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Abstract

The rise of edge computing enables local network management. Services are no
longer clustered inside the cloud but rather spread all over the whole network.
In this paper, we propose a method for deploying security services within an IoT
network according to devices capabilities. Our method models an IoT network
as a weighted graph using device capabilities. Using the latter, we propose to
identify the most suitable location for a security service using dominating sets
and the graph weights. We present results obtained by the proposed method on
an example of a smart city based on real data using network security functions
such as an IPsec service. Results indicate an overall increase in the network
security with minimal impact on the information flow while retaining reduced
deployment costs.

Keywords: IoT, edge computing security, security as a service, centrality,
dominating set.

1. Introduction

Since 2009, the estimated birth of the IoT by Cisco ISBG, the number of
connected objects has been growing steadily, to reach in 2020, 25 (Gartner
[1]), 50 (Cisco [2]) and even 200 billion devices according to Intel [3]. The
communication aspect of connected objects raises important security concerns.
Often constrained in terms of hardware, software, and energy, a large majority
of devices do not offer sufficient security to their communications. HP reports
in 2014 that 70% of devices did not perform communication encryption [4]. The
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Open Web Application Security Project (OWASP) foundation has compiled a
top-10 list of mistakes to avoid during the conception of IoT applications, from
password quality to the lack of hardware security [5]. Despite an increased
use of security elements (mainly crypto-processors) and the ability of IoT
devices to perform efficient cryptography [6], a large number of devices are
already deployed without these features. Faux et al. [7] report that 84% of
manufacturers do not evaluate the security of their products, which is even
more alarming considering that 90% of IT security consultants are not trained to
secure IoTs. These statistics confirm what Schneier states that “the market still
largely rewards sacrificing security in favour of price and time-to-market” [8].
The lack of security surrounding IoT devices is therefore the result of a design
choice which leads to the deployment of highly vulnerable devices.

Regarding the Cloud, some concerns were expressed about the
decentralization of cloud functionalities to the edge of the network. Edge
computing paradigms relate to several computational paradigms such as fog
computing or Multi-access Edge Computing (MEC). The fog computing is
defined as follows: “a highly virtualized platform that provides compute,
storage, and networking services between end devices and traditional Cloud
Computing Data Centers, typically, but not exclusively located at the edge of
network”[9]. The Multi-access Edge Computing (MEC) refers to a paradigm
initially focused on cellular networks that aims to “extend cloud computing
capabilities to the edge of cellular networks”[10]. The telco aspect of MEC is
particularly visible in the location of MEC nodes (or platforms). Unlike the fog
computing, where the fog nodes are located at ”any strategic location between
end user device and cloud”, the MEC platforms may be deployed at various
locations within the Radio Access Networks (RANs) such as the Base Stations
(which provide mobile services within a particular cell)[10]. The location of
these platforms is critical when it comes to edge computing. As part of the
MEC, telcos need to deploy services on specific RAN sites. Whereas in the
context of fog computing, it will be essential to define what a strategic location
is.

The migration from cloud to edge raises major concerns regarding the
identification of suitable location for edge nodes and the allocation of services
within them. The deployment of security services on every device is not realistic,
either due to the deployment costs, the lack of capacities or restricted access to
the device. Therefore, we ensure that every device from our network can directly
communicate with a security node, a device that hosts a Network Security
Function (NSF) such as for example IPsec services [11]. The aim of our work is to
propose a method to deploy security services within an IoT network according to
the capabilities of the device, including, but not limited to, processor, memory,
storage, virtualization capacity and service-specific hardware requirements. The
placement problem relates to the selection of nodes to host the security services.
To limit the deployment cost of the services a minimal number of nodes have
to be selected while providing the most suitable locations for the services. It
forms an optimization problem with these two previous criteria. Furthermore,
as stated above, our requirements dictate that each node on the network must
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be directly linked to at least one secure node. We formalize our problem through
an undirected graph where V, the set of vertices, corresponds to the devices and
E, the set of edges, refers to devices connections. Afterwards, each vertex is
weighted to reflect the capabilities of the devices. The higher the weight, the
more it has to be favoured, as it depicts a more compliant device, whereas nodes
with a low weight will tend to be avoided. The requirement for direct access
from each vertex of the graph to a security node implies that selected vertices
forms a dominating set, i.e. a set where each vertex of the graph is either in
the dominating set or directly linked to a node in this set. In addition, any
dominating set, to solve our optimization problem, has to be of minimal size
and favour heavier nodes. Our main contribution provides a greedy algorithm
that identifies, from an undirected weighted graph, a dominating set satisfying
our optimization criteria.

Several studies cover the service placement problem in IoT, edge or fog
networks. Most of these studies focus on the placement of general services with
numerous objectives. This may involve network concerns such as optimizing
bandwidth and response times [12, 13], the minimization of deployment costs
[14], or the harmonization of performances [15, 16]. Besides representing IoT
networks in graph form, we have not found any approaches to the problem of
service placement that rely on the use of graph theory algorithms and more
specifically on graph centrality. While Banerjee et al. use graph centrality
in IoT networks [17], the authors do not perform a service placement and
tackle a completely different problem known as vertex cover. Most related
to our contribution is the work of Doriguzzi-Corin et al. [18] which tackles
the placement of chained security services using Integer Linear Programming
(ILP) and proposes a heuristic for its resolution. This heuristic relies on a
graph weighted according to network capacities as well as the computation of
the shortest paths between its nodes with no use of graph centrality. The work
from Doriguzzi-Corin et al. [18] addresses the placement problem along a given
path with fixed points of origin and destination. The objective is to secure these
two points with the deployed service. In our case, we wish to secure the overall
network, thus finding ourselves with multiple origin and destination points,
which represents a different placement problem. Nevertheless, the method of the
authors shows a very interesting approach, especially regarding the weighting
used and the ILP formulation of their problem. We published in [19] a partial
solution of our placement IoT problem where the second criteria – we want the
most suitable nodes – is partly considered. Indeed, we supposed that all devices
had the same capabilities. Hence only the topology of the IoT network was used
to define these nodes. In contrast, we consider in this paper a more realistic
model integrating the capability of the devices. On the side of graph theory,
we point how carefully the weighting must be performed, revealing a more
challenging graph problem than we had before. A wrong choice can dramatically
affect the solution. In this new study, we demonstrate that our methodology
enables the deployment of security solutions on nodes suitable for hosting, thus
drastically reducing deployment costs and more accurately reflecting the IoT
environment while maintaining similar performance to previous work. While our
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security solution provides interesting benefits, other solutions can be considered,
particularly regarding trust management such as [20] and [21].

This paper is organized as follows. Section 2 presents important contextual
information regarding security constraints and attack threats on the network. A
first approach is discussed, involving the application of edge computing concepts
to IoT security. Section 3 provides an abstract methodology for qualitative
positioning of edge computing security services on IoT networks. Section 4
outlines the proposed methodology behind a given security service and observes
the benefits of this approach. Finally, we conclude this study in section 5
with a summary of our contributions supplemented by perspectives for further
development of the model.

2. Security model

Despite an increased number of devices with on-board security features,
the security is not always ensured. Features can be poorly implemented with
outdated software or cryptographic algorithms. With a lifespan of roughly a
decade once deployed, if not maintained correctly, a device will be subject to
numerous vulnerabilities. A solution is to substitute all concerned objects by
devices with suited capacities, however, it appears neither cost-effective nor
realistic. A part of this problem have been addressed by Cloud Computing, in
particular by centralizing services in powerful datacenters and servers. However,
in the past few years, the trend has been to decentralize functions in the Cloud,
a shift that is consistent with edge computing.

In this new paradigm, the gap between processing activities and information
producers is reduced. Among the most well-known examples of these
mechanisms are the provision of video resources by streaming platforms on
servers close to users who are most likely to consume such resources [22]
or processing tasks closer to information producers such as providing face
recognition at the edge of the network [23]. More generally, when it comes
to fog computing, this frequently involves deploying Virtual Network Functions
(VNF) to fog nodes. Regarding security, such functions (also called Virtual
Network Security Functions: vNSF [11]) may be Virtual Deep Packet Inspector
(vDPI), Virtual Firewall (vFirewall), Virtual Intrusion Detection System (vIDS)
or even Virtual Encryption Proxy (vProxy) [24].

2.1. Threat model

It is acknowledged that no absolute security exists and the security of
computer systems often consists in protecting a system against a specific threat.
To propose a securing method, it is, therefore, necessary to define a model
that reflects the capabilities and objectives of an attacker to protect a device
effectively against that threat.

Stellios et al. [25] discuss an attacker model suitable for the IoT composed
of three categories: device accessibility, attacker capabilities and motivations.
We consider an attacker based on the outsider model defined by Stellios et al.,
depicted on Figure 1.

4



The attacker has no physical nor proximal access to the object (in
range of targeted device wireless protocols). As it is explained into the
telecommunication standard ITU-T Y.4806, we can analyzed the security issues
by their impact vector considering which layers is reachable by the attacker
[26]. In our working assumptions, the attacker can exclusively perform remote
attacks. He can only access to his target from an intermediate device as shown
by the arrows in Figure 1. An attack may pass through several nodes as it is
the case for Attack Path 1 and Attack path 2. The attack can be prevented at
any point along the path.

Resources of the attacker in the model are those of a regular person with
moderate technical capacities (between neophyte and expert). Motivations of
the attacker model depends on the targeted IoT network. We consider an
occasional hacker or a cybercriminal whose resources remain moderate as per
the definitions of motivations and attacker profiles provided by Mosenia and
Jah [27] and Onik et al. [28].

Figure 1: Different examples of attack paths in the IoT context.

Given a target device invisible from the Internet and the capacities of the
attacker model, the considered threats use one or multiple intermediate devices
to reach the target device, and the source is either on the Internet or in a
local network. The presence of the attacker within the wireless range or his
ability to physically access the target is not considered due to the higher cost of
performing such attacks. Choosing this configuration is a trade-off on the costs
of security in accordance with the proportion of attackers evicted.
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2.2. Security as a Service Model for Edge Computing

To address this threat model, we propose to deploy NSFs at the edge of the
network, thus benefiting from latency reduction, control over data processing
and physical proximity of the objects. These security services can be deployed
either as dedicated devices with sufficient capacities added to the network or as
virtualized services in existing devices or gateways. Examples of such services
are IPsec services, firewalls, intrusion detection systems, intrusion prevention
systems [11, 24].

Figure 2: Example of applied security solutions (green plain nodes) over our considered model.

Figure 2 illustrates the deployment of security solutions to prevent threats
identified in Figure 1. It is noticeable that all three attack paths (red arrows
in Figure 1) have been blocked as a result of the insertion of security solutions
(green circles, D1, D2 and D4 in Figure 2) in specific devices on the network.
There is no need to deploy security solutions on every device in the network,
however, it must be located with regard to identified threats.

2.3. Model relevancy

To achieve the objective described in 2.2, the way security solutions are
placed is of paramount concern. Indeed, it is necessary to maximize efficiency
and coverage to minimize costs. Section 3 proposes a placement method to
address the positioning of security solutions in an IoT network. Studying the
most suitable locations for deploying security measures requires modelling an
IoT network.
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In the first part of our study, we proposed a simplified model for the
placement of security functions. We intend to build upon this model to improve
the quality of the deployment locations for security solutions. To improve
our initial model, we identified two opportunities for improvements. One
relating to the inherent capabilities of the devices and the other regarding the
communication interfaces among them. The initial model assumed that no
single device had sufficient security capabilities by itself and thus required to be
improved to accommodate new security solutions. Similarly, we assumed that all
the communication interfaces of our initial model had the same characteristics
but a slight variation in them may have an impact on the transit of information.

To address the variation between device capabilities and communication
interfaces, we propose to consider the inherent characteristics of the devices
by introducing the concept of priority within communication interfaces.

3. Placement methodology

This section gives a general method to select which nodes will host the
security services. Firstly, we introduce the notion of proximity with secure
nodes and give the corresponding graph property. Then, we demonstrate
that centrality metrics enable the vertices to be weighted considering the
communications between the IoT nodes. Thus, we propose an algorithm that
selects the vertices from a weighted graph by favouring the heavier nodes.
Finally, we improve our method to consider a more realistic model where the
characteristics of IoT nodes become part of the selection of security nodes.

3.1. Formalization of our problem

To provide a better security at the edge of the network, it is important
to define the best positioning of this security. Due to the myriad of
connected devices, we propose to adopt a more abstract representation of IoT
networks by transposing these networks into graphs with objects as vertices
and communications as edges. This representation enables a higher degree of
abstraction and takes advantage of graph theory concepts to IoT security.

In the following paragraph, d refers to the distance (measured in hop
numbers) between an IoT device and its security service. Not being able to
always provide security measures on objects (d = 0), which is the ideal solution,
a compromise must be made. While the usage of the security capabilities
of a direct neighbour (d = 1) may be acceptable assuming that an attacker
does not interfere with this communication, proposing security methods at a
higher distance (d ≥ 2) introduces security issues regarding the entities that are
relaying the information. Moreover, a direct access (d = 1) follows the fog and
MEC paradigms where the devices directly access the closest services [10].

Therefore, we seek to ensure that each object in our network is in direct
contact with at least one device that offers security services that we call a
security node. Let G(V,E) be an undirected graph where V and E correspond
respectively to the vertices and edges of G, the neighbourhood of x ∈ V is
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defined as N [x]. The graph G will correspond to a IoT network where V will
represent the devices and E will symbolize the connections between devices.
Note that we will use the term node when we refer to the IoT while we use the
term vertex of the graph to avoid the confusion between these data.

Modelling such conditions on the graph is equivalent to the identification of
a dominating set. Indeed, a dominating set is a subset S of vertices of a graph
G for which each vertex of G is either in S or adjacent to a vertex of S. To
reduce the expense of converting devices into security nodes, one would like
to identify a minimum dominating set. Finding a minimum dominating set is
proved to be a NP-hard optimization problem where even the estimation of the
minimum size remains difficult [29]. Aware of this situation, we do not attempt
to identify the minimum dominating set; a minimal dominating set, i.e. a local
minimum, is sufficient.
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Figure 3: Dominating set (red vertices) located off the data flow.

3.2. Minimal dominating set

We assume to have a vertex-weighting function. Algorithm 2 returns a
minimal dominating set depending of these weights. The vertices are visited
in ascending order and are kept out of the dominating set until there is no
other choice but to place them into the dominating set, which has the effect
of selecting heavier vertices. Doing so helps to select the heaviest nodes. Note
that this is a general algorithm that can be used in other contexts; furthermore,
its effectiveness strongly depends on the weight allocation.

We refer to F as the set of free vertices that have not yet been browsed
by the algorithm. Once the vertex is scanned, it is either transferred to the
dominating set (DS), to the set of covered vertices (C, vertices adjacent to
vertices in DS) or to the set B corresponding to browsed vertices that will later
be in C but require an adjacent vertex in DS. An adjacency list labelled NF (x)
tracks the neighbourhood of the vertex x within F at any time. This suggested
algorithm requires the following two functions (Algorithm 1) to be specified:
ForcedDominant and Propagation.

The ForcedDominant function specifies whether a vertex provided as a
parameter should be added to a dominating set. To do so, it checks whether
the vertex no longer has the possibility of being covered or whether one of its
neighbours depends on it for its coverage. In this case, the addition into the
DS set is required. The Propagation function is performed when a vertex is
added to the dominating set (DS). It covers all the neighbours of this vertex
that have already been visited by the algorithm and that were on hold (B set).
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Algorithm 1 Functions used on algorithm 2

1: function ForcedDominant(node)
2: if NF (node) = ∅ then
3: Return True
4: for all n ∈ N [node] ∩B do
5: if |NF (n)| = 1 then
6: Return True
7: Return False
8: function Propagation(node)
9: for all n ∈ N [node] ∩B do

10: Move n from B to C

The proposed Algorithm (2) browses a given set of vertices, if the current
vertex analysed is not covered yet but has at least one neighbour to be analysed
(meaning it could be covered later by this neighbour), the latter is put on hold.
When a vertex no longer has neighbours not analysed to provide coverage, the
current vertex is added to the dominating set. Since the list of vertices is sorted
by ascending weight given as input to the algorithm (vList), the dominating set
discovered (DS) favours the heavier vertices. Lighter vertices are first placed in
C or B which allows, later on, to integrate heavier vertices in DS.

3.3. IoT topology and centrality metrics

We proposed in [19] a partial solution of our placement problem where
all devices had the same capabilities and where only the graph topology was
considered. This subsection outlines the method used. Note that in [19] we
were not talking about vertex-weight, only centrality value based on the graph
topology.

Finding a small dominating set is not our only concern, we also wish to ensure
that the positioning of the vertices making the dominating set is consistent with
the transit of information in the graph which depends on its topology. Figure 3
illustrates a bad scenario where the vertices of a dominating set (in red) are not
positioned along the information path.

Our first approach is to weight vertices according to their importance in the
graph. The importance of a vertex can be obtained using centrality metrics.
Depending on our security needs, some are more appropriate than others.

We limit our investigations on four of the most popular measures, namely
degree centrality, eigenvector centrality, closeness centrality, and betweenness
centrality which appear the more relevant for the IoT topology.

Degree centrality. The degree centrality is a measure of the importance of a
vertex according to its degree.

Eigenvector centrality. The idea behind eigenvector centrality is that the
importance of a vertex depends on the importance of its neighbours [30, 31].
Given a graph G, the value of a vertex i ∈ G is calculated using the following
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Algorithm 2 Central Dominating Set Algorithm.

Input:
vList: ordered list of V

Output:
DS: dominating set vertices

1: F ← V
2: DS,B,C,NF ← ∅
3: while vList 6= ∅ do
4: a← vList[0]
5: if a ∈ F then
6: if ForcedDominant(a) then
7: Move a from F to DS
8: Propagation(a)
9: else if |NF (a)| = 1 then

10: b← NF (a)[0]
11: Move a from F to C
12: Move b from F to DS
13: Propagation(b)
14: else
15: Move a from F to B
16: else
17: vList← vList− a
18: Return DS

equation where n is the number of vertices of G, A is the adjacency matrix of
G and λmax is the largest eigenvalue (non-negative due to the Perron-Frobenius
theorem):

C(i) =
1

λmax

n∑
j=1

AijC(j).

Closeness centrality. The closeness value corresponds to the proximity of a
vertex with all vertices of the graph [32]. To compute this measure, all the
shortest paths between the analysed vertex and the rest of the vertices of the
graph are studied. The measurement of a vertex thus corresponds to the average
distance between the vertex and the other vertices of the graph. The normalized
mathematical representation of this measurement is the following where n is the
number of vertices in the graph and gij the geodesic distance between vertices
i and j:

C ′(i) =
n− 1∑n
j=1
i 6=j

gij
.

Closeness centrality is a graph metric adapted when one wishes to favour the
vertices from which it is faster to reach all the other vertices of the graphs. It is
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used when positioning fire stations in cities [33] and could also be used for the
positioning of update servers in IoT networks when required.

Betweenness centrality. This measurement corresponds to the number of times
a vertex acts as a bridge on the shortest path between two other vertices in the
graph [34]. The value of a vertex i is expressed using the following equation
where gjk is the number of shortest paths (or geodesics) connecting the vertices
j and k, j 6= k, and gjk(i) is the number of these that pass through i:

C(i) =
∑
i 6=j
i 6=k

gjk(i)

gjk
.

Assuming the information in the graph flows along the shortest paths, the
betweenness measures the contribution of a node to network traffic.

Depending on the centrality measure that is used, the importance of a vertex
in a graph may differ. Figure 4 corroborates this statement by displaying the
vertex with the highest value for the four defined measures on a given graph.
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Figure 4: Difference of centrality values on a given graph.

3.4. Real-world constraints consideration

Using centrality metrics exclusively is not enough to limit the deployment
costs of security functions as much as possible while simultaneously protecting
against the defined attacker model. To achieve this requirement, the devices
suitable for the security functions must be identified. We define a priority value
for nodes which includes several criteria such as processor capacity, memory,
storage, bandwidth, specific hardware. We assume here that the vertices of
our graph are weighted so that the most suitable nodes are the heaviest. We
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describe in next two subsections different approaches to compute the nodes
weights according to their suitability.

The nodes with high priority value will then be prioritized for the selection of
the dominating set. For our experiments and the evaluation of the dominating
set, we introduce the concept of quality. The quality of a dominating set is
the proportion of prioritized objects among this set. Using this methodology,
nodes with sufficient hosting capabilities will be able to become security nodes
through software updates, which is less expensive, while the others may be given
a hardware update or even a complete replacement of the device.

To improve the quality of the selected dominating set, the computation of
centrality values may include a priority value according to the characteristics
of the devices and their communications. Node priority value will not be used
directly to define the vertex weight function. We introduce an edge weighting
function to induce the computation of centrality to consider priority node values
and network topology.

Indeed, with our approach, edge weights impact the centrality value
computation by favouring vertices which correspond to nodes with high priority
value. As a result, the vertex weights are altered which implies the order of V
in the Algorithm (2) to be changed. In next paragraphs we propose a method
to compute the edge weight function from node priority values. Note that the
priority value includes different criteria such as processor capacity, memory,
storage, bandwidth, specific hardware.

While navigating the graph, if there are several paths available between two
nodes, this weighting enables the selection of the path with the lowest weight.
This approach consists in favouring communications between high-priority value
nodes and thus increasing the quality of the dominating set identified.

Once a good dominating set has been identified, IoT devices corresponding
to security nodes can either be updated to deliver desired security features or
be replaced if their security capabilities are not sufficient.

Two devices interacting with each other are able to use those security nodes
as gateways whenever it is necessary to benefit from the security functions
offered by the latter ones. To ensure that communication has been carried
out through one (or more if necessary) of these security gateways, the Proof Of
Transit [35] could be applied. For this procedure, one or more secrets are shared
via Shamir Secret Sharing to nodes where one wishes to attest the passage of the
communication. The security nodes would use their secrets (or sub-secrets) to
sign communication packets flowing through them. Recipients could then verify
that all previously imposed signatures had been applied to communications
meaning that the security methods have been enforced.

4. Experiments over a specific use case

4.1. Dataset

Acquiring data related to communications between IoT objects is a difficult
task. A large part of IoT datasets only contains values from various sensors.
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Researchers working on the concept of Social IoT have made available a few
datasets containing information on devices interactions [36]. In our work,
we use a graph generated from the OOR (Ownership Object Relationship)
adjacency matrix containing information about public and private objects that
we have filtered to keep only public static devices. The graph thus obtained is
a non-oriented graph composed of 1,458 vertices and 35,657 edges. The vertices
correspond to IoT objects while the edges are potential communications between
these devices determined according to the available communication protocols of
vertices (Bluetooth: 40 meters, WiFi: 400 meters and LoRa: 1,500 meters).

SIoT dataset is accompanied by a short description of the objects with the
following information: the device identifier, the owner identifier, the category
of the device, as well as information on the brand and model. These data are
provided using simple identifiers ranging respectively from 1 to 16, 12 and 24.
Details concerning the brand or model is not provided, however, categories are
listed and included; Table 1 illustrates the distribution of these categories from
the graph.

Table 1: Distribution of device categories in our graph

Category Number of devices Proportion
Point of interest 95 6.5%

Environment and weather 140 9.6%
Indicator 10 0.7%

Street Light 506 34.7%
Parking 677 46.43%
Alarms 30 2%

In our methodology, Section 3, we discussed the need to perform a cleavage
between devices according to their priority value. A distinction between two
categories has been chosen to represent high-priority and low-priority value
devices. In our study, depending on a required security service, an object
will either have the ability to host that service or not. Introducing additional
categories would allow variations in the hosting capability of a device. However,
the difficulties covered in Section 4.7 and illustrated in Figure 7 would be
increased exponentially depending on the number of categories.

The Smart Santander project, from which our dataset is derived, presents
a smart-city use case for irrigation of parks and gardens where street lights are
used as repeaters between the different communication interfaces of the network
[37]; thus we have opted to define devices from the “Street Light” category as
high-priority value nodes, hence prioritized. Moreover, street lights are no longer
only considered as mere lights, many cities like San Diego, Chicago and Los
Angeles invest in Smart-Street lights combining a variety of sensors [38, 39, 40].
Now, they can host micro cell towers, provide WiFi coverage and even charge
electric vehicles [40]. NEC offers smart street lights with embedded 5G base
station and direct access to cloud applications [41]. Deploying security services
on such devices would be relevant in a smart-city context. The ubiquity of street
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lights and their large number make them ideal targets to provide geographical
coverage for different communication services, and therefore have the potential
to host varied security functions.

4.2. Priority pre-processing

We fix two priority values L and H over the IoT nodes such that the smaller
the value, the higher the priority of the node is. In our dataset the Street Light
nodes will have high priority value H while the others have a low priority value
L. For any vertex a ∈ V , we note P (a) its priority value. The edge weighting
function is directly derived from P : for any e ∈ E, let a and b being its incidents
vertices, W (e) = P (a) ∗ P (b).

Table 2 displays the distribution of the weight of these categories over the
considered graph.

Table 2: Weight distribution of edges in the graph

Weight Number of edges Proportion
1 961 2.7%

1.2 9,088 25.49%
1.44 25,608 71.82%

Weighting the edges of the graph to this extent affects the computation of
the shortest paths used in centralities. The idea is to favour edges between
nodes with high priority value while not overly penalizing the others. We show
in our experiments that the weighting must be carefully chosen to offer the best
results. The values of L were varied from 1 to 5 to identify which value gave
the best results, these data are shown in Figure 7. We found that L = 1.2 and
H = 1 are good choices. More details will be provided in Section 4.7.

4.3. Centralities

The effectiveness of an NSF relies on its location. While the NSFs perform
operations on the network traffic such as filtering or encryption [11], it is
clear that if such services are not located across the information flow, their
efficiency will be impacted. Thus, the centrality metric that theoretically seems
the most appropriate is the one that considers the flow of information in the
graph, namely the betweenness centrality. Another advantage of betweenness
centrality, also shared with closeness centrality, is to consider the weight of
edges when computing shortest paths, meaning that a priority can be considered
without any additional effort.

While computing shortest paths, edges with small weights (high priority
value) will be preferred when navigating the graph. On the opposite, edges with
a low priority value will be less likely to be selected as the paths will be longer.
Using the weights in the centralities computation increases the importance (and
therefore the value) of high-priority value nodes.
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4.4. Dominating set selection

Once the values for all vertices in the graph have been calculated, our
methodology suggests selecting a dominating set by favouring the addition of
vertices with the highest priority values. More precisely, the selection operates
as follows: the weakest value vertices are first put apart from the dominating
set. A vertex is placed in the dominating set when it has no other options.

4.5. Evaluation

The algorithm introduced allows the analysis of the performance offered by
applying various metrics. To reflect our requirements regarding the number of
security nodes and vertices positioning, we use the following rating methods:
the number of vertices in the dominating set, the quality of the dominating set,
the protection provided through their positioning as well as a normalized value
of protection independent of the graph size.

We defined the quality of a dominating set on Section 3.4 as the percentage of
high-priority value nodes within the dominating set. The greater the percentage,
the higher the overall quality will be considered. In our experiments, this refers
to the proportion of devices from the “Street Light” category that are within the
dominating set. Low-priority value nodes will either be upgraded or replaced
with higher capacity versions to provide the requested service.

The protection provided by the vertex placement on dominating set is
obtained by computing the percentage of vertex pairs from the graph that have
at least one shortest path secured as follows:

protection =

∑
a,b S(a, b)(

n
2

)
where:

S(a, b) = 1 if there is a secured shortest path between vertices a and b
S(a, b) = 0 otherwise.

We define a shortest path to be secured if the vertices (sender and receiver)
are adjacent or if each vertex of that pair is either member of the dominating set
or adjacent to one. The illustration Figure 5 visually depicts this definition. Red
vertices refer to dominating set vertices, while blue vertices are free to belong
either to the set or not.

The normalized value of protection corresponds to the protection value
normalized by the size of the graph over the size of its dominating set. It
is computed using the following equation:

normalized value = protection ∗ n

|DS|
.

This process is essential to consider the size of a dominating set when
comparing the contributions of different methods of selection. Otherwise, a
method returning a dominating set containing all vertices of a graph (100%
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Figure 5: Illustration of secured paths

protection ratio according to our evaluation) could be considered better than
any dominating set.

Consider Figure 3, where we described the positioning of vertices not
consistent with the information flow. According to our evaluation methodology,
the protection provided by the dominating set placement on Figure 3 is 53%.
Using the proposed approach for the placement of dominating set using the
betweenness on the same graph, we obtain the graph in Figure 6 with a
protection index of 100%. The dominating set discovered using our methodology
is positioned across the information flow unlike in the one on Figure 3.

12

93 5 8

6 4

0

7

Figure 6: Dominating set (red vertices) identified using our methodology on Figure 3 graph.

4.6. Results

According to the assumption that information flows along an optimal path,
using betweenness appears more suitable for the placement of Network Security
Functions. Algorithm 2 was used several times with lists of vertices ordered
differently, the resulting dominating sets were then examined. We focused
our experiments on the four most popular metrics, namely closeness (CC),
eigenvector (EC), degree (DC) and betweenness (BC). The proposed algorithm
favours selection of vertices located at the end of the list provided, therefore
these listings were sorted by increasing order of centrality. The dominating
sets obtained are analysed according to our evaluation criteria (size, quality,
protection provided by the set and protection brought by one vertex) to be
compared with those identified from randomly ordered lists (R) of vertices.
Comparison to randomly ordered lists of vertices highlights the importance of
vertex order in the selection of dominating sets. The results of this comparison
are summarized in Table 3 below while Figure 8 summarizes for each category
of devices, their proportion among the dominating sets.
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Table 3: Comparison of central dominating set results between ordered and randomly
ordered vertex lists.

Centralities Random order

Graph Metric BC CC DC EC
R

seed=82

R
seed=45

IoT
dataset
weightless
(1,458
vertices)

DS size
107

(7.33%)

107
(7.33%)

155
(10.63%)

176
(12.07%)

191
(13.10%)

212
(14.54%)

Protection
(%)

100 99.92 99.95 99.91 90.87 99.16

Normalized
protection

13.63 13.62 9.402 8.277 6.937 6.820

Quality 47.7% 48.6% 44.5% 46.0% 51.3% 52.4%

IoT
dataset
weighted
(1,458
vertices)
weight
ratio:
1.2

DS size
114

(7.819%)

132
(9.053%)

155
(10.63%)

176
(12.07%)

191
(13.10%)

212
(14.54%)

Protection
(%)

99.79 99.79 99.95 99.91 90.87 99.16

Normalized
protection

12.76 11.02 9.402 8.277 6.937 6.820

Quality 71.9% 81.8% 44.5% 46.0% 51.3% 52.4%

The effect of weight ratio has been analysed using betweenness (BC) and
closeness (CC) centralities. The results are plotted in Figure 7 where each curve
corresponds to an evaluation criterion according to the ratio between weights of
low (L) and high (H) priority nodes: L/H.

4.7. Analysis on IoT dataset

Results from this study indicate that the betweenness and closeness
centralities provide smaller dominating sets. It is noticeable that using centrality
values in general offers better performance overall. Table 3 presents only two
random tests by choice of readability of the data. The dominating sets identified
using a collection of random lists of vertices benefit from similar performance
to those depicted in the last two columns of Table 3 ranging from 180 to 210
vertices with a proportion of protection from 81% to 99.91%.

Dominating set sizes are about twice as small using betweenness and
closeness values as when vertices are sorted in random order. The gain observed
is not limited to the number of vertices of the dominating sets but also their
positioning. While the majority of the results in Table 3 reveals protection
level approaching 100% (only reached with betweenness on weightless graph), it
should be remembered that this value depends on the number of vertices in the
dominating set. A larger dominating set is more likely to have a high protection
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Figure 7: The impact of weight ratio on the evaluation criteria of the dominating set between
prioritized and non-prioritized nodes.

value. Normalizing the measure according to the number of vertices of sets is
therefore important for an accurate representation of gains.

Protection index provided by a vertex from our IoT reference weightless
graph using betweenness is almost twice as high as for random lists. The
metrics of betweenness and closeness centralities stand out particularly from
this analysis by offering a gain of one-third superior to the degree (highest
index of all other results).

The dominating sets identified by betweenness and closeness over the
weightless dataset, although highly similar from a performance point of view,
are not identical. There are 18 vertices that are not shared between them, this
similitude lies in the calculation methods of these metrics using both shortest
paths within a graph.

Observations on the non-weighted graph can be reported over the weighted
graph. As expected, there is a slight increase in size of the dominating set, due
to the additional constraints added on the selection process. With the addition
of the weighting, the protection value is reduced. It means that fewer shortest
paths in the graph are considered secured as depicted in Figure 5. In our dataset

18



(a) Betweenness (114 nodes) (b) Closeness (132 nodes)

(c) Degree (155 nodes) (d) Eigenvector (176 nodes)

(e) Random (seed=82) (191 nodes) (f) Random (seed=45) (212 nodes)

Figure 8: Quality of central dominating sets over our weighted dataset (weight ratio: 1.2).

consisting of 1,458 nodes, 35,657 edges and 1,062,153 shortest paths (potential
communications), only 2,275 communications will have additional cost in their
communications.

Increasing the quality of the dominating sets identified with weighting is
particularly interesting when reducing the cost to deploy security functions.
We defined the quality as the proportion of devices that can directly host
the desired security function. Software deployment may be sufficient on this

19



category of devices. Assuming that software deployment is more cost-efficient
than upgrading or replacing devices, increasing the quality of the dominating
set can significantly reduce the deployment costs of a security function.

It would not be possible to achieve a quality of 100% in our dataset since all
506 street lights nodes do not form a dominating set. Yet, weighting the graph
improves the quality of the dominating sets while limiting the number of nodes
added and additional communication costs.

Figure 7 shows the impact of the ratio between the low priority value and
the high priority value over the number of vertices in the dominating set and
the quality of the solution.

Closeness centrality attaches increasing importance to vertices that can
spread information the fastest in a graph while betweenness reveals vertices
that are located across the information flow. We are more likely to select
betweenness to place NSFs across the information flow. Closeness cannot be
excluded, however, it could very well correspond to a use case requiring the
propagation of information through an IoT network.

We have decided to distinguish the measurement choice from the proposed
algorithm and our methodology in order to allow the user to decide which option
is best suited to his security needs.

5. Conclusion and future work

We propose a strategy to effectively deploy security solutions within an
IoT network while minimizing costs. With the help of graph modelling, we
reformulate the security constraints as the identification of dominating set where
we favour the heavier vertices. Using centralities to compute the dominating
set greatly reduces its size while accepting some adjustments using the graph
weighting. We modelled the compliancy (ability to host a requested service) by
putting a priority value on the nodes. Our solution has a minimum impact on
the information transit while respecting the assumption that it flows optimally
through the graph. We demonstrate that classifying nodes into two categories,
high and low value, requires a thorough choice of the values used. Increasing
the number of categories could offer better results. However the weighting will
be exponentially more challenging. Introducing weights in the selection of the
dominating set significantly increases its quality while preserving the low impact
on communications and limiting the number of nodes added. Adding weighted
edges on the graph therefore reduces the cost to deploy security functions by
favouring devices that already have sufficient hosting capabilities.

Interesting perspectives could be to improve the proposed model by including
other IoT features (more detailed device capabilities, risks or even bandwidth)
to achieve a more realistic model, more specifically regarding weight assignment
on the graph.
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