT )], (A.26)

If α = 1 (incidence of the fast longitudinal wave ) or α = 2 (incidence of the

slow longitudinal wave)

~Sαn =



−xαj′n(xα)

−jn(xα)

−γαxαj′n(xα)

−[−Hαx
2
α + 2µ(n(n+ 1)− x2α)]jn(xα) + 4µxαj

′
n(xα)

−2µ[−jn(xα) + xαj
′
n(xα)].


, (A.27)

and if α = t (transverse wave incidence)

~Stn =



−n(n+ 1)jn(xt)

−jn(xt)− xtj′n(xt)

−γtn(n+ 1)jn(xt)

−2µn(n+ 1)[−jn(xt) + xtj
′
n(xt)]

−2µ[−xtj′n(xt) + (n(n+ 1)− 1− x2t
2

)jn(xt)]


. (A.28)

The vector ~Xα
n contains the unknown scattering coefficients tαβn by one sphere

in relation with the type of the incident (α) and scattered (β) waves and can

be written as

~Xα
n =

(
tα1n tα2n tαtn BαL

n BαT
n

)T
. (A.29)
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Above, xj = kjR (j = 1, 2, t, L, T ) are dimensionless wavenumbers and

primes over the spherical Bessel functions jn and Hankel functions hn (≡ h
(1)
n )

denote derivatives with respect to the arguments. The scattering coefficients

tαβn (n ∈ R and α, β = 1, 2, t) are found by solving the linear system Eq.

(A.1).

The definition of the coefficients γj and γt are

γj =
Hk2j − ρω2

ρfω2 − Ck2j
, (j = 1, 2) (A.30)

γt =
µk2j − ρω2

ρfω2
, (A.31)

where ρf and ρ = (1 − φ)ρ̄s + φρf are the mass densities for the saturating

fluid and the poroelastic medium, respectively. These coefficients originate

from the proportionality relations between the amplitudes of the potentials

that are necessary for the description of the displacement fields in the fluid

and solid phases, see for example Ref. [45]. Note also that

Hj = H − 2µ+ γjC (A.32)

for j = 1, 2. The moduli H, C, µ (and M) of the fluid-saturated poroe-

lastic medium fulfill the mechanical stability requirements H ≥ 0, M ≥ 0,

µ ≥ 0 and HM − C2 ≥ 0. Brown and Korringa [46] have shown that

H = Kb + σC + 4
3
µ, C = σ[σ/K̄s + φ(1/Kf − 1/K̄s)]

−1 and M = C/σ where

σ = 1−Kb/K̄s.
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