Tanguy Godquin

Morgan Barbier

Chrystel Gaber

Jean-Luc Grimault

Jean-Marie Le Bars

A semantic approach for comparing Fog Service Placement Problems

Keywords: IoT Security, Service Placement Problem, Ontology, Monadic Existential logic of the Second Order

As fog computing has developed, new challenges have emerged regarding the placement of services within the network. Such issues are becoming especially important since the integration of IoT infrastructure and the relevant security concerns. There is significant variation in the definitions of service placement problems covered in the literature. Comparing these placements is a difficult task since the services, their placement objectives, their relationships with each other and the infrastructure of the network, strongly contribute to this diversity of definitions. This article proposes a methodology for comparing service placement algorithms and solutions supported by an ontology of service placement problems. This ontology is therefore used in our methodology to solve the problems annotated therein and to compare the results of the various algorithms as well as the quality of their solutions.

I. INTRODUCTION

Securing IoT devices may not always be achievable due to both their limited capabilities and restricted access imposed by the manufacturer. An alternative to securing every single device is to deploy security services at the edge of the network [START_REF] Godquin | Applied graph theory to security: A qualitative placement of security solutions within IoT networks[END_REF], following the fog computing paradigm [START_REF] Bonomi | Fog computing and its role in the internet of things[END_REF], [START_REF] Bonomi | Fog Computing: A Platform for Internet of Things and Analytics[END_REF] which leads to Service Placement Problems (SPP) [START_REF] Salaht | An overview of service placement problem in Fog and Edge Computing[END_REF] or Fog Service Placement Problems (FSPP) [START_REF] Skarlat | Optimized IoT service placement in the fog[END_REF]. Brogi et al. and Salaht et al. suggest [START_REF] Salaht | An overview of service placement problem in Fog and Edge Computing[END_REF], [START_REF] Brogi | How to Place Your Apps in the Fog -State of the Art and Open Challenges[END_REF] classifying the algorithms for solving FSPPs into three categories: algorithms with a mathematical approach (mainly focused towards Integer Linear Programming (ILP) [START_REF] Skarlat | Optimized IoT service placement in the fog[END_REF], [START_REF] Skarlat | Towards QoS-Aware Fog Service Placement[END_REF] and Mixed Integer Linear Programming (MILP) [START_REF] Doriguzzi-Corin | Dynamic and Application-Aware Provisioning of Chained Virtual Security Network Functions[END_REF]), search algorithms and heuristics (often based on greedy algorithms or heuristic behaviours [START_REF] Gupta | iFogSim: A Toolkit for Modeling and Simulation of Resource Management Techniques in Internet of Things, Edge and Fog Computing Environments[END_REF]- [START_REF] Xia | Combining hardware nodes and software components ordering-based heuristics for optimizing the placement of distributed IoT applications in the fog[END_REF]) and exotic algorithms (such as algorithms based on deep learning [START_REF] Tang | Migration Modeling and Learning Algorithms for Containers in Fog Computing[END_REF], graph theory [START_REF] Godquin | Applied graph theory to security: A qualitative placement of security solutions within IoT networks[END_REF] or even game theory [START_REF] Zhang | Computing Resource Allocation in Three-Tier IoT Fog Networks: A Joint Optimization Approach Combining Stackelberg Game and Matching[END_REF]). The problems addressed in works on FSPPs follow a similar structure divided into three models (the infrastructure, application and deployment models [START_REF] Salaht | An overview of service placement problem in Fog and Edge Computing[END_REF]). However these problems are not identical, which complicates the comparison of solutions and the methods used. In addition, the objectives pursued in these works are also different. Some focus on improving QoS [START_REF] Skarlat | Towards QoS-Aware Fog Service Placement[END_REF], [START_REF] Yousefpour | QoS-aware Dynamic Fog Service Provisioning[END_REF], average response time [START_REF] Jemaa | QoS-Aware VNF Placement Optimization in Edge-Central Carrier Cloud Architecture[END_REF], the overall security of the network [START_REF] Godquin | Applied graph theory to security: A qualitative placement of security solutions within IoT networks[END_REF] or even the resource usage [START_REF] Donassolo | Fog Based Framework for IoT Service Provisioning[END_REF]. Such diversity also occurs within the interactions among services and the network infrastructure where the number of devices, their type and characteristics fluctuate widely.

In this article, we formalize FSPPs using Monadic Existential logic of Second-Order (MESO). In order to use and manipulate the proposed model, this formalization is then expressed within a semantic structure using an ontology which allows logical relationships. Finally, we provide a methodology for solving and comparing FSPPs solutions based on this ontology, which enables the comparison of placement solutions according to different resolution methods on the same infrastructure.

The structure of the article is as follows. Section II presents the FSPPs. Section III introduces ontologies. Section IV presents our methodology for solving and comparing service placement solutions.

II. THE FOG SERVICE PLACEMENT PROBLEM (FSPP)

A. Defining a FSPP According to Salaht et al. the definition of a service placement problem in the IoT involves defining the application, infrastructure and deployment models [START_REF] Salaht | An overview of service placement problem in Fog and Edge Computing[END_REF].

The infrastructure model describes the IoT network and covers the resources (physical devices such as sensors, actuators, servers, smartphones, etc.), their characteristics (such as processor frequency, memory, etc.), as well as those of the network (latency, bandwidth, etc.).

The application model, on the other hand, describes the relationships between services in the IoT network. Services can be either independent (monolithic) [START_REF] Salaht | An overview of service placement problem in Fog and Edge Computing[END_REF], [START_REF] Skarlat | Optimized IoT service placement in the fog[END_REF], [START_REF] Skarlat | Towards QoS-Aware Fog Service Placement[END_REF], [START_REF] Jemaa | QoS-Aware VNF Placement Optimization in Edge-Central Carrier Cloud Architecture[END_REF], interdependant [START_REF] Doriguzzi-Corin | Dynamic and Application-Aware Provisioning of Chained Virtual Security Network Functions[END_REF], [START_REF] Xia | Combining hardware nodes and software components ordering-based heuristics for optimizing the placement of distributed IoT applications in the fog[END_REF] or all interacting [START_REF] Salaht | An overview of service placement problem in Fog and Edge Computing[END_REF], [START_REF] Donassolo | Fog Based Framework for IoT Service Provisioning[END_REF].

The last model, the deployment model, defines the conditions for deploying a service (see Section II-B2).

While the infrastructure model is linked to the network, the application and deployment models are specific to the services.

B. Formalizing a Fog Service Placement Problem

A Fog Service Placement Problem (FSPP) refers to identifying on which IoT devices security services should be deployed given specific conditions.

1) Modelling an IoT network: Finite Model Theory (FMT) allows defining the infrastructure with a structure M = (D, R) where D refers to the domain including all the elements of the structure; here it contains all the devices within the IoT network. The symbol R stands for the vocabulary, it contains the relationships and functions affecting the elements of D (devices of the IoT). R may also include constants 978-3-903176-32-4 © 2021 IFIP (zero arity functions) as well as relationships (=, < and >) comparing values to these constants.

This type of structure provides great flexibility without imposing limitations on the amount of information which can be contained. As an example, one may define the unary function W : D → R returning the processing power of a device and the binary function B : D2 → R returning the bandwidth from one device to another.

2) Modelling a service placement: The domain elements which will support each service are defined by a unary relation variable. Let S be the set of these unary variables, we assume that these choices may be defined with a first-order formula Φ over the enhanced vocabulary R ∪ S. Hence, the IoT security service placement problem can be expressed by a sentence of Monadic Existential Second-Order logic (MESO) as ∃SΦ(R, S).

a) Definition of a constraint: Let S * be an interpretation of S in D, a constraint C i is an application from a subset of (M, S *) to {0, 1}.

b) Definition of an objective function: An objective function is expressed by a function O (M, S *) → R. It evaluates and compares placement solutions and thereby defines a placement optimization problem. When several solutions are available, the objective function can be used to evaluate which solution is the best according to its evaluation criteria. The optimization problem can thus be solved either by minimizing or maximizing the value returned by this function.

3) Example on a toy model: Consider two security services S 1 and S 2 for which we define the following constraints: C 1 : Each service is deployed on a single device. C 2 : The S 1 service requires a power of 10 to operate. C 3 : Neither service should be hosted on devices interacting. C 4 : Each service must be reachable by a device with a minimum bandwidth capacity of 50. The numerical values given are constants of the problem and can therefore be changed according to the actual data. Similarly, the listed constraints can be changed to match the services to be deployed. In this example, the constraints are expressed as the following first-order formulas where E(x, y) is a binary relationship on D indicating whether x and y are linked together:

C 1,i : ∃x∀y S i (x) ∧ S i (y) → x = y. C 2 : ∀x S 1 (x) → W (x) ≥ 10. C 3 : ∀x∀y (S 1 (x) ∧ S 2 (y)) → ¬E(x, y). C 4,i : ∀x∃y (S i (x) ∧ E(x, y)) → B(x, y) > 50.
The placement problem so described can be expressed using the following MESO formula:

∃S 1 ∃S 2 C 1,1 ∧C 1,2 ∧C 2 ∧C 3 ∧ C 4,1 ∧ C 4,2 .
Note that MESO sentences express NP-complete problems as well as easy problems.

III. PRESENTATION OF ONTOLOGIES

Semantic structures seem appropriate to model our formal structure. They have been increasingly used in conjunction with IoT technologies for several years now. The scientific community refers to those structures as SWoT, an acronym that stands for Semantic Web of Things [START_REF] Gyrard | LOV4IoT: A Second Life for Ontology-Based Domain Knowledge to Build Semantic Web of Things Applications[END_REF] and are commonly expressed using ontologies.

An ontology is a formal and explicit description of concepts within a specific field that can model the structure of a system, i.e. the relevant entities and relationships that arise from its observation [START_REF] Guarino | What Is an Ontology?[END_REF].

A. Established IoT ontologies

The most commonly used ontology in SWoT research is the Semantic Sensor Network ontology (SSN1). This ontology defines all the concepts surrounding sensors and their observations. While the SSN ontology has a high level of detail in its design, it mainly covers sensor-based applications. However, the Devices class of SSN is particularly interesting as it allows a Device to be a composite of several smaller Devices.

Studies conducted by Bermudez-Edo et al. led to the development of the IoT-Lite ontology, a lightweight ontology that semantically describes the IoT [START_REF] Bermudez-Edo | IoT-Lite: A lightweight semantic model for the internet of things and its use with dynamic semantics[END_REF] with fewer axioms than other ontologies such as SSN, Fiesta-IoT [START_REF] Agarwal | Unified IoT ontology to enable interoperability and federation of testbeds[END_REF], OneM2M 2 , M3 and M3-lite [START_REF] Gyrard | Cross-Domain Internet of Things Application Development: M3 Framework and Evaluation[END_REF] or IoT-O [START_REF] Seydoux | IoT-O, a Core-Domain IoT Ontology to Represent Connected Devices Networks[END_REF]. The authors have shown that the axiom number of an ontology has a significant impact on its use in an IoT context where processing times are critical and capacity might be limited. One of the main benefits of this ontology lies in its lightweight, as well as in the defined concepts. IoT-Lite uses the definition of "Device" from SSN and describes a "Service" class with associated properties.

B. Related work for service placement based on ontologies

Allocation and, especially, the placement of services is highly dependent on the environment in which they are deployed. Having an extensive knowledge of the infrastructure is important for identifying the best location to deploy a security service. Ontologies enable the infrastructure to be described formally and therefore provide structure to the collected information.

The work of Tao et al. [START_REF] Tao | Multi-layer cloud architectural model and ontology-based security service framework for IoT-based smart homes[END_REF] illustrates the value of semantic structures for representing the infrastructure model. This study introduces a new and interesting ontology, however, it does not fit our application and has several limitations. Moreover, no other ontologies were reused in its design and it does not seem to be publicly accessible or listed on the LOV4IoT platform [START_REF] Gyrard | LOV4IoT: A Second Life for Ontology-Based Domain Knowledge to Build Semantic Web of Things Applications[END_REF] thereby impeding reusability and usage with new ontologies.

The work of Nezami et al. [START_REF] Nezami | Ontology-Based Resource Allocation for Internet of Things[END_REF] is based on IoT-O [22] associated with a second ontology, Cloud-O [START_REF] Rekik | Cloud Description Ontology for Service Discovery and Selection[END_REF] forming a third ontology. The authors suggest using ontologies to allocate resources in the edge computing paradigm. They propose a methodology with four steps, resource discovery, modelling, selection and allocation.

Among the methodologies in the literature that rely on semantic structures, the work of Petrovic and Tosic stands out particularly [START_REF] Petrovic | SMADA-Fog: Semantic model driven approach to deployment and adaptivity in Fog Computing[END_REF]. In their study, the authors define a structural component, called SMADA-fog, which automatically generates code for the management of fog computing infrastructure. The authors use meta-model which defines the structure and constraints of a family of models on two different aspects of deployment in a fog computing architecture. This modelling is the core of SMADA-fog as it allows both the annotation of the deployment model in the ontology, as well as using adaptation strategies through code generation for adapting to changes in the environment.

Smada-fog is particularly interesting for its use of semantic structures for automated code generation. This operation is similar to service deployment principles due to the customizable code that can be deployed. The work of Petrivic and Tovic [START_REF] Petrovic | SMADA-Fog: Semantic model driven approach to deployment and adaptivity in Fog Computing[END_REF] proposes a highly in-depth approach on implementation demonstrating the benefits of semantic structures for complex data representation. SMADA-fog, however, meets its limits in the definition of its semantic structure and its optimization model since we do not know if it is interoperable with other ontologies. Remark that the ontology used is not listed in LOV4IoT nor publicly available. Moreover, this structure relies solely on linear optimization and the reasoning capabilities of ontologies to perform its code deployment.

IV. SOLVING AND COMPARISON METHODOLOGY

Comparing placement solutions requires both context awareness and understanding placement problems related to these solutions.

We use our ontology to build a knowledge base and act as a cornerstone in our methodology for solving placement problems and comparisons of their solutions.

A. Knowledge base creation

Knowledge bases gather information about a specific topic under an accessible and interpretable format. For ontologies, a knowledge base is a set of individual instances of classes defined in an ontology.

1) Benefits of using an ontological knowledge base: The first benefit lies upon the formal part of the structure. As demonstrated by Shimizu, OWL (Web Ontology Language), commonly used for writing ontologies, is directly linked to descriptive logic [START_REF] Shimizu | Rendering OWL in LaTeX for Improved Readability: Extensions to the OWLAPI[END_REF]. Another benefit of using ontologies involves inferences. Inferences are especially interesting here since it allows, using logic, additional information to be retrieved from those that have been entered into the ontology.

2) Building the knowledge base: Building a knowledge base, such as designing an ontology, is an iterative process that can be expanded and refined. We build our knowledge base in three steps: a) Infrastructure modelling: This modelling gathers all information available for the addressed IoT network. It includes physical resources such as available equipment (PCs, servers, sensors...), their characteristics (CPU, RAM...) and those of the network. To model the infrastructure we define the M = (D, R) structure, introduced in Section II-B. Following the modelling, the model is annotated in the ontology using individual instances. b) IoT services definition: In this step, we define the services to be deployed within our IoT infrastructure. Defining services requires each service to be defined individually according to its deployment model. The deployment model of a service covers the positioning constraints of the service and at least one objective function.

We must also describe how these services interact, which is part of the application model. The application model defines whether the services are monolithic, meaning the services form independent blocks that do not interact, whether some are interdependent, or whether all the services are mutually dependent. The positioning of interdependent services is more complex.

The service definition step ends with the annotation of the services and related information into the knowledge base.

c) Design of resolution algorithms: Looking for solutions to service placement problems implies the use of resolution algorithms. Such algorithms can be of various natures [START_REF] Salaht | An overview of service placement problem in Fog and Edge Computing[END_REF] and therefore be annoted and linked to compatible services into the knowledge base. When annotating resolution algorithms into the knowledge base, the idea is to not only ensure that they are compatible with the infrastructure model, but also to indicate the services for which they can assist finding placement solutions.

B. Solving and comparing service placement problems

Our methodology is divided into five steps: information retrieval, solution identification, validation, evaluation and comparison.

a) Information retrieval: Using our knowledge base, we can interpret information about the network infrastructure, services data, their deployment model, the resolution algorithms and the set of relationships between entities described in the ontology.

b) Solution identification: We want to run the resolution algorithms compatible with the service we wish to deploy in order to identify placement solutions. These algorithms use the information extracted in the previous step and, more generally, the entire knowledge base (including constraints) to identify solutions. Depending on the algorithms, one or more solutions can be returned. Some algorithms may even be able to return the optimal solution directly, however, this means that these algorithms describe optimization concepts as discussed in the following steps.

c) Validation: The validation step is performed using constraint filtering on the solutions returned by the algorithms. Solutions that do not satisfy the constraints are not retained. No satisfactory solution may be found, in which case constraints may be weakened to offer looser placement conditions. Filtering can be redundant if some resolution algorithms already use constraints for identifying their solution. However, it remains necessary to validate the solutions returned by the algorithms. d) Evaluation: Each suitable solution is evaluated by an evaluator (most of the time an objective function) to assign each one a score. Solving service placement problems regularly involves optimization in the form of maximizing or minimizing scores. Examples of such evaluators could be functions that indicate the contribution of a solution on the QoS of the network [START_REF] Skarlat | Towards QoS-Aware Fog Service Placement[END_REF], the security provided on the network [START_REF] Godquin | Placement optimization of IoT security solutions for edge computing based on graph theory[END_REF] or the quality of the solution [START_REF] Godquin | Applied graph theory to security: A qualitative placement of security solutions within IoT networks[END_REF].

e) Comparison: The comparison step performs a score analysis of each solution and then selects the most appropriate one for service deployment. Using a single evaluator, the algorithm that returns the best result can be easily distinguished by tracing the origin of the solution that has obtained the best score according to the evaluation criteria. We define evaluators as functions that return a single numerical value which can compete with one another to compare placement solutions.

C. Overview of our ontology

The purpose of our ontology is to model service placement problems within the IoT, to unify the work on the service placement as well as to compare solutions. We named this ontology FSPlacementOntology in reference to the Fog Service Placement Problem (FSPP) defined by Skarlat et al. [START_REF] Skarlat | Optimized IoT service placement in the fog[END_REF].

For the ontology to best models service placement problems, it needs to include all the necessary models that Salaht et al. [START_REF] Salaht | An overview of service placement problem in Fog and Edge Computing[END_REF] mentioned, namely the infrastructure, application and deployment model.

In addition, to match our methodology proposed in the previous sections, the ontology must also provide representations of the resolution algorithms and placement solutions.

1) External concepts: Service placement problems, and more particularly FSPP, are mainly centred around the concept of service. We therefore decided to design our model around the Service class from the IoT-Lite ontology [START_REF] Bermudez-Edo | IoT-Lite: A lightweight semantic model for the internet of things and its use with dynamic semantics[END_REF].

We have modelled the rest of our application concepts around this class using a middle-out methodology [START_REF] Uschold | Ontologies: Principles, methods and applications[END_REF].

The IoT-Lite ontology models the service exposition of a device using the exposed and exposedBy properties connecting the Services to the Device class from the SSN ontology [START_REF]Semantic Sensor Network Ontology[END_REF].

In our application, services are hosted on the devices. Therefore, it is necessary to model the Device class, representative of them. As a result, the classes Device and System (superclass of Device) are imported into FSPlacementOntology, as well as the exposed and exposedBy properties.

2) Major concepts: The deployment model representation in ontology requires the definition of concepts related to constraints and objective functions. For this purpose, a Constraint class has been defined, defining the prerequisites to be met for a valid deployment solution.

In the interests of realism, when annotating a Service within the ontology, at least one placement constraint must be provided using the hasConstraint existential property.

A second class, Information connected to Constraint through the involves property has also been introduced to model the information used for the definition of a constraint. Among other information, this class lists DeviceCharacteristics and SpecificHardwareComponent.

The deployment model is completed by defining the ObjectiveFunction class linked to Service through the ObjectiveFunction existential property stating that a Service must always provide at least one ObjectiveFunction. As for the service dependencies, they are modelled using the dependsOn property.

The resolution algorithms are modelled within the ontology (ResolutionAlgorithm) and related to the solutions (PlacementSolution) using the findSolution universal property to match as closely as possible the intended application. This property allows resolution algorithms to return exclusively instances of PlacementSolution or to return nothing at all. Placement solutions include at least one instance of the Pairing class using the ContainPairs existential property. The latter exclusively matches an instance of Service with an instance of Device through the hasPairedService and hasPairedDevice properties.

Finally, the Device class is linked to numerous other concepts relating to device performance (CPU, Storage, Memory), CommunicationInterface or more generally DeviceCharacteristic.

3) Extending the ontology: A simplified ontology has been chosen to limit the number of axioms it contains, allowing greater flexibility for usage within the IoT context.

The benefits of this ontology lie in the ability to annotate service placement problems as well as in its versatility to describe placement constraints using semantic restrictions [START_REF] Horridge | A Practical Guide To Building OWL Ontologies Using Prot eg e 4 and CO-ODE Tools Edition 1[END_REF].

Restrictions may refer to concepts not currently described in our ontology. The idea is to provide a core ontology that can be used and enriched by the community to match various applications. Note that our assumption that the problem is expressible by a MESO formula limits the scope of our ontology. Modelling the deployment using a different logic may lead to changes in the ontology that could be considered in its evolution.

V. CONCLUSION

The aim of this paper is to generalize and formalize Fog Service Placement Problems with Monadic Existential Second-Order sentences. Our approach provides a common structure and vocabulary to express Fog Service Placement Problems, thus assisting in the design of our ontology devoted to such problems. Using our ontology, information related to the placement problems can be gathered, stored and used to infer additional knowledge, to form a knowledge base. Finally, based on this knowledge base, we propose a methodology for solving and comparing solutions to placement problems. While our comparison methodology remains invariant to the logic used in formalization, our ontology may not be suitable for placement problems that cannot be modelled according to Monadic Existential Second-Order logic. Therefore, it might be relevant to consider this category of problems as the ontology evolves.

http://www.w3.org/ns/ssn/

https://git.onem2m.org/MAS/BaseOntology