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1.  Introduction

The formation of surface nanostructures due to single ion 
impact is an intriguing phenomena in ion-surface interaction 
[1–8]. Swift heavy ion (SHI) as well as slow highly charged 
ion (HCI) irradiations show similarities in the nanostructure 
formation on different materials despite of the different pri-
mary excitation processes involved. While HCIs deposit their 
potential energy to the topmost atomic layers, SHIs transfer 

their energy by ionization and electronic excitation processes 
(electronic stopping) to the bulk and surface of the irradiated 
material. The subsequent energy transfer from the electronic to 
the lattice system leads to damage as well as material modifi-
cations at the impact site in the form of nanohillocks or craters 
(for a recent review see [9]). For the ionic crystal CaF2, which 
is interesting for various applications in microelectronic and 
optoelectronic devices [10, 11], a large data set from different 
irradiation experiments is available which shows the creation 
of nanosized hillocks due to SHI and HCI irradiation under 
normal ion impact. For HCI irradiation of CaF2 a so called 
phase-diagram [8] could be elaborated. It shows that hillock 
formation is only possible above a certain potential energy 
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Abstract
A novel form of ion-tracks, namely nanogrooves and hillocks, are observed on CaF2 after 
irradiation with xenon and lead ions of about 100 MeV kinetic energy. The irradiation is 
performed under grazing incidence (0.3°–3°) which forces the track to a region in close 
vicinity to the surface. Atomic force microscopy imaging of the impact sites with high spatial 
resolution reveals that the surface track consists in fact of three distinct parts: each swift 
heavy ion impacting on the CaF2 surface first opens a several 100 nm long groove bordered 
by a series of nanohillocks on both sides. The end of the groove is marked by a huge single 
hillock and the further penetration of the swift projectile into deeper layers of the target is 
accompanied by a single protrusion of several 100 nm in length slowly fading until the track 
vanishes.

By comparing experimental data for various impact angles with results of a simulation, 
based on a three-dimensional version of the two-temperature-model (TTM), we are able to 
link the crater and hillock formation to sublimation and melting processes of CaF2 due to the 
local energy deposition by swift heavy ions.
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threshold of 12–14 keV. There the high energy deposition of 
HCI leads to melting of a nano-sized region around the impact 
site, followed by thermal expansion and rapid quenching, 
leading to permanent surface modifications in the form of 
small nanohillocks [12]. At considerably higher potential 
energies a further threshold has been predicted [13], above 
which sublimation/evaporation of atoms and clusters should 
occur. Since SHIs create similar nanostructures as HCIs [9], 
in this contribution we investigate nanostructure formation 
due to SHI irradiation, for which higher energy deposition is 
more easily achieved than via production of HCI in really high 
charge states. The SHI irradiation is performed under grazing 
incidence since this particular collision geometry forces the 
track to a region close to the surface comparable to the shallow 
damage of slow HCI.

The occurrence of nanohillocks induced by SHI on CaF2 
under normal incidence was first reported in 2002 by Müller 
et al [14]. These authors showed that the hillock height increases 
almost linearly with increasing energy loss reaching a height 
of 13 nm at 35 keV nm−1. Further systematic studies [15–17] 
confirmed these observations and determined an energy loss 
threshold for hillock creation between Se = 2.3–5.8 keV nm−1.  
A similar energy loss threshold was found when measuring 
the CaF2 volume expansion (swelling) [18] due to SHI irra-
diation. First AFM images of CaF2 irradiated under grazing 
incidence were presented by Akcöltekin et al [19] and showed 
the creation of chains of single nanodots as already reported 
before for other materials like SrTiO3 and TiO2 [6, 19, 20]. 
Eddy current microscopy (ECM) measurements of the irra-
diated CaF2 samples indicated that the produced nanodots 
predominantly consist of metallic Ca [21]. This observations 
suggested a depletion of fluorine, resulting in Ca colloids and 
were in good agreement with earlier transmission electron 
microscope measurements that showed the creation of inter-
mittent tracks, consisting of aligned anion voids (or rather cal-
cium inclusions) after irradiation with clusters of ions of a few 
tens of MeV [22]. The authors of [19] noted the limited spatial 
resolution of the AFM measurements of the tracks produced 
on CaF2 because of the tip radius (convolution) and prob-
lems arising from the reactivity of the samples under ambient 
conditions, which causes the formation of adsorbate islands 
around the surface tracks, which eventually cover the whole 
sample and make prolonged measurements difficult.

In this contribution we show that heating of the CaF2 sur-
face under vacuum conditions largely prevents adsorbate 
island formation under ambient conditions. Using an AFM 
instrument with superior resolution, we are able to reveal a 
more complicated track structure on CaF2 due to SHI impact 
than observed so far (section 3). To interpret our results we 
successfully apply a three dimensional extension of the two-
temperature-model (section 4).

2.  Experimental procedure

The irradiations have been performed at the IRRSUD 
beamline of GANIL, Caen, France. Ex situ cleaved CaF2 
(111) crystals (Crystec, Korth) have been irradiated with  

100∼  MeV 208Pb29+ (S 18e =  keV nm−1) or 95∼  MeV 
136Xe23+ (S 16e =  keV nm−1) under grazing angles of inci-
dence, with Se being the electronic stopping power calculated 
with SRIM [23]. The charge states of the used ions are close to 
the respective equilibrium charge states [24]. The targets were 
mounted on a vertical target holder, which could be rotated 
around the vertical axis by a stepping motor. The angle of inci-
dence, measured with respect to the surface plane, was varied 
between 0.3� and 3� with an accuracy of 0.2� [7]. In order 
to avoid overlapping of individual ion tracks an ion fluence 
between ×1 1010 ions cm−2 and ×5 1010 ions cm−2, depending 
on the incident angle, was chosen, leading to  ∼5 tracks  
per μm2. After irradiation the samples were immediately  
inspected with a VEECO NanoScope III atomic force micro-
scope in Caen. For more detailed investigation the samples 
were transferred to Vienna and studied with an Asylum 
Research Cypher Scanning Probe Microscope in tapping mode 
under ambient conditions. As probes, standard Si cantilevers 
OMCL-AC240TS-R3 (Olympus) with a resonance frequency 
of 70 kHz and a spring constant of 1.7 N m−1 were used. 
Since the observed tracks are a convolution between the real 
topography and the tip, the AFM images were first unfolded with 
the software WSxM [25] by assuming a tip radius of curvature of 
7 nm and afterwards evaluated with the software Gwyddion [26].

3.  Experimental results

The 3D plot of figure 1 shows the typical topography of a CaF2 
surface after swift heavy ion irradiation under grazing inci-
dence of 1.3�. It shows the creation of several parallel arranged 
tracks induced by individual ion impacts. The arrow indicates 
the direction of the incoming ions. The irradiation induced 
damage on CaF2 remarkably differs from the modification pre-
viously observed on other insulating materials (SrTiO3, TiO2, 
Al2O3, SiO2 [6, 7, 19]). The enlarged figure next to the 3D plot 
shows a detailed picture of one of the created tracks. At the 
impact site a  ∼400 nm long groove, bordered by a series of 
nanohillocks on both sides, is created. The end of the groove 
is marked by a single huge hillock which is followed by a 
protrusion of several 100 nm length. Longitudinal and cross 
profiles at various positions of the track enable the analysis 
of the height, depth and width of the created nanostructures, 
some examples are plotted in figure 1. The longitudinal pro-
file (a) through the center of the track shows the formation 
of a groove at the impact site with a depth of 1–2 nm, termi-
nated by a huge single hillock of 14 nm, which is followed by 
a decaying protrusion of some nm height. Profile (b) is shifted 
from the center towards one of the chains of the single nano-
hillocks. It shows a series of equally spaced nanodots with 
increasing height up to  ∼5 nm which eventually merge into 
the huge single nanodot at the end of the groove. The profile 
line to the right of this hillock demonstrates nicely the flatness 
of the CaF2 sample (RMS-roughness  =  0.15 nm). The cross 
sections (c) and (d) through the former part of the track show 
the formation of single nanodots on the right and left side of 
the groove with a distance of  ∼15 nm in between.

J. Phys.: Condens. Matter 28 (2016) 405001
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As mentioned before [19], AFM measurements on CaF2 
might be challenging due to the formation of adsorbate islands. 
Adsorption is enhanced in the vicinity of defects and tracks. 
Under UHV conditions the morphology of the surface is stable 
and does not change even after days [27]. However, in situ AFM 
measurements of irradiated samples are tedious and require 
dedicated equipment often not available at beamlines. During 
our measurements the adsorbate island formation with time was 
obvious. Figure 2(a) shows an unirradiated sample stored in air 
28 h after cleaving where the formation of these islands is clearly 
visible. Also on an irradiated sample (figure 2(b)) these islands 
are clearly visible some days after irradiation. When repeating 
the AFM measurements ten months later, roughly the whole 
sample is covered (figure 2(c)) by adsorbates. Nevertheless the 
ion induced nanotracks are still observable. In the course of our 
investigations we have found a surface preparation technique, 
which largely prevents the formation of these adsorbate islands. 

Heating the cleaved samples to 400 �C under high vacuum con-
ditions (10−6 mbar) for a prolonged time (several hours), seems 
to make the morphology of the surface stable even under subse-
quent exposition to air. Figures 2(d)–(f) show such a pretreated 
CaF2 surface before (d), some days (e) and 10 months (f) after 
irradiation at room temperature. A possible explanation for 
the stabilization of such pretreated surface is that at moderate 
temperatures up to 240 �C, defects like H and F centers dif-
fuse within the bulk towards the surface, leading there to flou-
rine desorption and F center aggregation into metallic colloids  
[28, 29]. The metallic colloids progressively oxidize or hydroxi-
lize by oxygen and water, therefore forming islands. By heating 
the crystal well above 250 �C, the evaporation temperature for 
calcium is surpassed, the surface metal (Ca colloids) is evapo-
rated and an inert and stoichiometric CaF2 surface is formed. 
On perfect CaF2 surfaces water molecules do not adsorb at 
room temperature [30].

Figure 1.  3D plot (upper left) of an AFM image of a CaF2 surface irradiated with 100∼  MeV Pb ions under �1.3  angle of incidence, 
showing a typical topography of CaF2 after individual SHI irradiation under grazing incidence. The white arrows indicate the direction 
of the incoming ions. The highlighted track is shown in more detail in the figure to the right. At the impact site a long groove bordered 
by series of nanohillocks is created. The end of the groove is marked by a single huge hillock, followed by a protrusion of several 100 nm 
length. The dashed lines in the gray image indicate where line profiles shown below have been taken. The longitudinal profiles (a) and  
(b) and the cross sections (c) and (d) show the size and shape of this single nanotrack (see text).

J. Phys.: Condens. Matter 28 (2016) 405001
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Although this is only a tentative explanation for the posi-
tive effect of sample heating on adsorbate island formation, 
we found that the surface morphology and the induced tracks 
remain stable over an extended period of time. Some proper-
ties, like the height and the volume of the single nanodots, 
may change slightly with time due to the variation of the sur-
face morphology and depend on the imaging mode as well, 
see [16]. But other properties such as the length of the groove 
or the length of subsequent track and the distance between the 
single nanodots of the chains remain the same and are there-
fore discussed in more detail in the next paragraph.

As reported previously for other materials like SrTiO3 [19, 27], 
also for CaF2 the length of the ion track can be controlled 
by varying the incident angle. As can be seen from figure 3  
both, the length of the groove as well as the length of the 
whole track (for definition see figure 1), follow the relation 
L d tan/ ( )α=  when varying the impact angle from 0.3 3⩽ ⩽α� � 
in our experiment. This relation is simply motivated by a geo-
metrical consideration, where L is the track/groove length and 
d the maximum depth from which this particular ion induced 
modification can still be detected at the surface. From such a 
fit the characteristic depth for the groove formation is evalu-
ated to be around d  =  4.8 nm while for the whole track length 
a value of d  =  10.6 nm is found. The single hillocks along the 

borders of the groove are periodically arranged and their dis-
tance also follows a similar a tan/ ( )α  relation with the value of 
a being close to the lattice constant of 5.462 Å (see figure 3).

4.  Discussion

The SHI induced damage created on CaF2, more precisely the 
created grooves surrounded by hillocks followed by a single 
protrusion, differs from the nanostructure formation on other 
materials. The chain of single nanodots on SrTiO3 and TiO2 
could be successfully interpreted as remnants of molten zones 
from rapidly quenched thermal spikes and the appearance of 
equidistant nanodots attributed to the fact that the ions cross 
regions with varying electron density [6]. Recently, for SrTiO3 
a so called rift directly in front of the hillock chain has been 
reported [31], similar to the rifts found in SiC [7]. In contrast 
to the case of CaF2, the rifts were not bordered by hillocks.

From our AFM measurements of CaF2, which show the 
formation of a deep groove with bordered hillocks along the 
impacting trajectory, we conclude that not only melting but 
also sublimation processes become relevant for this particular 
track formation. When a SHI with sufficient kinetic energy 
passes through material, several processes take place on 

Figure 2.  AFM images of unirradiated ((a) and (d)) and irradiated ((b), (c), (e) and (f)) CaF2 samples without pretreatment ((a)–(c)) and 
after pretreatment by heating to  �400 C before irradiation ((d)–(f)). The irradiations were performed with 95 MeV 136Xe23+ ions. While on 
the untreated samples the growing of adsorbate islands can be observed with time, the surface morphology of the heated samples seems to 
be stable for an extended period of time.
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different time scales: in the first fractions of a femtosecond 
the projectile energy is deposited into the electronic system by 
excitation and ionization processes, in the following several 
100 femtoseconds the energy dissipates from the electronic to 
the lattice system and in the next ten picoseconds (or more) 
target material is restructured due to lattice dynamics.

To check if and at which locations the lattice temperature 
of the irradiated CaF2 samples due to energy deposition of 
the incident ions actually surpasses the sublimation temper
ature necessary for groove formation, and where the melting 
temperature for hillock formation, calculations based on the 
two-temperature-model (TTM) [32, 33] have been performed. 
The TTM is based on two coupled heat diffusion equations, 
one for the electron and one for the phonon system, in which 
the electron–phonon coupling parameter g controls the energy 
transfer from the electronic to the lattice system. Since the 
irradiations have been performed under grazing angle of inci-
dence and the cylindrical symmetry assumed in the conven-
tional TTM is therefore broken, a fully three-dimensional 
version of the TTM had to be used [7, 34]. In order to compare 
our experimental data, we chose an incidence angle of 0.5� by 
setting up a simulation box with length x 3000box =  nm, width 
y 50box =  nm and depth z 50box =  nm. The simulation box is 
surrounded by a thermal bath with van Neumann boundary 
conditions for the surface. Inside the simulation box, the two 
equations

C T
T

t
r t T T r t

g T r t T r t S r t

C T
T
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r t T T r t

g T r t T r t
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, , ,
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e e e
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p
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( ( ) ( ))

→ →

→ → →

→ →

→ →

are solved. The subscripts e and p refer to electron and 
phonon quantities, respectively. T r t,( )→  are the temperatures, 

C(T ) and T( )κ  are the heat capacity and thermal conductivity, 
respectively. For the lattice as well as for the electrons we 
use the relation κ= ×D C with D being the diffusivity. For 
the phonons pκ  can then be calculated from ×D Cp  with a 
constant lattice diffusion of D 0.368p =  Å

2
 fs−1. For the elec-

trons we assume that the passing ion will on average excite 
one electron per CaF2 molecule into the conduction band of 
CaF2 with a mean free path of 10eλ =  Å. Based on the free 
electron gas, we can calculate the electron density and the 
Fermi velocity v h mF e F/( )λ= , respectively. The electronic 
heat capacity can then be calculated with the diffusivity given 
by D v1 3e e F/ λ= . The electron–phonon-coupling constant 
g 1.2 1019= ×  J (sm3K)−1 was calculated from the bandgap 
of CaF2 with a value of 11.8 eV. For the source term S r t,( )→  we  
used the expression of Waligorski [35] using a mean  
ionization potential of 0.137 keV corresponding to the stoichi-
ometry of CaF2.

The calculations provide a temperature profile of the sur-
face and the bulk of CaF2 after SHI impact under grazing 
incidence. Figure  4 shows the top-view and side-view of 
the sample temperature 100 fs and 1 ps after ion impact, 
respectively. The highlighted temperatures of 1691 K and 
2806 K mark the region in which the melting and the sub-
limation temperature of CaF2 is surpassed. To compare the 
results of the simulation with our experimental findings,  
calculations under different incident angles have been exe-
cuted. The extension of the surface region, where the subli-
mation/melting temperature of CaF2 is surpassed, is compared 
with the experimental values found for the groove and track 
length respectively. In figure 3 both, the experimental and the 
simulation results are compared. While the experimental and 
simulated data for the total track length are in good agreement, 
the simulation data overestimate the groove length. This could 
be due to the omission of the latent heat from the calculation 
or the rather asymmetric track formation. At the ‘impact site’ 
the target atoms gain enough energy to be ejected from the 

Figure 3.  Left figure: measured length of groove (orange data points) and length of the whole track (blue data points) as a function of  
the incidence angle for irradiation with ∼95 MeV Xe23+ ions. The dashed lines show the results of the 3D-TTM calculation (see text).  
The experimental groove lengths are compared to the calculated values of the extension of the surface region where the sublimation 
temperature is surpassed, while the measured track lengths are compared to the regions where the melting temperature is reached.  
Right figure: experimentally determined distance (gray data points) between the periodically arranged single nanodots of a chain (see 
figure 1, in particular the longitudinal profiles (a) and (b) bordering the groove). The experimental data follow the relation / ( )αa tan  with a 
being close to the lattice constant 5.462 Å (gray dashed line).
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surface. Sublimation leads to groove formation. Around the 
hot zone, where only the melting temperature is surpassed, 
melting, followed by thermal expansion and rapid quenching, 
leads to hillock formation. As stated for other materials [6, 20], 
the creation of a chain of nano-sized hillocks during SHI irra-
diation at grazing angles of incidence is coupled to the spa-
tially inhomogeneous electron density of the material. Every 
time the projectile travels through a region of high electronic 
density, energy can effectively be deposited into the electronic 
system. Since the electron density corresponds to the perio-
dicity of the crystal, the formation of equidistant hillocks has 
to be expected.

The deeper the ions penetrate the bulk, the less target 
atoms can leave the surface. More deeper layers are molten 
and push material towards the surface, thus filling the initial 
groove with material. An increase of the hillock height, sur-
rounding the hot zone, is visible which eventually combine 
to one single huge hillock. Further penetration of the swift 
projectile into deeper layers of the target is accompanied by 
a single long protrusion from the (quenched) thermal expan-
sion, which slowly fades until the track vanishes. As a further 
agreement between measurements and simulation we note 
that the distance D between the two chains of hillocks (for 
details see figure 1) corresponds well with the calculated lat-
eral extension of the melt zone of  ∼10–15 nm (see top view 
images of figure 4 and also [36]).

The simulations therefore show that target regions in 
which the sublimation and melting temperature of CaF2 is 
surpassed, are of comparable dimension as the observed 
tracks. Similar nanostructures were also observed on other 
materials [19], but due to the lack of detailed imaging no 
reliable explanation could be given. The next step will 
be to check the hypothesis by performing irradiations of 
other materials with SHI and comparing the found nano-
structures with the calculated temperatures in the locally 
heated areas.

5.  Conclusion

We have shown that SHI irradiation of CaF2 leads to a com-
plex form of ion tracks consisting of a long groove bordered 
by chains of equally spaced nanodots eventually followed 
by a single chain of unseparated nanodots with a single high 
hillock at the beginning. The length of the groove as well as 
the length of the whole nanotrack can be controlled by varying 
the angle of incidence. The assumption that the grooves and 
the surrounding hillocks are induced by sublimation and 
melting processes, respectively, and the following chains are 
created by molten material from deeper layers pushed towards 
the surface, is supported by 3D-TTM calculations. Further 
investigations by experiments and simulations promise a 
deeper understanding of the fundamental mechanism of ion-
solid interaction processes as well as control over the produc-
tion of this complex form of nanostructure.
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