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Abstract: Novel 2-amino bis(2-phosphonoacetic) acids were prepared by microwave irradiation of a
mixture of amine, glyoxylic acid and phosphorous acid. The reaction takes place with various amines
including primary and secondary amines and polyamines, but this reaction is more sensitive to steric
hindrance of amine than the similar Kabachnik–Fields reaction. Amino acids can be also transformed
into the expected bis(2-phosphonoacetic) acids, with the exception of tryptophan, which gives a
β-carboline product.

Keywords: multicomponent reaction (MCR); aminophosphonic acetic acid; green conditions; mi-
crowave irradiation

1. Introduction

Aminophosphonic acids are structurally analogous to aminocarboxylic acids, and their
derivatives have received considerable attention [1–3]. These compounds exhibit a large
variety of biological activities such as peptide mimics [4], enzyme inhibitors [5,6] (inhibitors
of GABA receptors, inhibitors of various proteolytic enzymes, inhibitors of dialkylglycine
decarboxylase), antibiotics, crop protection agents [7] or even haptens [8] of catalytic an-
tibodies. α-Aminophosphonic acids have found applications, including in the materials
fields as complexones [9,10], as anti-corrosive agents [11,12], for extraction of metals [13]
and surface modifications [14]. α-Aminophosphonic acids are also used as precursors in
the synthesis of 2D or 3D hybrid materials involving different metals (M(IV) or M(II)) [15].
Some of these hybrid phosphonates may have practical applications as supported cata-
lysts [16], protonic conductors [17] and molecular sieves. The multicomponent reaction
(MCR) of formaldehyde, phosphorous acid and an amine leading to an aminophosphonic
acid was first described by Moedritzer and Irani [18] according to the Scheme 1. It is
performed in an aqueous medium and can be activated by microwave irradiation [19–21].
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Scheme 1. Moedritzer–Irani reaction: synthesis of aminophosphonic acids by reaction of amine,
formaldehyde and phosphorous acid.

This reaction cannot be generalized with other aldehydes, unlike the reaction of
Kabachnik–Fields [22–24], in which a dialkylphosphonate is used instead of phosphorous
acid according to the Scheme 2. The Moedritzer–Irani reaction has, however, the advantage
of leading directly to the free acids by not needing a tedious deprotection of phosphonates
by Bronsted [25] or Lewis acid [26].
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Scheme 2. Kabachnik–Fields reaction: synthesis of aminophosphonates by reaction of amine, alde-

hyde and dialkylphosphonate. 
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Scheme 2. Kabachnik–Fields reaction: synthesis of aminophosphonates by reaction of amine, aldehyde and dialkylphosphonate.

2. Materials and Methods

All chemicals used were purchased from Aldrich or Fluka. The infrared spectra were
recorded on a Perkin Elmer One ATR spectrophotometer. Samples were analyzed by NMR
spectrometry; analyses were carried out with Fourier Bruker B 400 spectrometer. Samples of
the isolated products were diluted in D2O in the presence of Na2CO3. Microwave irradia-
tion reactions were performed in a microwave oven, Synthewave 402 (Prolabo), working at
a frequency of 2450 MHz and with a control of the power of themicrowave irradiation.

2.1. General Procedure for Amines

One equivalent of amine and two equivalents phosphorous acid are mixed with a
little amount of water and placed in a quartz tube. Then, two equivalents of glyoxylic
acid monohydrate are quickly added, and the flask is irradiated at 240 W for 15 min.
After cooling, when the product precipitates in the tube, it is then filtered and washed
with water.

2.2. Octylamino-2-iphosphonic Acetic Acid

2.58 g of octylamine (20 mmol), 3.28 g of phosphorous acid (40 mmol), 4 mL of water
and 3.68 g glyoxylic acid monohydrate (40 mmol) were used according to the amines’
general procedure. White solid, isolated yield 39%. Mp = 216–217 ◦C. 1H-NMR (D2O):
0.80 (t, J = 6.4 Hz, 3H, CH3); 1.22–1.26 (m, 10H, CH2); 1.57 (t, J = 7.2 Hz, 2H, CH2);
2.78 (t, J = 7.2 Hz, 2H, CH2-N); 3.37 (s, 2H, 2*N-CH-P). 13C-NMR (D2O): 13.8 (CH3); 22.6;
27.0; 27.5; 29.34; 29.37 (5 CH2); 31.9 (CH2-N); 48.2; 50.8 (N-CH-P); 165.6; 174.5 (C=O).
31P-NMR (D2O): 4.9 ppm.

2.3. Decylamino-2-diphosphonic Acetic Acid

2.36 g of decylamine (15 mmol), 2.47 g (30 mmol) phosphorus acid, 10 mL of water
and 2.78 g glyoxylic acid monohydrate (30 mmol) were used according to the amines’
general procedure. White solid, isolated yield 40%. Mp = 227–228 ◦C. 1H-NMR (D2O): 0.80
(t, J = 6.8 Hz, 3H, CH3); 1.20–1.30 (m, 16H, CH2); 3.26 (t, J = 6.8 Hz, 2H, CH2-N); 3.90 (s,
2H, N-CH-P). 13C-NMR (D2O): 14.1 (CH3); 22.7; 26.5; 28.2; 29.1; 29.3, 29.5 (8*CH2); 31.9
(CH2-N); 44.1; 48.8 (N-CH-P); 164.0; 171.9 (C=O). 31P-NMR (D2O): 4.2 ppm.

2.4. Dodecylamino-2-diphosphonic Acetic Acid

3.70 g of dodecylamine (20 mmol), 3.28 g of phosphorous acid (40 mmol), 4 mL of water
and 3.68 g of glyoxylic acid monohydrate (40 mmol) were used according to the amines’
general procedure. White solid, isolated yield 50%. Mp = 238–239 ◦C. 1H-NMR (DMSO):
0.86 (t, J = 6.8 Hz, 3H, CH3); 1.25–1.35 (m, 18H, CH2); 1.62 (m, 2H, CH2); 2.87 (t, J = 8.0 Hz,
2H, CH2-N); 3.80 (s, 2H, N-CH-P). 13C-NMR (DMSO): 13.9 (CH3); 22.1; 25.1; 25.8; 25.9;
28.5; 28.7; 28.8; 28.9; 28.95; 29.0 (10*CH2); 31.3 (CH2-N); 46.6; 46.8 (N-CH-P); 168.1 (C=O).
31P-NMR (DMSO): 3.5 ppm.

2.5. Dodecyldiamino-2-tetraphosphonic Acetic Acid

2.00 g of dodecyldiamine (10 mmol), 3.28 g of phosphorous acid (40 mmol), 4 mL of
water and 3.68 g of glyoxylic acid monohydrate (40 mmol) were used according to the
amines’ general procedure. After evaporation, the product was crystallized in isopropanol,
filtered and then washed with water. White solid, isolated yield 66%. Mp = 116–117 ◦C.
1H-NMR: 1.21–1.32 (m, 16H, CH2); 1.51 (t, J = 7.6 Hz, 4H, CH2); 2.72 (t, J = 7.6 Hz, 4H,
N-CH2); 3.31 (s, 4H, N-CH-P). 13C-NMR: 25.3; 25.6; 28.1 (10*CH2); 28.4; 28.5 (CH2-N); 47.6
(P-CH-N); 169.6 (C=O). 31P-NMR: 4.9 ppm.
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2.6. P-xylenediamino-2-tetraphosphonic Acetic Acid

2.72 g of p-xylenediamine (20 mmol), 6.56 g of phosphorous acid (80 mmol), 3 mL of
water and 7.42 g glyoxylic acid monohydrate (80 mmol) were used according to the amines’
general procedure with irradiation duration of 8 min at 200 W. After evaporation, the
product was crystallized in isopropanol, filtered and then washed with water. White solid,
isolated yield 65%. Mp = 224–225 ◦C. 1H-NMR: 3.81 (s, 4H, CH2-N); 4.27 (s, 4H, N-CH-P);
7.50 (m, 4H, HAr). 13C-NMR: 47.1 (NCH2); 50.3 (N-CH-P); 129.6; 130.7; 130.8; 131.8 (CAr);
169.4 (C=O). 31P-NMR: 5.2 ppm.

2.7. Dibutylaminophosphonic Acetic Acid

2.58 g of dibutylamine (20 mmol), 3.28 g of phosphorous acid (40 mmol), 4 mL
of water and 3.68 g glyoxylic acid monohydrate (40 mmol) were used according to
the amines’ general procedure. White solid, isolated yield 41%. Mp = 216–217 ◦C.
1H-NMR: 0.80 (t, J = 6.4 Hz, 6H, CH3); 1.23 (m, 4H, CH2); 1.56 (t, J = 7.2 Hz, 4H, CH2);
2.79 (t, J = 7.2 Hz, 4H, CH2-N); 3.37 (s, 1H, N-CH-P). 13C-NMR: 13.6 (CH3); 29.4 (CH2);
30.9 (CH2); 54.2 (N-CH2); 55.1 (CH-N); 165.6 (C=O). 31P-NMR: 3.5 ppm.

2.8. General Procedure for Amino Acids

One equivalent of amino acid is added to two equivalents phosphorous acid diluted
in a little amount of water, and the mixture is placed in a quartz tube or in a glass vessel.
Next, two equivalents of glyoxylic acid diluted in water are quickly added, and the flask is
microwave irradiated or refluxed. After cooling, when the product precipitates in the tube,
it is then filtered and washed with water or isopropanol.

2.9. L-amino-3-phenylpropanoic Diphosphonic Acetic Acid

5.0 g of L-phenylalanine (30 mmol), 4.96 g of phosphorous acid (60 mmol) in 15 mL
of water and 5.57 g of glyoxylic acid monohydrate (60 mmol) were used according to
the amino acids’ general procedure during 10 min irradiation at 150 W. The crystals
formed were filtered and recrystallized in isopropanol. White solid, isolated yield 30%.
Mp = 247–248 ◦C. 1H-NMR: 2.85 (m, 2H, CH2-Ar); 3.04 (q, J = 16.4 Hz, J = 10.0 Hz, 2H,
N-CHP); 3.28 (t, J = 7.0 Hz, 1H, N-CH-C); 7.23 (m, 5H, HAr). 13C-NMR: 38.8 (CH2);
50.6 (N-CH-C); 64.6 (P-CHN); 126.7; 128.6; 129.3; 137.9 (CAr); 178.3; 180.4 (C=O). 31P-NMR:
4.9 ppm. [α]D = −0.87◦ (c = 0.92, H2O).

2.10. L-amino-2 Methyl-4 Pentanoic Diphosphonic Acetic Acid

2.62 g of L-leucine (20 mmol) and 3.28 g of phosphorous acid (40 mmol) in 3 mL
water and a solution of 3.68 g of glyoxylic acid monohydrate (40 mmol) in 3 mL water
were used according to the amino acids’ general procedure during 10 min irradiation at
150 W. The crystals formed were filtered and recrystallized in isopropanol. White solid,
isolated yield 18%.

2.62 g of L-leucine (20 mmol) and 3.28 g of phosphorous acid (40 mmol) in 3 mL water
and a solution of 3.68 g of glyoxylic acid monohydrate (40 mmol) in 3 mL water were
used according to the amino acids’ general procedure, and the flask was refluxed for 6 h.
After cooling, the product was crystallized in isopropanol. White solid, isolated yield
22%. Mp = 211–212 ◦C. 1H-NMR: 0.90 (d, J = 5.6 Hz, 6H, CH3); 1.71–1.80 (m, 3H, C-CH-C,
CH2); 3.75 (m, 1H, N-CH-C); 3.81 (m, 2H, N-CH-P). 13C-NMR: 21.1; 21.7 (2*CH3); 24.3
(CH2); 38.6 (CH); 47.0 (N-CH-C); 59.9 (P-CH-N); 169.8; 172.9 (C=O). 31P-NMR: 5.9 ppm.
[α]D = +8.5◦ (c = 1, H2O).

2.11. L-amino-2 p-Hydroxyphenyl-3 Propanoic Diphosphonic Acetic Acid

1.81 g of L-tyrosine (10 mmol) and 1.64 g phosphorous acid (20 mmol) in 5 mL of
water and a solution of 3.68 g glyoxylic acid monohydrate (40 mmol) in 5 mL water
were used according to the amino acids’ general procedure during 15 min irradiation at
160 W. White solid, isolated yield 31%. Mp = 236–237 ◦C. 1H-NMR: 3.00–3.17 (m, 2H, CH2);
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3.62–3.77 (m, 2H, CH); 4.03 (m, 1H, N-CH-P); 6.82 (d, J = 8.4 Hz, 2H, HAr); 7.13 (t, J = 6.8 Hz,
2H, HAr). 13C-NMR: 34.6 (CH2); 47.3 (N-CH-C); 62.5 (P-CH-N); 115.8; 125.9; 130.7 (CAr);
155.0 C-OH; 169.8; 171.8 (C=O). 31P-NMR: 4.7 ppm. [α]D = +0.6◦ (c = 1, H2O).

2.12. N-phosphonic Acetic Acid of Glutathione

1.53 g of L-glutathione (5 mmol) and 0.82 g phosphorous acid (10 mmol) in 5 mL
of water and a solution of 0.92 g of glyoxylic acid monohydrate (10 mmol) were used
according to the amino acids’ general procedure, and the flask was refluxed under argon
for 8 h. Water was then evaporated, and oil was obtained, and that was then crystallized
in a mixture of water/isopropanol. The product was then filtered and recrystallized in
isopropanol. White solid, isolated yield 30%. Mp = 190 ◦C (dec). 1H-NMR (D2O): 2.10–2.12
(m, 2H, CH2); 2.51 (t, J = 6.4 Hz, 2H, CH2-CO); 3.40–3.51(m, 2H, CH2-S); 3.70 (s, 2H, P-CH-
N); 3.80 (s, 2H, CH2-COOH); 3.91 (t, J = 6.4 Hz, 1H, C-CH-N). 13C-NMR (D2O): 25.0 (CH2);
29.5 (S-CH2); 40.3 (CH2); 47.7 (N-CH2); 52.6; 63.3 (2*CH-N); 69.0; 70.4 (2*N-CHP); 169.6;
170.4 (CO); 172.3; 173.6; 174.1; 176.4 (COOH). 31P-NMR (D2O): 4.8 ppm.

2.13. Ethyleneimine N-phosphonoacetic Acid Polymer

8.61 g of ethyleneimine polymer (50% in water, Mr 750.000, 100 mmol), 6.02 g of
phosphorous acid (73 mmol), 15 mL of water and 6.46 g of glyoxylic acid monohydrate
(71 mmol) were used according to the general procedure. The mixture was irradiated for
8 min at 210 W. The solution was dialyzed with water. After evaporation, a polymer was
obtained as a glassy solid. Yield 45%. 1H-NMR (D2O): 2.67; 2.80 (m, N-CH); 3.08; 3.39;
3.54 (m, N-CH2). 13C-NMR (D2O): 43.5–46.2 and 47.9–50.7 (N-CH2); 55.8–56.9 (P-CH-N);
160.6 (C=O). 31P-NMR: 4.4 ppm. IR (cm−1): 3336 (νOH L); 1637 (νC=O); 1160 (νP=O);
1067 (νP=O).

2.14. (3.S)-2,3,4,9-Tetrahydro-1h-pyrido[3,4-b]indole-1,3-dicarboxylic Acid

2.04 g of L-tryptophan (10 mmol), 20 mL of water, 0.82 g of phosphorous acid
(10 mmol) and 0.92 g of glyoxylic acid monohydrate (10 mmol) were used according
to the general procedure at 150 W for 5 min. The product that precipitated directly in the
flask was then filtered and washed with water. Yield 93%. Mp = 270–271 ◦C [22]. 1H-NMR
(CDCl3): 2.63–2.71 (m, 1H, CH2); 3.04–3.10 (m, 1H, CH2); 3.51–3.55 (m, 1H, N-CH); 4.63 (s,
1H, N-CH); 7.05 (t, J = 7.0 Hz, 1H, HAr); 7.13 (t, J = 7.0 Hz, 1H, HAr); 7.38 (d, J = 8.1 Hz, 1H,
HAr); 7.49 (d, J = 7.9 Hz, 1H, HAr). 13C-NMR (CDCl3): 25.3 (CH2); 57.6; 59.5 (2*N-CH);
110.0; 114.9; 120.5; 121.8; 124.4; 128.9; 136.0; 138.5 (CHAr); 177.5 and 181.7 (C=O).

3. Results and Discussion

We describe herein for the first time the formation of aminophosphonoacetic acids
through the reaction of glyoxylic acid with a mixture of amine and phosphorous acid.
The Kabachnik–Fields reaction of phosphines was reported by J. Heinicke et al. [27,28] but
the Moedritzer–Irani reaction with glyoxylic acid was not reported.

The preliminary reactions showed that, in the case of primary amines, in the presence
of glyoxylic acid and phosphorous acid in stoichiometric amounts, a mixture of mono
and bis(phosphonoacetic) acids along with the starting amine was obtained according to
31P NMR. Indeed, these two compounds displayed typical phosphorus chemical shifts:
monophosphonoacetic acid (31P-NMR (D2O): 1.3–1.5 ppm) and bis-(phosphonoacetic acid)
(31P-NMR (D2O): 4.8–4.9 ppm). Subsequently, we performed the reaction with two equiva-
lents of phosphorus and glyoxylic acids in order to obtain only pure bis(phosphonoacetic)
acid (Scheme 3).
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The MCR of glyoxylic acid, phosphorous acid and amine takes place in water by
simple heating or better, by microwave activation. It is noteworthy that glyoxylic acid
is a sufficiently strong acid, so it is not necessary, contrary to the protocol of Moedritzer–
Irani [13], to add hydrochloric acid for catalyzing the reaction. According to 31P NMR,
the reaction is practically total with primary amines; however, with the products obtained
being very water soluble, their recovery could be difficult because of their poor crystal-
lization in aqueous solvents. Our attempts to evaporate mother liquors led to a sticky,
viscous liquid containing the product (31P NMR) with impurities and did not permit im-
proving the isolated yields of products. With the same amine, in comparison with the
methylenephosphonic acid prepared by the Moedritzer–Irani reaction, the corresponding
phosphonoacetic acid was much more water soluble.

Concerning primary amines, the synthesis of crystallized 2-amino-bis(2-phosphonoacetic)
acids was achieved successfully from fatty amines of C8 to C12.

With shorter chain amines, the products were formed, but they were too soluble
and too hygroscopic to induce their crystallization. With hindered primary amines like
1-adamantanamine, t-butylamine or t-octylamine, no reaction at all was observed. Sec-
ondary amines like dibutylamine reacted efficiently, but no reaction occurred with hindered
dicyclohexylamine under the Moedritzer–Irani conditions described herein.

All phosphonoacetic acids obtained were reported in the Table 1.

Table 1. Phosphonoacetic acids obtained from various primary and secondary amines and diamines.

Amine Product Yield a Yield b

1-butylamine CH3(CH2)3-N[CH(COOH)(PO(OH)2) ]2 92 –

1-hexylamine CH3(CH2)5-N[CH(COOH)(PO(OH)2) ]2 92 –

1-octylamine CH3(CH2)7-N[CH(COOH)(PO(OH)2) ]2 90 39

1-decylamine CH3(CH2)9-N[CH(COOH)(PO(OH)2) ]2 90 40

1-dodecylamine CH3(CH2)11-N[CH(COOH)(PO(OH)2) ]2 – 50

dibutylamine [CH3(CH2)2]2 NCH(COOH)(PO(OH)2) – 41

dicyclohexylamine (C6H11)2 NCH(COOH)(PO(OH)2) 0 –

t-butylamine (CH3)3C-N[CH(COOH)(PO(OH)2 ]2 0 –

t-octylamine C4H9 CH2(CH3)2C N[CH(COOH)[PO(OH)2 ]2 0 –

1-adamantanamine C10H17 N[CH(COOH)(PO(OH)2 ]2 0 –

1,2-diaminoethane [(HOOC)[(HO)2 PO]2 CH]2
N(CH2)2N[CH(COOH)[PO(OH)2] ]2

82 –

1,12-diaminododecane [(HOOC)[(HO)2 PO]2 CH]2
N(CH2)12N[CH(COOH)[PO(OH)2] ]2

– 66

p-xylenediamine [(HOOC)[(HO)2 PO]2
CH]2NCH2C6H4CH2N[CH(COOH)[(PO(OH)2] ]2

– 65

(a) Yield (%) estimated from reacting solution by 31P-NMR. (b) Yield (%) of isolated product by crystallization.

Moreover, this approach has been used to provide rapid and easy access to polyamine
containing both phosphonic and carboxylic acid groups. In the past, we have already
shown that hyperbranched PEI could be phosphonated by the reaction of Moedritzer–Irani
into an exchanging resin of cations [29] with a very great capacity for absorption of heavy
metal cations such Pb, Bi or U. The hyperbranched PEI, in the presence of glyoxylic acid,
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is transformed into an amino (2-phosphonoacetic) polymer and therefore constitutes also a
very good chelating resin of the cations [30] according the Scheme 4.
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Finally, we investigated the transformation of some natural amino acids and one
peptide (glutathione) under the same operatory conditions (see Table 2). In the case
of L-phenylalanine, L-tyrosine, L-leucine and L-glutathione, the reaction was achieved,
leading to the corresponding amino-bis(2-phosphonoacetic) acids. However, the yields of
crystallized products were poor due to the very great water solubility of the products.

Table 2. Transformation of amino acids and peptide into phosphonoacetic acid derivatives.

Starting Reactant Isolated Products

L-Phenylalanine
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In the specific case of L-leucine, a better yield was surprisingly obtained under re-
fluxed conditions than microwave irradiation. Similarly, the glutathione derivative was
prepared under refluxed conditions under an argon atmosphere because the Synthewave
microwave oven could not work under the rigorous exclusion of oxygen required by re-
duced glutathione. On the other hand, it was not possible to specify the chirality of the
two new stereocenters created. In the case of tripeptide glutathione, the amino group was
transformed, and no reaction seems takes place with amide group.
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Surprisingly, L-tryptophan did not give the expected phosphonoacetic acid compound.
Instead, a very smooth Pictet–Spengler reaction [31] occurred in the presence of phospho-
rous acid, affording 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-1,3-dicarboxylic acid (92%).
This reaction was already reported in the literature [32] with sulfuric acid as a catalyst,
but phosphorous acid seemed to be the best catalyst, with greater efficiency.

We propose a probable mechanism for this reaction (see Scheme 5): in the first step,
glyoxylic acid, which is a relatively strong acid (pKa = 3.3), is transformed into an iminium
in the presence of an amine; this reaction is Bronsted acid-catalyzed reaction. Then,
the reaction of the conjugate base of phosphorous acid (pKa1 = 6.7) with the iminium leads
to the amino phosphonoacetic acid. The process takes place twice with a primary amine,
affording the expecting amino bis(2-phosphonoacetic) acids.
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Scheme 5. Plausible mechanism for the formation of 2-amino bis(2-phosphonoacetic) acids from
secondary amine. The first step consists of the formation of iminium intermediate, followed by the
reaction of this iminium with phosphorous acid furnishing the aminophosphonoacetic acid.

4. Conclusions

The synthesis of 2-aminobis(2-phosphonoacetic) acids from amines, polyamines or
amino acids by MCR under microwave irradiation is simple and fast. Moreover, the chem-
ical conditions are environmentally friendly, as the reaction coupled to microwave irra-
diation is carried out in water and often, no organic solvent is used for separation and
purification steps. It allows for preparing interesting, useful aminophosphonoacetic acids
exhibiting versatile applications such as biologically active molecules, coordinating agents
of metals or precursors of materials (organic or MOF).
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