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ABSTRACT 

The COVID-19 has been creating a global crisis, causing countless deaths and unbearable panic. 

Despite the progress made in the development of the vaccine, there is an urge need for the 

discovery of antivirals that may better work at different stages of SARS-CoV-2 reproduction. 

The main protease (Mpro) of the SARS-CoV-2 is a crucial therapeutic target due to its critical 

function in virus replication. The α-ketoamide derivatives represent an important class of 

inhibitors against the Mpro of the SARS-CoV. While there is 99% sequence similarity between 

SARS-CoV and SARS-CoV-2 main proteases, anti-SARS-CoV compounds may have a huge 

demonstration’s prospect of their effectiveness against the SARS-CoV-2. In this study, we 

applied various computational approaches to investigate the inhibition potency of novel designed 

α-ketoamide-based compounds. In this regard, a set of 21 α-ketoamides was employed to 

construct a QSAR model, using the genetic algorithm-multiple linear regression (GA-MLR), as 

well as a pharmacophore fit model. Based on the GA-MLR model, 713 new designed molecules 

were reduced to 150 promising hits, which were later subject to the established pharmacophore 

fit model. Among the 150 compounds, the best selected compounds (3 hits) with greater 

pharmacophore fit score were further studied via molecular docking, molecular dynamic 

simulations along with the Absorption, distribution, metabolism, excretion, and toxicity 

(ADMET) analysis. Our approach revealed that the three hit compounds could serve as potential 

inhibitors against the SARS-CoV-2 Mpro target. 

Keywords: SARS-CoV-2; Main protease (Mpro); α-ketoamide; QSAR; Pharmacophore 

modeling; Molecular docking; Molecular dynamics simulations.  
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1. Introduction 

The spread of novel coronavirus disease COVID-19, caused by serious acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2), has had significant morbidity, mortality, and social and 

economic disruption throughout the globe. This disease has occurred firstly in Wuhan, Hubei 

Province, China, where a pneumonia of an unknown cause was detected in December 2019. As 

of now, SARS-CoV-2 has spread over to almost all parts of the world (213 nations) with over 

120 million confirmed cases and over 2.67 million confirmed deaths worldwide at the time of 

writing (15th March, 2021) [1]. In the 21st century, SARS-CoV-2 is the 3rd Coronaviridae family 

member after the SARS-CoV in 2002 and the Middle East respiratory syndrome coronavirus 

MERS-CoV in 2012 that have infected 8422 (mortality rate of about 10%) and 1700 people 

(mortality rate of about 36%), respectively [2,3]. 

Like other coronaviruses, SARS-CoV-2 genome is around 30 kb in size and its genomic 

organization followed the gene characteristic order to known CoVs, [5’-replicase (rep), spike (S), 

envelope (E), membrane (M), and nucleocapsid (N)-3’] [4]. The 5’ terminal more than two-thirds 

of the genome contains two long open reading frames, ORF1a and ORF1b which are translated 

into two polyproteins pp1a and pp1b to encode 16 non-structural proteins (nsp1-nsp16) which 

form the viral replicase-transcriptase complex (RTC). On the other hand, the 3′ third of the 

genome contains the remaining ORFs that encode the 4 viral structural proteins (S, M, E and N) 

as well as the 9 auxillary proteins (ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9a, 

ORF9b and ORF10 genes) [5]. The RTC consists of multiple enzymes, the main protease (Mpro, 

nsp5) and the papain-like protease (PLpro, nsp3) participate in the cleavage of the polyproteins 

to produce nsp2-nsp16 involved in the RTC [6]. 

The Mpro is essential for viral replication and maturation. It has been paid attention to the Mpro 

(i.e. 3C-like protease (3CLpro)) as an attractive target for anti-COVID-19 drug discovery and 

development [7]. The Mpro monomer is made up of three domains: domain I, II, and III with 

amino acid residues 8-101, 102-184, and 201-306, respectively. The catalytic dyad composed of 

CYS145 and HIS41, where is located at the cleft between domains I and II, is reported to initiate 

the activation through dimerization process mechanism [6]. Thus, it may therefore be logical to 

block the catalytic site in order to inhibit the main protease function. 
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As the SARS-CoV-2 genome has over 80% identity to SARS-CoV (about 99% sequence 

similarity for their Mpro), previously reported 21 α-ketoamides SARS-CoV Mpro inhibitors may 

have significant efficacy to show against the SARS-CoV-2 [3]. In this view, various 

computational approaches including QSAR modeling, pharmacophore modeling, molecular 

docking, molecular dynamic (MD) simulations, and Absorption, distribution, metabolism, 

excretion, and toxicity (ADMET) test were used to investigate the possible inhibitory activity of 

novel designed α-ketoamide-based compounds. Indeed, the aim of this work consists of: 

 Establishing a reliable QSAR model using GA-MLR method that can be able to predict 

the SARS-CoV-2 Mpro inhibitory activity of α-ketoamides. 

 Developing a pharmacophore fit model based on the structural features of the studied 

SARS-CoV-2 Mpro inhibitors. 

 Proposing new drug candidates and screening for new hits through the investigation of 

the effect of active groups.  

 Elucidating the dynamics of the complexes and the underlying inhibition mode of the 

proposed hits at the active pocket of the target protein and evaluating their 

pharmacological profiles. 

2. Materials and methods 

2.1. Data collection and molecular descriptor calculation 

A dataset of 21 compounds of α-ketoamides derivatives with SARS-CoV inhibitory activity were 

collected from the published work by Zhang et al. (Table S1) [8]. The retrieved IC50 values were 

converted to their corresponding pIC50 (-log10 (IC50)) and used as a dependent variable. The 

ChemDraw 18.0 software was used to draw the chemical structures and their geometries were 

optimized using the AM1 method in the gas phase. This optimization was implemented in the 

Gaussian 09 program package [9]. Frequency analysis was used to verify the energy minima of 

the optimized samples. 

Molecular descriptor values (0D-3D) of the aforementioned compounds were calculated with the 

OCHEM server (it is a free implementation environment, available online https://ochem.eu) [10]. 

The variables (nearly 5000) were collected and pre-filtered by eliminating constant and nearly 

constant value (>80%). Pairs of a highly correlation coefficient (> 0.95) were pruned, avoiding 

development of any biased models. The process continued till a set of the relevant 10 descriptors 
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from the initial computed pool was selected. Finally, four descriptors listed in Table S2 provided 

the best QSAR model. 

2.2. 2D-QSAR Model Construction and Validation 

The statistically robust 2D-QSAR model based on the genetic algorithm-multiple linear 

regression (GA-MLR) has been established utilizing the QSARINS software [11,12]. This model 

was subjected to various thorough statistical validations as per the Organization for Economic 

Co-operation and Development (OECD) guidelines. The general procedure for developing the 

QSAR model is composed of three main sessions: 

(i). The dataset comprising the 21 α-ketoamide analogs was randomly divided, using the 

splitting option in the QSARINS software, into 70% training set (14 compounds) and 30% 

test set (7 compounds). The training set was employed for model construction and the test 

set for the external validation. 

(ii). The GA-MLR 2D-QSAR model was constructed using default parameters of the QSARINS 

program. During the model development, the selected molecular descriptors were utilized to 

derive a simple and an informative GA-MLR model. 

(iii). The confirmation of the model validity was proved by subjecting the established model to 

internal and external validations, Y-randomization, and model applicability domain (AD) 

analysis. Indeed, the statistical quality and robustness of the GA-MLR-based 2D-QSAR 

model was ensured on the basis of: (a) internal validation based on leave-one-out (LOO) and 

leave-many-out (LMO) procedure (i.e. cross-validation (CV)); (b) external validation;  

(c) Y-randomization; and (d) fulfillment of respective threshold values for the statistical 

metrics: the determination coefficient of the training set (𝑅𝑡𝑟
2 ) ≥ 0.6, the square of the CV 

correlation coefficient obtained from the leave-one-out (LOO) procedure (𝑄𝑙𝑜𝑜
2 ) ≥ 0.5, the 

leave-many-out (LMO) 𝑄𝑙𝑚𝑜
2  ≥ 0.6, and the square of correlation coefficient obtained for the 

test set (𝑅𝑡𝑒𝑠𝑡
2 ) ≥ 0.6. Finally, the root-mean square error (RMSE) and the mean absolute 

error (MAE) values should be close to zero. Any QSAR model that did not satisfy any of 

these criteria is therefore omitted. 

2.3. Virtual Screening Database Preparation 
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Virtual screening (VS) is a computational method employed to screen available chemical 

databases for filtering molecules that are most likely to bind to a drug target by mapping them on 

generated chemoinformatic models [13]. The hit identification, using VS of compounds, is 

among the most popular computational techniques in drug design [14,15]. In this work, the 

screened database was prepared using different strategies and a total number of 713 molecules 

was generated. The first part was formed based on an initial pharmacophore model created by the 

ZincPharmer online server. Chemical features from the core structure of 13b and 11r compounds 

(Figure 1), possessing significant SARS-CoV-2 inhibitory activities, were employed to generate 

initial pharmacophore models (Figure S1) [16]. These models were applied to retrieve a total 

number of 197 compounds from the Zinc database [17]. The second part comprising 484 

molecules was generated based on several modifications at the core structure of compounds 13b 

and 11r using the “Expand Generic structure” option implemented in the ChemDraw software. 

The modifications were made based on the optimization of P1’, P2, and P3 substituents in 

compounds 13b and 11r (Figure 1). The P1 moiety was kept intact during the modifications due 

to its vital role in the interaction with the active pocket of the Mpro. The last part which contains 

32 molecules was taken from a previously published series of α-ketoamide inhibitors [18]. 

 

Figure 1. Chemical structures of α-ketoamide inhibitors 11r and 13b. Colored circles highlight 

the substituents where the modifications were made. 

Herein, the identified molecules were subjected to two filters. Firstly, the above-mentioned  

GA-MLR model was employed in order to screen for compounds with the highest pIC50 values 

from the list of 713 generated ones. Secondly, the features fitting of each compound were 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



evaluated through the application of advanced pharmacophore fit model, facilitating the ranking 

of the screened molecules from the best GA-MLR QSAR model. 

 

2.4. Ligand-based Pharmacophore model 

Ligand-based pharmacophore approach has become an important tool in the identification and 

extraction of the main chemical features from a set of active compounds [19,20]. Over the 713 

generated compounds that were subject to the established GA-MLR model, the best 150 

molecules were selected for advanced pharmacophore fit models. The pharmacophore models 

were generated based on the initial 21 α-ketoamide analogs using LigandScout software [21]. On 

investigation, it was observed that a combination of three distinct chemical features of the 

molecules in the training set, including hydrogen-bond acceptor (HBA), hydrogen-bond donor 

(HBD), and hydrophobic interaction (H), was found to effectively assess all critical chemical 

features (Figure 2). These chemical characteristics were generated in order to remain close to the 

common core structure of the studied α-ketoamide analogs and later were employed to screen for 

new hit molecules. Finally, 3 hits (007, 329 and 331) with the higher pharmacophore fit score 

were subjected to molecular docking and MD simulations analysis followed by the ADMET 

study to confirm their pharmacokinetic profiles. 
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Figure 2. a | Ligand-based pharmacophore model generated by LigandScout software, showing 

different features including HBA, HBD, and Hydrophobic (H). 

b | Pharmacophore model with distance constraints. 

 

2.5. Molecular Docking of Selected Hits 

Molecular docking analyses have been widely employed in medicinal chemistry research 

[22,23]. In the current work, molecular docking was employed to analyze the interactions and the 

conformational patterns of the selected hits within the active site of the Mpro of the SARS-CoV-2. 

The crystallographic protein of the Mpro was downloaded from the Protein Data Bank with the 

PDB code 6Y2F [16,24]. It is a monoclinic form of the complex resulting from the reaction 

between SARS-CoV-2 Mpro and the α-ketoamide inhibitor (13b). For the protein preparation, the 

co-crystallized ligand and the water molecules were removed and the hydrogens were added 

using Autodock Tools [25]. The selected hits were prepared and saved in pdbqt format using the 

same software. In the docking investigations, a box of 20 × 20 × 20 and a grid space of 0.375 Å 

were fixed. The center of the ligands was set using the following coordinates x = 10.88 Å, y = -

0.25 Å and z = 20.75 Å. The mode number was fixed at 8. All the docking runs were performed 

by the Autodock Vina program [26]. 

 

2.6.Molecular Dynamics Simulations 

Molecular dynamics (MD) simulation is an important approach in understanding the 

fundamental basis of the biological macromolecule structures, which can provide critical insights 

on their function and dynamics. Therefore, AMBER18 software package [27] was utilized to 

perform 160 ns of MD simulations. Five systems were simulated: complex007 (compound 007 in 

complex with Mpro), complex329 (compound 329 in complex with Mpro), complex331 

(compound 331 in complex with Mpro), complex13b (the reference compound 13b in complex 

with Mpro), and APO (the unbound form of Mpro). Prior to the MD simulations, the best-docked 

pose for each ligand was parameterized using Antechamber [28]. The TLeap module was used to 

ensemble the system, implementing the FF99SB force field to parameterize the protein. The 

general AMBER force field (GAFF) was employed to determine the partial charges of atoms in 
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the ligand. Neutralizing counterions and missing hydrogens were included [29,30]. All the 

systems were placed inside a TIP3P water box of a distance of 10 Å [31]. The partial Mesh 

Ewald (PME) [32] method was used to account for the long-range electrostatic forces using a 

cutoff of 12 Å, and the SHAKE algorithm [33] was used to constrain all the hydrogen atom 

bonds. The studied systems were then minimized using double phase method. First, 2500 steps 

of steepest descent minimization were applied with restraint conditions of 500 kcal.mol-1.Å-2, 

considering the solute molecule. This was followed by a conjugate gradient minimization 

process in the absence of all restraints; thus, the overall system was relaxed. The systems were 

progressively heated at a constant volume and at a constant pressure from 0 to 300 K using a 

harmonic restraint of 10 kcal.mol-1.Å-2.  In order to equilibrate the system, weak restraints were 

performed during 1000 ps at a temperature of 300 K. Also, the Berendsen barostat was used to 

maintain the system pressure at 1 bar [34]. Total of 160 ns of MD simulations were performed on 

all the systems. The resulting coordinates and trajectories were analyzed using the integrated 

CPPTRAJ and PTRAJ modules of AMBER18 [35]. The attained data were plotted using Origin 

software [36]. 

2.7. Calculations of the binding free energy  

The binding interactions of the compounds 13b, 007, 329 and 331 with the Mpro  were estimated 

through the calculation of binding free energies using the method of Molecular 

Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) [37]. The binding free energy is 

mathematically represented as follows:  

ΔGbind = Gcomplex−Greceptor−Gligand 

ΔGbind = ΔEgas+ ΔGsol−TΔS 

ΔEgas = ΔEint+ΔEvdw+ΔEele 

ΔGsol = ΔGPB+ΔGSA 

ΔGSA = 𝛾SASA+β 

where ΔS and T denote the total entropy of the solute and the temperature, respectively. 

However, ΔEgas, ΔEint, ΔEele and ΔEvdw designate gas-phase energy, internal energy, electrostatic 

and van der Waals interactions, respectively. ΔGsol is the solvation free energy which can be 

separated into polar solvation free energy (ΔGpb) and non-polar solvation free energy (ΔGSA). 
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The solvent accessible surface area (SASA) was used to compute the ΔGSA; where γ and β are 

empirical constants for 0.00542 kcal.mol-1.Å-2 and 0.92 kcal.mol-1.Å-2, respectively. Per-residue 

decomposition analysis was employed to calculate the affinity and to assess the stability of the 

studied compounds through the estimation of the different energy contributions of important 

residues at the active site. 

2.8.Pharmacokinetic and Toxicity Predictions 

The ADMET (i.e., Absorption (A), Distribution (D), Metabolism (M), Excretion (E), and 

Toxicity) predictions of the selected hit compounds were explored through the AdmetSAR and 

the Osiris property explorer servers to evaluate their drug likeness properties [38]. These 

properties explain the disposition of drugs inside an organism and consequently, impacts their 

pharmacological activity. 

3. Results and discussion 

3.1. QSAR modeling 

In the present work, a GA-MLR model was developed using 21 α-ketoamide derivatives reported 

as SARS-CoV inhibitors with a defined endpoint (IC50). The best-established model from the 

four selected molecular descriptors with its statistical parameters are shown below: 

pIC50 = -17.0891 + 16.1547*(GATS8i) + 0.6723*(NRS) + 36.4881*(G2p) – 0.428*(H8s)

 (Equation 1) 

Ntr = 14, 𝑅𝑡𝑟
2  = 0.91, 𝑅𝑀𝑆𝐸𝑡𝑟 = 0.19, 𝑄𝐿𝑂𝑂

2 = 0.78, 𝑄𝑙𝑚𝑜
2  = 0.75 𝑅𝑡𝑒𝑠𝑡

2 = 0.85, 

𝑀𝐴𝐸𝑡𝑒𝑠𝑡 = 0.26 , 𝑄𝐹1
2  = 0.82 , 𝑄𝐹2

2  = 0.81, 𝑄𝐹3
2  = 0.80 , 𝐶𝐶𝐶𝑡𝑒𝑠𝑡 = 0.92, S = 0.24, and F = 26.75. 

In this equation, Ntr is the number of training samples, 𝐶𝐶𝐶 is the concordance correlation 

coefficient [39]. 𝑄𝐹1
2 , 𝑄𝐹2

2  and 𝑄𝐹3
2  are external validation criteria [40], S is the standard 

deviation, F is Fischer-ratio between the variances of calculated and observed activities 

All these statistical metrics that have been calculated for the established model are associated 

with fitting (i.e. 𝑅𝑡𝑟
2  and 𝑅𝑀𝑆𝐸𝑡𝑟), internal (i.e. 𝑄𝑙𝑜𝑜

2  and 𝑄𝑙𝑚𝑜
2 ) and external validation (i.e. 𝑅𝑡𝑒𝑠𝑡

2 , 

𝑀𝐴𝐸𝑡𝑒𝑠𝑡, 𝑄𝐹1
2 , 𝑄𝐹2

2 , 𝑄𝐹3
2 , and 𝐶𝐶𝐶𝑡𝑒𝑠𝑡) indicate the statistical reliability of the QSAR model. 

Indeed, these obtained parameters fulfill the recommended thresholds values and ensure the 

predictive power and stability of the derived GA-MLR model (Figure 3a). In addition, for a 

better validation of the built model, the AD assured by the leverage method and plotted as the 

Williams plot (Figure 3b), is used to assess the space of the AD of the created model. The 
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warning line for the X outlier (h*) is 1. The dashed lines show the cutoff value of ±3 standard 

deviation (s.d.). From the Williams plot, all compounds are within the scope of the AD. 

 

Figure 3. a | Plot of experimental vs. predicted pIC50 values; b | Williams plot. 

 

 

3.2. Ligand-based Pharmacophore Modeling 

Ligand-based pharmacophore models were built from 21 α-ketoamide inhibitors. Molecular 

features involving hydrophobic interactions, HBA, and HBD were selected while generating the 

pharmacophore models. The best pharmacophore model was employed to select the best hits 

from the top 150 compounds. These hits were further subjected to molecular docking analysis to 

confirm their ability to be used as SARS-CoV-2 inhibitors. Table 1 shows the chemical structure 

of the three selected hits that match the different pharmacophore features illustrated in the Figure 

2, their predicted pIC50 using the GA-MLR model equation (Eq.1), their pharmacophore fit 

scores along with their binding affinity scores with the Mpro active site. 

Table 1. Three hit compounds that well passed the filtration procedure. 
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Hit ID Chemical structure 
pIC50 

(Predicted) 

Pharmacophore 

Fit score 

Binding affinity 

(Kcal.mol-1) 

007 

 

6.0712 83.11 -7.9 

329 

 

6.2861 84.35 -7.2 

331 

 

6.4055 84.35 -8.2 

13b 

 

- - -7.7 

3.3. Molecular Docking Analysis 

The docking result and binding affinity estimation of the selected hit compounds and the 

reference re-docked inhibitor (13b) are shown in the Table 1. The interaction details with the 

active pocket amino-acids of SARS-CoV-2 Mpro are shown in Figure 4. The detailed amino acid 

residues are represented in Table S3 and the Figure S2 illustrates different hydrophobic and 

aromatic binding modes of 13b, 007, 329 and 331 ligands. The maximum range of energy 

differences between the studied ligands was 1 kcal.mol-1. It was found that the binding affinity 

score of the hit 329 (-7.2 kcal.mol-1) was higher in comparison to the reference compound 13b  

(-7.7 kcal.mol-1). Unlike the hit compound 329, the other two hits (007 and 331) showed lower 

binding affinity score (-7.9 and -8.2 kcal.mol-1) towards the Mpro active site than that of the 

reference ligand (13b). The interaction of the amino acid residues of the Mpro target with these 

three compounds were carefully analyzed using the discovery studio visualizer program [41]. It 

was evinced that all compounds efficiently interacted with different residues of domain I and II 
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of the Mpro. The compound 13b was stabilized by five hydrogen bonds and three hydrophobic 

bonds while interacting with the active site of the receptor protein, in which it forms two 

hydrogen bonds with the catalytic residue CYS145 and one hydrophobic interaction with the 

HIS41. The interaction with the compound 007 was found to be stabilized by forming two 

hydrogen bonds, one pi-sulfur interaction, and four hydrophobic interactions where one of them 

was seen with the catalytic residue HIS41. The compound 329 formed six hydrogen bonding 

interactions in which one hydrogen bonding interaction was seen with the catalytic residue 

CYS145, along with three hydrophobic interactions where two of them interact with HIS41 and 

CYS145 catalytic dyad. Besides, the compound 331 gets stabilized by six hydrogen binding 

interactions where two of them interact with the catalytic residues CYS145 and HIS41, and two 

out of three hydrophobic interactions were seen to be formed with the catalytic residues CYS145 

and HIS41. Altogether, the analysis of non-covalent interactions between the selected three hit 

compounds and the Mpro shows that the selected compounds interact either with the two key 

catalytic residues, or with at least one of them (i.e. CYS145 or HIS41), and can thus serve as key 

protease inhibitors (Table S3). 
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Figure 4. Interactions with key residues as exhibited by the hit compounds (007, 329 and 331) 

and the reference ligand 13b with the Mpro active site. 

3.4. Molecular dynamics simulations 

 
3.4.1. Conformational stability of the Mpro 

The structural 3D stability of proteins could be estimated by measuring the overall atom 

deviations at the protein backbone. The Root-Mean-Square Deviation (RMSD) of the C-α atoms 

is a good parameter to estimate these variations. Great RMSD values can be an indicator of the 

expanded atom deviations at the protein backbone, also reduced RMSD values depict moderate 
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variations in backbone atoms. This can support the mapping of the protein dynamics and the 

equilibrium of the different structures. In this regard, throughout the MD simulations, the 

deviations of the amino-acids were investigated via RMSD calculations. The results were plotted 

as a function of the simulations time in Figure 5. As can be seen in the plots, all the complexes 

tend to converge around 40 ns and continue up to the end of the simulations showing deviations 

that differed across the simulations time. The binding of the compounds 007, 329 and 331 to the 

Mpro was characterized by a decrease in deviation among the backbone atoms relating to the 

unbound conformation that displayed higher variations. The overall average values of RMSD of 

complex007, complex329, complex331 and Mpro APO form are 1.88 Å, 1.95 Å, 1.94 Å and 2.08 

Å, with maximum recorded values of 2.91 Å, 3.14 Å, 2.94 Å and 3.64 Å, respectively. In 

opposition to the impact of reduced RMSD upon binding of the previous compounds, the 

reference compound 13b exhibited greater RMSD values with overall average value of 2.42 Å 

which is slightly higher than that disclosed by other systems. Although molecular binding to Mpro 

in general stabilizes the complexes with values that fall behind 3.5 Å and overall RMSD average 

values lower than 2.5 Å, a diverse impact on the stability of Mpro upon the binding of the 

compounds 007, 329 and 331 was observed as compared to the binding of 13b which could be 

attributed to the stronger interaction of the predicted compounds in the active site of Mpro.  
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Figure 5. C-α backbone RMSD graphs of the three hits as well as the reference compound 13b in 

complex with Mpro when compared to the unbound Mpro. 

3.4.2. Structural fluctuations of the Mpro 

The root mean square fluctuation (RMSF) is a valuable indicator of the structural behavior of the 

protein. The values depicted from RMSF elucidate the fluctuation of each amino acid residue as 

they interact with the ligand throughout the trajectory, which offers better insights into protein 

features. The RMSF values of each of the four complexes were compared to the RMSF of the 

unbound system (Figure 6). Based on the RMSF results, it was evident that the complexes 007, 

13b and 329 exhibited less fluctuation than the unbound system especially in the catalytic region 

(residues 25-49, 118, 140-192) elucidating the attenuation of structural fluctuation in the 

presence of these ligands. The complex331 displayed the greatest similarity to the unbound 

system in terms of structural changes. It was observed that the fluctuations occur with similar 
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residues, particularly in the catalytic region 140-192. Nevertheless, subtle differences were 

mainly observed outside this region. In the light of these observations, assessment of the 

secondary structure was performed. 

 

Figure 6. The RMSF plots of the three hits as well as the reference compound 13b in complex 

with the Mpro in comparison with the unbound system. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3.4.3. Secondary structure analysis 

As seen in Table 2, secondary structure analysis predicts a good amount of β strand (around 37% 

in all systems). The predicted percentage value of α helix was around 28% in all complexes 

except for the complex331 which showed slightly higher percentage of α helix with value of 

29.37%. However, other elements displayed modest contribution to the secondary structure. The 

detailed information is shown in Table 2. The results revealed that β strand and α helix 

dominated among secondary structure components. However, no significant change was seen in 

the secondary structure of the Mpro upon binding of the compounds. The secondary structure 

analysis described herein provides useful conformational insights on Mpro which might prompt to 

the design/discovery of selective SARS-CoV-2 Mpro inhibitors. We assume that the application 

of rational approaches may contribute to the development of effective and safe antiviral agents 

against Mpro enzyme. 

Table 2: Contribution of different elements to the secondary structure of the Mpro enzyme (in %). 

 Percentage of Protein Secondary Structure % 

 α helix β strand 310 helix Beta Turn Bend  

Mpro APO form 28.36 37.17 4.38 19.38 10.72 

Complex13b 28.32 37.57 3.85 20.13 10.12 

Complex007 28.64 37.37 4.78 18.64 10.57 

Complex329 28.36 37.47 4.41 19.21 10.55 

Complex331 29.37 37.46 3.33 20.20 9.63 

 

3.4.4. Binding free energy profiles of the selected hits 

The ligand-binding thermodynamic energy is a significant parameter that contributes to the total 

binding free energy of the protein-ligand complex, surmounting the stabilizing forces of an 

inhibitor in the active site. Hence, the stability of the system throughout the simulation. To 

determine the basis for possible inhibition against the Mpro target, we computed the binding free 

energy and per-residue decomposition of each hit molecule at the active site. Table 3 sums up the 
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binding free energy of the complexes, considering Van der Waals, solvation, and electrostatic 

energies. Also, the individual energy contributions of catalytic site residues are presented in the 

per-residue decomposition analyses in Figure 7. In the light of these findings, the binding 

energies of complex329 (-38.60 kcal.mol-1) and complex331 (-47.16 kcal.mol-1) exhibited the 

most favorable binding when compared with complex13b and complex007 (-35.01 and -31.51 

kcal.mol-1, respectively). 

Table 3: MMPBSA-based binding free energy profiles of the reference compound 13b and 

compounds 007, 329 and 331 at the binding pocket of the Mpro. The total binding free energies 

are highlighted in bold to distinguish them from the elements of the overall values. 

Energy Components (kcal.mol-1)  

Complex Δ EvdW ΔEelec ΔGgas ΔGsolv ΔGbind 

Complex13b -49.66 ± 6.18 -22.09 ± 8.83 -71.75 ± 13.1 36.74 ± 6.91 -35.01 ± 7.22 

Complex007 -43.07 ± 8.00  -17.86 ± 9.35 -60.93 ± 15.7 29.42 ± 9.09 -31.51 ± 7.51 

Complex329 -51.50 ± 5.67 -17.21 ± 6.98 -68.72 ± 9.77 30.11 ± 5.51 -38.60 ± 6.71  

Complex331 -57.47 ± 6.69 -35.04±12.22 -92.51±12.56 45.34 ± 8.06 -47.16 ± 6.26 

 

The binding energy observed in complex331 was associated to higher van der Waals and 

electrostatic energy between the amino acid residues ASN140, GLY141, SER142 and CYS143 

and the compound 331. However, the optimal binding energy noticed in complex329 was due to 

increased electrostatic and van der Waals interactions between the residues HIS41, ASN49, 

MET163, GLN187 and the compound. Residues THR167 and GLY168 contributed minor 

interactions in all four complexes; this may have been attributed to the position of the amino-

acids at the shallow region of the binding site. Although the assessed binding free energies are 

not absolute values compared to the experimental ones, they are still reliable considering the 

residue interactions within the binding site area.  
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Figure 7. Per-residue decomposition analyses demonstrating the role of individual energy 

contributions of catalytic site residues to the stability and binding of the molecules 13b (A), 007 

(B), 329 (C) and 331 (D). 

3.5.Pharmacokinetic and Toxicity Predictions 

To be an auspicious drug candidate against biological target, several pharmacokinetic propriety 

studies must be prioritized at early drug discovery phases (before the clinical trial stage). Not 

only would this increase the overall quality of drug candidates, but also their success probability, 

in order to shorten the phase of drug discovery. 

The generated result of the selected hits from the ADMET filtering analyses are represented in 

Tables 4 and 5. The selected hit compounds have no risks of mutagenic, tumorigenic, irritant, or 

reproductive effect profiles. All three compounds have better penetration score through the 
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blood-brain barrier (BBB) than the 13b compound. While the absorption from the intestinal tract 

upon oral administration test turns out to be slightly better for the 007 compound. 

Table 4. Toxicological properties of the selected compounds and the 13b inhibitor assessed 

through AdmetSAR and Osiris property explorer. 

Toxicological properties 007 329 331 13b 

Mutagenic N N N N 

Tumorigenic N N N N 

Irritant N N N N 

Reproductive effect N N N N 

N= No risk 

Table 5. Pharmacokinetic and ADME properties of the selected compounds and the 13b inhibitor 

assessed through the AdmetSAR and the Osiris property explorer. 

Pharmacokinetic properties 007 329 331 13b 

Molecular weight (g.mol-1) 544.65 541.69 527.66 579.65 

cLog P 2.35 0.41 0.22 1.1 

Solubility -5.32 -4.47 -4.41 -4.84 

TPSA (Å2) 133.47 150.7 150.7 163.01 

HBA 9 10 10 12 

HBD 4 4 4 4 

BBB 0.96 0.96 0.96 0.93 

HIA 0.96 0.93 0.93 0.94 

TPSA: total polar surface area; HIA: human intestinal absorption. 

4. Conclusion 

The main protease (Mpro) has been an appealing target for discovering new SARS-CoV-2 

replication inhibitors, as it is an important protein in post-transitional processing of replicase 

polyproteins. This study attempts to identify novel potent α-ketoamide based inhibitors targeting 

the Mpro of SARS-CoV-2. To accomplish this goal, QSAR and pharmacophore models were 

developed from the structural features of a series of α-ketoamide derivatives that had shown an 

inhibition effect against the Mpro of SARS-CoV. Three hits were retrieved by utilizing a 

constructed GA-MLR model and by applying a pharmacophore fit model. Moreover, Molecular 

dynamic simulations were used as a computational validation of the compounds. Overall, the 

three evaluated hits displayed important conformational and structural stability as well as 
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promising binding profiles. In addition, it has been shown that the suggested hit molecules are 

non-toxic and have acceptable pharmacological properties. The outcomes of this study clearly 

show that the three screened compounds may lead to potent anti-SARS-CoV-2 Mpro drug 

molecules where the binding details and the nature of activity were considered to be sufficient 

for blocking the active site of the Mpro. The ensemble of computational methods implemented 

herein allowed for the discovery of new drug candidates with potential inhibitory activity against 

the SARS-CoV-2 Mpro. These hit compounds can be further biologically evaluated for their 

potency and physiological toxicity. 
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