
HAL Id: hal-03184626
https://normandie-univ.hal.science/hal-03184626

Submitted on 13 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

LANS-α turbulence modeling for coastal sea: An
application to Alderney Race

Anne-Claire Bennis, Feddy Adong, Martial Boutet, Franck Dumas

To cite this version:
Anne-Claire Bennis, Feddy Adong, Martial Boutet, Franck Dumas. LANS-α turbulence modeling
for coastal sea: An application to Alderney Race. Journal of Computational Physics, 2021, 432,
pp.110155. �10.1016/j.jcp.2021.110155�. �hal-03184626�

https://normandie-univ.hal.science/hal-03184626
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

LANS-α turbulence modeling for coastal sea: an application to Alderney Race

A.-C. Bennis 1a, F. Adonga, M. Bouteta, F. Dumasb

aNormandie Univ., UNICAEN, CNRS, UNIROUEN, Morphodynamique Continentale et Côtière (M2C), Caen, France
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A R T I C L E I N F O
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A B S T R A C T

The Lagrangian-Averaged Navier-Stokes-α (LANS-α) turbulence model was
implemented for the first time in a coastal hydrodynamic model. We present in
this paper the details of the implementation, as well as the difficulties encoun-
tered. To overcome the difficulties, a convolution filter was used instead of
the Helmoltz operator, and incompressibility was imposed in both rough and
smooth velocities. The results of the second numerical implementation were
tested against the results of simulations without LANS-α for a realistic appli-
cation showing the tidal dynamic in Alderney Race, Normandy, France, which
has the strongest currents in western Europe. The behavior of LANS-α is con-
sistent with the conclusions of former studies, which supports our results. The
findings are: i) LANS-α re-energizes the flow recovering higher-resolution
turbulence statistics in lower-resolution simulations, leading to 30% savings
in computing time, ii) LANS-α produces the two kinds of inertial range for
barotropic turbulence, with turbulent energy decays in k−5/3 and in k−3 (k be-
ing the wave number) and iii) LANS-α strongly characterizes the turbulence
induced by deformation. In the future, these results need to be compared to
measurements and to other turbulence modeling approaches, including dissi-
pative LES or DNS, to evaluate their relevance for the community.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction1

Turbulence plays a major role in ocean circulation, in particular fostering mixing and kinetic energy dissipation.2

The swirling motion of eddies transports water, heat, salt, and other chemicals over long distances and helps promote3

large-scale mixing of the ocean [e.g. 27]. Eddies also promote the rise of nutrients to the surface, which are normally4

found in colder and deeper waters [e.g. 28].5

The full range of oceanic turbulent structures may be captured using direct numerical simulation (DNS), which6

consists in solving the full Navier-Stokes equations. This method ensures that the main features of the turbulence,7
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including eddy sizes, vorticity, circulation and nonlinear convection, are known but requires very fine spatial resolution8

to capture all characteristics of the turbulence. The smallest mesh cell needs to be smaller than the Kolmogorov scale,9

varying in both time and space. To date, the use of DNS for realistic coastal applications has been impractical due to10

large computational costs inherent to the very fine resolution. To overcome this, turbulence models must be introduced11

to capture the unrepresented effects occurring below the available resolution of numerical simulations. This therefore12

entails mimicking the effects of the smaller scales on the larger scales without explicitly calculating them. This is13

usually achieved by introducing a statistical averaging procedure, leading to the Reynolds-averaged Navier-Stokes14

(RANS) equations or by separating the spatial scales, which leads to the large eddy simulation (LES) equations. Both15

equation sets generate unclosed terms which are generally modeled with a dissipative approach, usually based on a16

turbulent viscosity. These approaches are well founded, since the role of the small scales, which are being modeled,17

is to remove the energy generated through nonlinear interactions of the larger scales that are explicitly computed.18

However, flow variability is also caused by nonlinear interactions of small-scale motions together while being swept19

along by the larger motions. Thus, the potential danger of enhancing viscous dissipation is that we lose the energy20

and information from the smaller scales and produce, as a result, unrealistically and inaccurately low variability.21

The LANS-α model is a non-dissipative approach that modifies nonlinearity to alter energy transfer among scales,22

thereby providing an alternative method to reach closure without enhancing viscosity. The main feature of LANS-α23

regularization is to convect the flow with a smoothed velocity ~u leading to a reduction in the nonlinear effects by a24

magnitude governed by the smoothing properties. Note that the LANS-α equations can be rewritten in the classic LES25

framework with an explicit expression of the subgrid scale stress [more details in 11] and can therefore be interpreted26

as part of the LES methods. LANS-α has been implemented in the POP ocean model and applied to the circulation of27

the Atlantic Ocean, as well as to the motion of the circumpolar current [12, 25, 13]. The experiments of [12] and [25]28

showed remarkable energization of the eddy and mean kinetic energy fields equivalent to twice the model resolution.29

This aspect of LANS-α is especially interesting for coastal modeling. However, POP-α is not used for the moment30

due to unresolved numerical stability issues.31

Many scientists, fishermen and sailors have reported the existence of highly energetic turbulent cells in Alderney32

Race, France. In the last few years, efforts to develop marine renewable energy have enabled the scientific community33

to characterize and modelize its turbulent activity. In-situ measurements [9, 26] over one year have revealed that high34

turbulent activity is present in Alderney Race, inducing significant changes in velocity magnitude and direction within35

a few seconds. Acoustic Doppler current profiler recordings showed the three-dimensional nature of the turbulent36

cells. In parallel, numerical modeling at local and regional scales was performed using the lattice Boltzmann method37

and classical LES [22, 6]. The authors concluded that the rough sea bottom of Alderney Race is the likely reason for38

ejection of the turbulent cells. The present study is a follow-up to these earlier studies by implementing and assessing39

the performance of the LANS-α turbulence model applied to Alderney Race.40

After an introduction, the methodology is described in Section 2 with information on the coastal numerical model41

and on implementation of the LANS-α turbulence model. The LANS-α momentum equations, the smoothing proce-42

dure and the modified numerical algorithm are detailed. Section 3 presents Alderney Race and its mean particularities,43

as well as the numerical configuration, settings and results. The latter are discussed in terms of the impact of spatial44

resolution, turbulence energy decay and bottom-induced turbulence. Lastly, Section 4 presents the conclusions of the45

study and future prospects.46

2. Methodology47

2.1. The Coastal Numerical Model48

The coastal numerical model used in the study was the Model for Applications at Regional Scales (MARS)49

[16]. MARS solves the three-dimensional primitive equations using incompressible, Boussinesq and hydrostatic50

assumptions. The equations are written in the framework of the terrain following σ coordinate:51

σ =
z − η
η + H

, −1 ≤ σ ≤ 0, (1)52

where η is the free surface elevation, H is the water depth corresponding to the bathymetric absolute value of53

bottom position and z is the vertical coordinate. The governing equations are in the (x, y, σ, t) spatio-temporal frame-54
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work:55

∂vx

∂t
+ g

∂η

∂x
= Gx +

1
D2

∂

∂σ

(
νV
∂vx

∂σ

)
, (2)56

∂vy

∂t
+ g

∂η

∂y
= Gy +

1
D2

∂

∂σ

(
νV
∂vy

∂σ

)
, (3)57

1
D
∂p
∂σ

= −ρg, (4)58

∂η

∂t
+ ∇ · (Dv) +

∂ṽσ
∂σ

= 0, (5)59

where V = (vx, vy, vσ) = (v, vσ) is the fluid velocity vector, p is the fluid pressure, ∇ is the horizontal gradient, ρ is the60

density, g is gravitational acceleration, D = H + η is the depth and νV the vertical turbulent viscosity. G = (Gx,Gy)61

are the x and y components of the baroclinic momentum term incorporating advective terms, Coriolis forcing, surface62

and internal pressure gradient and horizontal eddy viscosity:63

G = −L(v, ṽσ) + f × v −
1
ρ0
∇Pa +Π +DH(v), (6)64

where ρ0 is the seawater reference density, f is the Coriolis parameter, DH(v) = νH∆v is the horizontal diffusion65

operator, νH is the horizontal turbulent viscosity, Pa is the atmospheric pressure at sea surface, Π is the internal66

pressure gradient [16]. ṽσ is the vertical velocity in the sigma coordinate framework:67

ṽσ =
1
D

(
vσ −

∂z
∂t
− vx

∂z
∂x
− vy

∂z
∂y

)
, (7)68

and the non-linear operator L used to compute the advective term is defined as:69

L(v, ṽσ) = vx
∂v
∂x

+ vy
∂v
∂y

+ ṽσ
∂v
∂σ

. (8)70

Horizontal viscosity, acting on the horizontal diffusion operator, is assessed according to Okubo [24]:71

νH = 0.01 × fvisc × ∆1.15
H , (9)72

where ∆H is the horizontal mesh size and fvisc is a user coefficient. The vertical mixing term νV is calculated using73

the well-known turbulent closure K − ε modified according to [30] and based on the generic length scale approach74

[29].75

The barotropic formulation is obtained by integrating Eq. (2)-(5) from the bottom (σ = −1) to the surface (σ = 0)76

and considering kinematic boundary conditions. Barotropic and barocline modes are coupled and the solving algo-77

rithm was modified to the LANS-α set-up (see Section 2.2.5 for additional information). MARS uses finite differences78

to discretize the primitive equations, and Alternate Direction Implicit (ADI) scheme for the time stepping [16]. This79

procedure ensures a high numerical stability by removing the numerical constraints imposed by the Courant-Friedrich-80

Lewy criteria. The ADI scheme splits the time step into two parts: the first half time devoted to the computation of81

predictor fields, and the second half time where the latter are corrected. This scheme is only implicit with respect to82

the direction of the computation, leading to computation of the free surface elevation at every half time step, whereas83

the baroclinic and barotropic velocities are calculated alternatively.84

2.2. Implementation of the LANS-α Turbulence Model85

2.2.1. The LANS-α Primitive Equations86

Our implementation of LANS-α in MARS is based on the following primitive-equation form presented in [12]:87

∂v
∂t

+ u · ∇v + uz
∂vz

∂z
+

[
∇uT · (v − u) − α2∇(|∇u|2)/2

]︸                                  ︷︷                                  ︸
LANS terms

−f × u = −
1
ρ0
∇p +DH(v) +

∂

∂z

(
ν
∂v
∂z

)
, (10)88

∂p
∂z

= −ρg, (11)89

u − α2∆u = v, (12)90

∇ · u +
∂uz

∂z
= 0, (13)91
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in which two velocities appear (vx, vy, vz) = (v, vz) and (ux, uy, uz) = (u, uz), which are related by the Helmholtz92

operator in Eq. (12). In this formulation, the small-scales structures in the rough velocity (vx, vy, vz) are advected by93

the smooth velocity (ux, uy, uz). The α parameter in Eq. (12) is the smoothing length scale, also called the filter width,94

acting on the rough velocity, which specifies the degree of smoothing. The additional non-linear term labeled ”LANS95

terms” is necessary to ensure Kelvin’s circulation theorem. The Eq. (10)-(13) uses incompressible, Boussinesq and96

hydrostatic assumptions, as in the initial MARS model. The Eq. (11) is a simplified form of the z-component of97

the momentum equation due to the hydrostatic assumption. The Eq. (13) is the mass conservation equation for an98

incompressible fluid, which is applied to the smooth velocity.99

Using this form, it is clear that for α −→ 0, the set of equations (10)-(13) reverts back to the standard primitive100

equations solved by MARS. Note that to recover the form presented in [12], where the LANS-α contribution is101

∇uT · v, it is necessary to develop the extra non-linear term using the identity ∇uT · u = ∇
(
|u|2

)
/2 and include the102

term −∇
(
|u|2

)
/2 − α2∇(|∇u|2)/2 into the definition of the pressure.103

2.2.2. Smoothing Procedure104

As described previously, MARS is a semi-implicit code coupling barotropic and baroclinic velocity fields through105

a predictor-corrector procedure. However, this approach requires smoothing of the velocity during both the predictor106

and corrector steps, which increases computational time. To overcome this difficulty, smoothing is computed by a107

convolution filter that has the same effects as the Helmholtz operator with a smaller computational form [e.g. 25]. In108

the discrete form, the rough and smooth fluid velocities are related by:109

u[i, j] = (v ∗ Kα) [i, j] =

fw∑
l=−fw

fw∑
m=−fw

wα[l,m]v[i − l, j − m], (14)110

where Kα is the convolution kernel, wα represents the filter weights and fw is the half stencil size used during the111

weighted average procedure. The filter weights of the used 2D 7-point filter are listed in Table 1.112

Table 1. Weights of the 2D 7-point filter from [25].

j+3 0.12 0.14 0.16 0.35 0.16 0.14 0.12
j+2 0.14 0.16 0.18 0.40 0.18 0.16 0.14
j+1 0.16 0.18 0.20 0.45 0.20 0.18 0.16

j 0.35 0.40 0.45 1.00 0.45 0.40 0.35
j-1 0.16 0.18 0.20 0.45 0.20 0.18 0.16
j-2 0.14 0.16 0.18 0.40 0.18 0.16 0.14
j-3 0.12 0.14 0.16 0.35 0.16 0.14 0.12

i-3 i-2 i-1 i i+1 i+2 i+3

When smoothing is performed with the Helmholtz operator, enforcing the incompressibility on the smooth veloc-113

ity is sufficient to also ensure incompressibility on the rough velocity. However, this property is clearly not suitable114

when the weighted averaged procedure is employed. For this reason, we imposed the incompressibility in both the115

smooth and rough velocities, which requires addition of the following equation to the set of equations (10)-(13):116

∇ · v +
∂vz

∂z
= 0. (15)117
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2.2.3. Sigma Coordinates Framework118

Implementation of LANS-α in MARS (hereafter noted MARS-α) is ensured by rewriting the set of equations119

(10)-(13) and Eq. (15) in vertical σ coordinate framework, such that:120

∂vx

∂t
+ g

∂η

∂x
= Gαx+

1
D2

∂

∂σ

(
νV
∂vx

∂σ

)
, (16)121

∂vy

∂t
+ g

∂η

∂x
= Gαy+

1
D2

∂

∂σ

(
νV
∂vy

∂σ

)
, (17)122

1
D
∂p
∂σ

= −ρg, (18)123

∂η

∂t
+ ∇ ·

[
D (γRv + γS u)

]
+
∂
[
γRṽσ + γS ũσ

]
∂σ

= 0. (19)124

where the γR parameter is used to determine whether both u and v are non-divergent (γR = 0.5) or only one of the two125

is non-divergent (γR = 1 for v and γR = 0 for u ). In the work presented here, γR = 0.5 was chosen because of the126

smoothing procedure such that ∇ · v is not always equal to zero if only u is defined as a non-divergent field.127

ũσ is the vertical smooth velocity in the sigma coordinate framework given by:128

ũσ =
1
D

(
uσ −

∂z
∂t
− ux

∂z
∂x
− uy

∂z
∂y

)
, (20)129

and Gα = (Gαx,Gαy) are the x and y components of the baroclinic LANS-αmomentum forcing terms:130

Gα = −Lα(v, ṽσ) − Nα(u) − f × u −
1
ρ0
∇Pa +Π +DH(v). (21)131

The non-linear operator Lα is now based on the smooth velocity advection:132

Lα(u, v) = ux
∂v
∂x

+ uy
∂v
∂y

+ ũσ
∂v
∂σ

, (22)133

and the additional non-linear term begins:134

Nα(u, v) =
[
∇uT · (v − u) − α2∇(|∇u|2)/2

]
−

1
D
∇z · (v − u)

∂u
∂σ

, (23)135

where we have neglected all contributions from order α2/D2. The solving algorithm implemented in MARS136

requires simultaneously solving barotropic (vertically integrated 2D) and baroclinic (remaining 3D) velocity, leading137

to the construction of a specific MARS-α barotropic model.138

2.2.4. MARS-α Barotropic Model139

The MARS-α barotropic formulation is obtained by integrating Eq. (10)-(13) over the vertical from the bottom140

(σ = −1) to the surface (σ = 0) and considering kinematic boundary conditions. It yields the following set of141

equations:142

∂v̄x

∂t
+ g

∂η

∂x
= Ḡαx+

τS x

ρD
−
τBx

ρD
, (24)143

∂v̄y

∂t
+ g

∂η

∂y
= Ḡαy+

τS y

ρD
−
τBy

ρD
, (25)144

∂η

∂t
+ ∇ ·

[
D (γRv̄ + γS ū)

]
= 0, (26)145

where τS = (τS x, τS y) and τB = (τBx, τBy) are the surface and bottom stress, respectively. ū = (ūx, ūy) is the smooth146

barotropic velocity vector defined as:147

ū =

∫ 1

0
udσ, (27)148

and Ḡα is the vertically integrated baroclinic momentum LANS-α forcing terms:149

Ḡα =

∫ 1

0

(
−

1
ρ0
∇Pa +Π +DH(v) − Lα(u, v) − Nα(u, v) − f × u

)
dσ. (28)150



6 A.-C. Bennis etal / Journal of Computational Physics (2021)

2.2.5. MARS-α Solving Algorithm151

The MARS-alpha solving algorithm is the adaptation of the MARS algorithm to the augmentation with the LANS-152

alpha turbulence model. When MARS is modified to use the LANS-alpha model, the following changes are required:153

(i) there are two full velocity fields to consider, the rough velocity v, and the smooth velocity u; (ii) likewise, there154

are smooth and rough barotropic velocities, ū and v̄; (iii) the momentum forcing term must be modified with the155

use of appropriate velocities in the nonlinear and Coriolis terms and the addition of the nonlinear term Nα(u, v); (iv)156

the continuity equation becomes Eq. (19) with u and v that are non-divergent. Because the time derivative in the157

MARS-α baroclinic momentum equation is applied to the rough velocity v, one must take a time step in v and then158

compute u by smoothing each vertical level. The barotropic-baroclinic coupling implies to simultaneously solve the159

2D and 3D systems of equations. A predictor-corrector algorithm is used and the time step is splitted into two parts:160

a first estimate of the solution is computed during the first half time step (predictor phase) and then this estimate is161

corrected during the second half time step (corrector phase). Each phase of the predictor-corrector algorithm contains162

two steps, one for each component (see Fig. 1).163

Only steps 1 and 4 related to the x-components are detailed hereafter. Similar treatments being provided for the164

y-components, steps 2 and 3 are shown in Appendix A.1 and A.2, respectively. Note that the MARS-α algorithm de-165

scribed in this section uses an explicit bottom friction term because the semi-implicit version has introduced additional166

complications. The boxes indicate additional steps introduced by the smoothing operator.167

Fig. 1. Description of the MARS-α solving algorithm.

Predictor phase.168

Step1: Barotropic part of the x-components: compute ηn+1/2,∗, v̄n+1/2
x and ūn+1/2

x by solving the following coupled169

system170

v̄n+1/2
x + θN

g∆t
2
∂ηn+1/2,∗

∂x
= v̄n

x +
∆t
2

(
Ḡn
αx +

τn
S x

ρDn
x
− ftvn

Bx − θPg
∂ηn

∂x

)
, (29)

ηn+1/2,∗ +
∆t
2
∂

∂x

[
Dn

x

(
γRv̄n+1/2

x + γS ūn+1/2
x

)]
= ηn −

∆t
2
∂

∂y

[
Dn

y

(
γRv̄n+1/2,∗

y + γS ūn+1/2,∗
y

)]
, (30)

where θN = 0.55, θP = 0.45, ∆t is the time step, vBx is the x-component of the rough velocity at the bottom and ft is171

the bottom friction coefficient which is a function of drag coefficient, bottom velocity, depth and half time step.172

173
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v̄n+1/2,∗
y is estimated by an implicit discretization of (24) and ūn+1/2,∗

y by smoothing v̄n+1/2,∗
y :174

v̄n+1/2,∗
y = v̄n

y +
∆t
2

(
Ḡn
αy +

τn
S y

ρDn
x
−
τn

By

ρDn
x
− g

∂ηn

∂y

)
. (31)

ūn+1/2,∗
y = Kα ∗ v̄n+1/2,∗

y (32)

Baroclinic part of the x-components: compute vn+1/2
x by solving the following equation (where k are the indices175

of the sigma vertical levels. uxk and vxk represent the x-component of the smooth and the rough velocity for a given k176

index, respectively.)177

vn+1/2
x −

∆t
2

∂

∂σ

 νV

(Dn
x)2

∂vn+1/2
x

∂σ

 = vn
x + ∆t

2

(
Gn
αx − g

∂ηn

∂x

)
. (33)

un+1/2
xk =

(
Kα ∗ vn+1/2

xk

)
, k = 1, · · · , kmax (34)

Corrector phase.178

Step 4: Barotropic part of the x-components: compute ηn+1, v̄n+1
x and ūn+1

x by solving the following coupled sys-179

tem180

v̄n+1
x + θN

g∆t
2
∂ηn+1

∂x
= v̄n+1/2

x +
∆t
2

Ḡn+1/2
αx +

τn+1/2
S x

ρDn+1,∗
x


−

∆t
2

(
ftv

n+1/2
Bx + θPg

∂ηn+1,∗

∂x

)
, (35)

ηn+1 +
∆t
2
∂

∂x

[
Dn+1,∗

x

(
γRv̄n+1/2

x + γS ūn+1/2
x

)]
= ηn+1,∗ −

∆t
2
∂

∂y

(
Dn+1,∗

y γRv̄n+1,∗
y

)
−

∆t
2
∂

∂y

(
Dn+1,∗

y γS ūn+1,∗
y

)
, (36)

where v̄n+1,∗
y and ūn+1,∗

y are estimated as:181

v̄n+1,∗
y = v̄n+1/2

y +
∆t
2

Ḡn+1/2
αy +

τn+1/2
S y

ρDn+1,∗
y

−
τn+1/2

By

ρDn+1,∗
y

− g
∂ηn+1/2

∂y

 . (37)

ūn+1,∗
y = Kα ∗ v̄n+1,∗

y (38)

Baroclinic part of the x-components: compute vn+1
x by solving the following equation182

vn+1
x −

∆t
2

∂

∂σ

 νV(
Dn+1

x

)2

∂vn+1
x

∂σ

 = vn+1/2
x + ∆t

2

(
Gn+1/2
αx − g

∂ηn+1/2

∂x

)
. (39)

un+1
xk =

(
Kα ∗ vn+1

xk

)
, k = 1, · · · , kmax (40)
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2.3. Numerical Implementation and Practical Considerations183

2.3.1. Computation of Barotropic Components184

Computation of the barotropic components in each step is the most difficult part of implementation of the MARS-185

α algorithm. In the following, we focus on Step 1 (ie. computation of the sea surface height and of the x-component186

velocities for the predictor phase), however the other steps are treated in similar fashion. To review this difficulty in187

more detail, we need to review the computation of the barotropic components. In the MARS model, the algorithm188

for solving the barotropic components consists in substituting the equation of momentum in the continuity equation189

to obtain an implicit equation for the time evolution of sea surface height, and then explicitly inferring barotropic190

velocity from the sea surface height. The resulting equation for the sea surface height is:191

ηn+1/2,∗ − gθN

(
∆t
2

)2
∂

∂x

(
Dn

xbv
∂ηn+1/2,∗

∂x

)
= Yxe −

∆t
2
∂

∂x
(
Dn

xbvYv
)

(41)192

v̄n+1/2
x = bv

(
Yv − θN

g∆t
2
∂ηn+1/2,∗

∂x

)
(42)193

with194

Yv = v̄n
x +

∆t
2

(
Ḡn

x +
τn

S x

ρDn
x
− ft

(
vn

Bx − βv̄n
x
)
− θPg

∂ηn

∂x

)
,195

Yxe = ηn −
∆t
2
∂

∂y

(
Dn

xv̄n+1/2,∗
y

)
,196

bv =
1

(1 + βft)
. (43)197

At that point, the right-hand side of Eq. (41) is known, which leads to a tridiagonal matrix system solved using LU198

factorization. The velocity v̄n+1/2
x is then deduced explicitly from Eq. (42) after resolution of Eq. (41).199

Similarly, to solve Eq. (29) for v̄n+1/2
x , ūn+1/2

x , and ηn+1/2,∗, we need to replace v̄n+1/2
x and ūn+1/2

x into Eq. (30),200

where ūn+1/2
x is obtained by application of the smoothing operator into Eq. (29), such that:201

v̄n+1/2
x = Yvα − θN

g∆t
2
∂ηn+1/2,∗

∂x
, (44)202

ūn+1/2
x = Yvsα − θN

g∆t
2

(
∂ηn+1/2,∗

∂x

)
∗ Kα, (45)203

where:204

Yvα = v̄n
x +

∆t
2

(
Ḡn
αx +

τn
S x

ρDn
x
− ftvn

Bx − θPg
∂ηn

∂x

)
and Yvsα = Yvα ∗ Kα. (46)205

Here we now obtain a semi-implicit formulation by rewriting Eq. (44) as:206

(1 + ft) v̄n+1/2
x = Yvα + ftv̄n

x − θN
g∆t
2
∂ηn+1/2,∗

∂x
, (47)207

(1 + ft) ūn+1/2
x = Yvsα + ftūn

x − θN
g∆t
2

(
∂ηn+1/2,∗

∂x

)
∗ Kα. (48)208

The sea surface height equation in the Step1 of the MARS-α algorithm is built by substituting Eq. (47) into Eq. (30)209

ηn+1/2,∗ − gθN

(
∆t
2

)2 [
γR

∂

∂x

(
Dn

xbv
∂ηn+1/2,∗

∂x

)
+ γS

∂

∂x

(
Dn

xbv
∂ηn+1/2,∗

∂x

)
∗ Kα

]
210

= Yxeα −
∆t
2
∂

∂x

(
Dn

xbvYvγ
)
, (49)211
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where:212

Yxeα = ηn −
∆t
2
∂

∂y

[
Dn

y

(
γRv̄n+1/2,∗

y + γS ūn+1/2,∗
y

)]
, (50)213

Yvγ = γR
(
Yvα + ftv̄n

x
)

+ γS
(
Yvsα + ftūn

x
)
. (51)214

The matrix system formed by Eq. (49) can be solved using an iterative conjugate gradient routine, with smoothing215

within each iteration [12]. In such case, the computing cost is high, because a similar system needs to be solved at216

each time step. In addition, in this exact derivation, the interest of using the ADI scheme is lost since the tridiagonal217

linear system is solved along the direction of computation. Following the work of [12], we have designed a reduced218

algorithm by neglecting the smoothing step on the left-hand side of Eq. (49), leading to the following algorithm:219

ηn+1/2,∗ − gθN

(
∆t
2

)2
∂

∂x

(
Dn

xbv
∂ηn+1/2,∗

∂x

)
= Yxeα −

∆t
2
∂

∂x

(
Dn

xbvYvγ
)
, (52)220

v̄n+1/2
x = bv

(
Yvα + ftv̄n

x − θN
g∆t
2
∂ηn+1/2,∗

∂x

)
, (53)221

ūn+1/2
x = bv

(
Yvsα + ftūn

x − θN
g∆t
2
∂ηn+1/2,∗

∂x

)
. (54)222

This reduced algorithm uses only a single smoothing step, which is in the calculation of Yvγ in Eq. (51). Two223

additional equations were added to the original MARS algorithm (41): the computation of Yvsα in Eq. (46) and the224

final smooth velocity in Eq. (54).225

2.3.2. Diffusion Operator226

Although LANS-α is based on modification of the nonlinear terms without introducing viscous dissipation, in227

practice, the use of an artificial viscosity is still necessary to remove energy near the grid scale in order to avoid228

numerical instabilities. In addition, LANS-α, as presented in this paper, mainly concerns the modeling of the effects229

of horizontal eddies, does not replace vertical mixing parameterization and can be activated at the same time [12, 13].230

2.3.3. Numerical stability231

The implementation of LANS-alpha is not straightforward and the classical solving algorithms have been signif-232

icantly modified. This can lead to numerical instability issues as reported by the LANL group. Our code is stable233

for 5-, 7-, 9-point filters and for all spatial resolutions (600m, 120m and 30m). However, instabilities were occurred234

as expected. The necessary changes to remove them are detailed below. First, instabilities due to the non-divergence235

of the rough velocity, which was not respected with the discrete filter, have been made our code unstable. We had to236

impose a non-divergence condition to the rough velocity to stabilize the code. Second, instabilities have been gener-237

ated near boundaries. A modification of the width of the filter, according to the number of neighbouring wet cells, has238

eliminated this problem. Third, numerical instabilities were produced when the starting simulation time is the time of239

the maximum velocity because of the extreme values of the tidal current (up to 5 m/s) in Alderney Race. By postpon-240

ing one hour the beginning of the simulation, instabilities were suppressed. Finally, the semi-implicit computation of241

the bottom friction coefficient (ft) performed by default in MARS has induced instabilities and we had to disable it to242

address this issue.243

3. Case Study: Study Site and Numerical Configuration244

Our implementation of LANS-α has already tested against the results of [12] for the idealized test case of a245

wind-driven flow over a seamount [1]. We therefore present here the realistic case of Alderney Race.246
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3.1. Alderney Race247

The turbulence model assessment was performed for Alderney Race, which is in the middle of the English Chan-248

nel, between La Hague Cape and Alderney Island (see Fig. 2). Alderney Race is a coastal area that ranges in depth249

from 20 to 60 meters and is a mega-tidal environment where the tidal range can reach 10 meters. The hydrodynam-250

ics are mainly driven by semi-diurnal tides, generating an oscillating current, the direction of which varies between251

north-east and south-west during the flood and the ebb, respectively. Ocean waves (swell- and wind-waves) propagate252

through Alderney Race and interact with tidal flow [4, 5]. Narrowing caused by the presence of Alderney Island253

accelerates the tidal current, which peaks 5 m/s during spring tides, making it the most energetic tidal site in Western254

Europe. This is a strategic issue for tidal energy companies, and it is therefore essential for them to properly under-255

stand the complex hydrodynamics of Alderney Race. Tidal hydrodynamics have long been studied and are reasonably256

well simulated by numerical models [e.g. 2]. The impacts of wave-current interactions on the tidal stream energy are257

the subject of in-depth studies [e.g. 19, 4, 5]. Turbulence is also a key parameter for the tidal industry and is the focus258

of our paper. Three-dimensional turbulent structures with characteristic lengths of a few tens of meters have been259

observed and are highly energetic and intermittent. The origin of the turbulence is not fully understood at present due260

to the highly complex environment of Alderney Race. Recent works [22, 6] suggest that the turbulent structures are261

ejected from the sea bottom to the sea surface. Indeed, the sea bottom is very rough and uneven with diverse features262

including rocks, faults, folds, sand patches, pebbles and dune fields [more details in 10]. Marked turbulent activity263

is produced when the strong tidal current interacts with such features [22]. In the following sections, we focus on a264

small portion of Alderney Race where severe bathymetric gradients are present.265

3.2. Numerical Configuration and Settings266

The computational domain was composed of three nested grids, the horizontal resolution of which is respectively267

600 m, 120 m and 30 m, which are hereafter named Rank0, Rank1 and Rank2 (see Fig. 2). For all three grids,268

20 sigma levels, evenly distributed over the vertical, were used. The simulations were performed using the fine269

bathymetry described in [10] for two days, i.e. 29-30 September 2017. These two days of neap tide were chosen270

because of the availability of in-situ data, that will be used in the future for comparison. Tides were generated using271

the tidal components atlas of the Service Hydrographique et Océanographique de la Marine (SHOM) [18] imposed272

at the open boundaries of Rank0. The Rank0 numerical outputs, i.e. flow velocity and sea surface height, were used273

to force the hydrodynamics at the boundaries of Rank1, and the Rank1 outputs to force Rank2. The ocean waves274

and wind effects were not included in these simulations in order to separate tidal effects from the coupled effects275

on turbulence. Simulations were carried out with and without LANS-α, and the same numerical parameters were276

employed in both cases, except for the horizontal turbulence modelling. For the vertical mixing parametrization, two277

cases were investigated with the use of the K − ε turbulent closure [30] and a constant vertical viscosity of 0.2 m2.s−1.278

The latter parameter was chosen as the minimum viscosity in order to avoid numerical instability in the experiments.279

The parameters for the smoothing procedure in LANS-α were those described in [25]. Different filter sizes were280

tested, and filters with 5, 7 and 9 points ensured numerical stability. Few differences were found between results281

with the two filter sizes, therefore only the results with the 7-point filter are presented here. In addition, the use of282

the 7-point filter reduced computational costs by more than 10% compared to the 9-point filter. Details of the 12283

numerical configurations (MARS and MARS-α) are summarized in Table 2 and their computational cost is presented284

in Table 3.285

Table 2. List of numerical parameters. Simulation names, type of turbulence modeling (LANS-α and vertical mixing), description of the
LANS-α filter, details on the spatial resolution and time step are summarized. For cases Run 1 and Run 3, the constant turbulent viscosity
is set to 0.2 m2/s.

Name LANS-α Vertical mixing Convolution filter Spatial resolution (m) Time step (s)
Run 1 yes constant 7 600, 120, 30 30, 6, 1.5
Run 2 yes k − ε 7 600, 120, 30 30, 6, 1.5
Run 3 no constant - 600, 120, 30 30, 6, 1.5
Run 4 no k − ε - 600, 120, 30 30, 6, 1.5
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Fig. 2. Bathymetric depth from [10] used in simulations for the three nested grids (Rank0, Rank1 and Rank2).

3.3. Results and Discussion286

Turbulent kinetic energy (TKE) for Runs 1 and 3 and for different spatial resolutions of 30 m and 120 m are shown287

in Fig. 3 and 4 for ebb and flood, respectively. TKE was computed from barotropic velocities and over 4 hours around288

the peak of velocity with a time step of 20 minutes such that:289

TKE =
1
2

(〈
(v̄x − 〈v̄x〉)2

〉
+

〈
(v̄y − 〈v̄y〉)2

〉)
, (55)290

where 〈·〉 is the time-average operator.291

292

In the cases presented, TKE levels were always higher for MARS-α than for MARS. This is consistent with the293

conclusions of [12, 13] and [25], indicating that LANS-α alters the nonlinear terms and increases the TKE. In the294

same manner as for [12, 13], numerical stability problems were encountered due to this injection of energy. Our295

simulations using a 5-point filter were stable according to the starting time of the simulation while those performed296

with 7- and 9-point filters were always stable as long as a constant artificial viscosity of 0.2 m2/s was added. When297

LANS-α modeling was activated, the 120 m-spatial resolution simulations, i.e. Rank1, produced more TKE than the298

simulations at 30 m, i.e. Rank2, without LANS-α. This increase in energy was induced by interactions between the299

tidal flow and the bottom features, which are very well represented here by the high-resolution bathymetry of [10],300

particularly along the shallowest isobaths of the domain studied (Fig.s 3 and 4, white and light gray contours).301

The LANS-αmodeling, which is more expensive than MARS for the same spatial resolution (see Table 3), appears302

to be interesting for the coastal numerical modeler when we compare the TKE computed at different resolutions.303

Between Run 1 and 3, the computing time for Rank1 is enhanced 2.8-fold with LANS-α. In contrast, MARS-α304

for Rank1 (120 m) is 30 percent faster than MARS for Rank2 (30 m). Indeed to obtain Rank2 simulations, the305

hydrodynamics of Rank0 and Rank1 needed to be computed in order to generate boundary conditions for the velocity306

and the sea surface elevation, which increased the computing time.307

TKE decays were examined through wave-number energy spectra computed from barotropic (2D) velocity fluc-308

tuations for ebb and flood tides and for a dynamically consistent area on which they were integrated (see Fig. 5).309

For the largest scale (wave number smaller than 2 km−1), the level and the decay of TKE were similar for MARS310

and MARS-α. As suggested by [3], [17] and [14] for the two-dimensional turbulence, we observed two types of311
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Fig. 3. Contours of TKE for the ebb tide for MARS (top row) and MARS-α (bottom row) simulations and for different spatial resolutions.
Rank2 with a horizontal resolution of 30 m is on the left while Rank1 with a horizontal resolution of 120 m is on the right. Velocity
fluctuations were computed over 4 hours around maximum velocity with a time step of 20 minutes. Bathymetric contours are shown with
a grey scale, ranging from 20 meters (white) to 40 meters (black).

inertial range: (1) an energy transfer range where the turbulent energy spectrum is a function of k−5/3 (k being the312

wave number), and (2) an enstrophy transfer range with a decay of the turbulent energy spectrum following k−3. For313

case (1), energy was transferred from small (high wave numbers) to large (low wave numbers) scales while for case314

(2), enstrophy went from large to small scales. We observed similar TKE decays for MARS and MARS-α within315

inertial ranges. The cut-off wave number, which marks the beginning of the dissipative range in which a k−5-decay is316

observed, was about 8 km−1.317

As explained in [12, 13], LANS-α requires the use of turbulent closure schemes for vertical mixing. The results of318

Run 1 and 3 previously, discussed above, were produced with constant vertical mixing to facilitate the understanding.319

However, coastal numerical modelers rightly prefer to employ RANS 2-equations turbulence scheme, such as K − ε320

[15] or the K−Kl [21]. The most widely used in MARS is the K− ε with the modified coefficients of [30]. By solving321

one equation for the turbulent kinetic energy (K) and another for the turbulent dissipation (ε), the turbulent mixing322

length is obtained, and the vertical turbulent viscosity is then computed. As expected, a more intense turbulence is323

simulated by MARS and MARS-α with K − ε than with constant vertical mixing for ebb (see Fig. 6) and flood (see324

Fig. 7) tides. However, interestingly, MARS-αwith K−ε produced a lower level of TKE than MARS with K−ε. This325

contrasts with results obtained with constant vertical mixing and with earlier results of [12]. A plausible explanation326

may be the horizontal advection terms of the time-evolution equations for K and ε, which are not implemented in327

MARS and MARS-α [8]. These terms become significant when a horizontal turbulent transport occurs as near a328

strong bathymetric gradient, as shown in Fig. 6. Without this transport, the vertical turbulent mixing is overestimated329

by the model using K − ε, as shown by comparison with the high-frequency radar measurements [20]. This loss330

of energy is more intense for ebb tide because of the angle between the direction of the tidal velocity (towards the331
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Fig. 4. Same as Fig. 3 but for the flood tide.

south-west) and the orientation of the bottom features, which enhances the horizontal transport. Thus, the reduction332

by LANS-α modeling seems realistic but needs to be confirmed by field measurements or large-eddy simulations333

using a non-hydrostatic solver.334

The spatial structure of the eddy and idenfication of regions with different mixing properties are studied by means335

of the Okubo-Weiss (hereinafter OW) parameter [23, 31]. This parameter allows us to distinguish the relative impor-336

tance of deformation and rotation on the production of turbulent eddies. Horizontal maps of OW for ebb (Fig. 8) and337

flood (Fig. 9) tide show that more turbulent structures are simulated with LANS-α for the same spatial resolution of338

30 m. For Rank2 overall, we observed numerous turbulence structures due to deformation, represented by positive339

OW values. Differences between ebb and flood tide remain from the turbulence induced by rotation, represented by340

negative OW values. At ebb, these values are located along a circular arc following the northern coast of Cotentin341

(Fig. 8). At flood, most of the negative values are located next to the 40-m isobath because the current velocity342

direction is oriented towards the north-east (see Fig. 9). The small region of Rank2, discussed previously, contains343

Table 3. Total number of grid points, simulated time (Sim. Time) in days and computing time (Comp. Time) in hours of each simulations.
Rank0 Rank1 Rank2

Grid points 649×475×20 938×916×20 850×957×20
Sim. Time (d) 3 2.5 2.25
Comp. Time (h): Run 1 22.82 308.55 994.13
Comp. Time (h): Run 2 25.87 358.28 1154.83
Comp. Time (h): Run 3 9.35 110.57 362.93
Comp. Time (h): Run 4 12.53 158.45 484.80
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Fig. 5. TKE decay over the wave number k in logarithmic scale, for MARS and MARS-α during ebb and flood tide. Dashed, dotted
and dashed-dotted lines are respectively for the curves TKE = k−5/3, TKE = k−3 and TKE = k−5, respectively. Spectra were computed
with barotropic velocity fluctuations relative to a time-mean 4 four hours and were averaged over time steps. They were computed on
a dynamically consistent area, on which they were integrated, the dimensions of which were 1.71 km and 1.26 km in latitudinal and
longitudinal directions, respectively.

mainly deformation-induced turbulent structures caused by the interactions with the bottom.344

4. Conclusions and Perspectives345

The LANS-α turbulence model was implemented for the first time within a hydrostatic coastal hydrodynamic346

model. We presented the details of implementation of the model and, in particular, the smoothing procedure, which347

is based on a convolution filter, the changes in the equations for the barotropic/baroclinic modes and the solving algo-348

rithm. Unfortunately, the efficiency of the ADI scheme implemented by [16] was was lost because of implementation349

of LANS-α, which involves solving equations along the direction of computation. MARS-α results were shown to be350

consistent with those of [12, 13] and [25]. MARS-α re-energized the flow and produced higher levels of TKE at a spa-351

tial resolution of 120 m than MARS at 30 m, leading to a 30% reduction in computing time. TKE decay was similar352

with or without LANS-α, with a decay following k−5/3 and k−3 within the inertial subrange. When K-epsilon was used353

for vertical mixing, LANS-alpha was able to correct the misevaluation of TKE due to the particular implementation354

of the K − ε in MARS, which does not include the horizontal advection terms. The level of energy was lower with355

MARS-α in cases where the horizontal advection of TKE was significant. This is consistent with the conclusions356

of [20]. On the basis of the foregoing, it can be concluded that LANS-α produces satisfactory results and could be357

useful for the coastal modeler community. Our work needs to be pursued, however, in particular through comparisons358

with high-frequency oceanographic data, including current velocity magnitude and direction, which are necessary to359

validate the numerical model and to determine whether or not the LANS-α level of turbulence is consistent with the360

observations. Moreover, it is important to test these results against other numerical results computed with traditional361

sub-grid scale LES turbulence models [e.g 6, 7] to highlight the added value of LANS-α modeling compared to the362

other computational models of turbulence already in use.363
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Fig. 6. Contours of TKE for the ebb tide for MARS (top row) and MARS-α (bottom row) simulations and for Rank2 at a horizontal
resolution of 30 m. The simulations on the left used K − ε closure to model vertical mixing instead of constant vertical mixing as on the
right.
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Fig. 7. Same as Fig. 6 but for the flood tide.
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Fig. 8. Okubo-Weiss criterion computed with barotropic currents for the ebb maximum currents period: MARS Rank2 (left panel) and
MARS-α Rank2 (right panel) with a constant vertical viscosity. Bathymetric contours are shown with a grey scale, ranging from 20 meters
(white) to 40 meters (black).

Fig. 9. Same as Fig. 8 but for flood tide.
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Appendix A. Additional informations about the MARS-α solving algorithm381

Appendix A.1. Predictor phase382

Step 2: Barotropic part of the y-components: compute ηn+1/2, v̄n+1/2
y and ūn+1/2

y by solving the following coupled383

system384

v̄n+1/2
y + θN

g∆t
2
∂ηn+1/2

∂y
= v̄n

y +
∆t
2

Ḡn
αy +

τn
S y

ρDn+1/2,∗
y


−

∆t
2

(
ftvn

By + θPg
∂ηn

∂y

)
, (A.1)

ηn+1/2 +
∆t
2
∂

∂y

[
Dn+1/2,∗

y

(
γRv̄n+1/2

y + γS ūn+1/2
y

)]
= ηn −

∆t
2
∂

∂x

(
Dn+1/2,∗

x γRv̄n+1/2,∗
x

)
−

∆t
2
∂

∂x

(
Dn+1/2,∗

x γS ūn+1/2,∗
x

)
,

(A.2)

where vBy is the y-component of the rough velocity at the bottom.385

386

v̄n+1/2,∗
x and ūn+1/2,∗

x are estimated as:387

v̄n+1/2,∗
x = v̄n

x +
∆t
2

(
Ḡn
αx +

τn
S x

ρDn
x
−
τn

Bx

ρDn
x
− g

∂ηn

∂x

)
. (A.3)

ūn+1/2,∗
x = Kα ∗ v̄n+1/2,∗

x (A.4)
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Baroclinic part of the y-components: compute vn+1/2
y by solving the following equation (where uyk and vyk are the388

y-component of the smooth and the rough velocity for a given k index, respectively.)389

vn+1/2
y −

∆t
2

∂

∂σ

 νV(
Dn+1/2,∗

y

)2

∂vn+1/2
y

∂σ

 = vy. +
∆t
2

(
Gn

y − g
∂ηn

∂x

)
. (A.5)

un+1/2
yk =

(
Kα ∗ vn+1/2

yk

)
, k = 1, · · · , kmax (A.6)

Appendix A.2. Corrector phase390

Step 3: Barotropic part of the y-components: compute ηn+1,∗, v̄n+1
y and ūn+1

y by solving the following coupled sys-391

tem392

v̄n+1
y + θN

g∆t
2
∂ηn+1,∗

∂y
= v̄n+1/2

y +
∆t
2

Ḡn+1/2
αy +

τn+1/2
S y

ρDn+1
y


−

∆t
2

(
ftv

n+1/2
By + θPg

∂ηn+1/2

∂y

)
, (A.7)

ηn+1,∗ +
∆t
2
∂

∂y

[
Dn+1/2

y

(
γRv̄n+1

y + γS ūn+1
y

)]
= ηn+1/2 −

∆t
2
∂

∂x

(
Dn+1/2

x γRv̄n+1,∗
x

)
−

∆t
2
∂

∂x

(
Dn+1/2

x γS ūn+1,∗
x

)
, (A.8)

where v̄n+1,∗
x are ūn+1,∗

x are estimated as:393

v̄n+1,∗
x = v̄n+1/2

x +
∆t
2

Ḡn+1/2
αx +

τn+1/2
S x

ρDn+1/2
y

−
τn

Bx

ρDn+1/2
y

− g
∂ηn+1/2

∂x

 . (A.9)

ūn+1,∗
x = Kα ∗ v̄n+1,∗

x (A.10)

Baroclinic part of the y-components: compute vn+1
y by solving the following equation394

vn+1
y −

∆t
2

∂

∂σ

 νV(
Dn+1/2

y

)2

∂vy
n+1

∂σ

 = vn+1/2
y + ∆t

2

(
Gn+1/2
αy − g

∂ηn+1/2

∂x

)
. (A.11)

un+1
yk =

(
Kα ∗ vn+1

yk

)
, k = 1, · · · , kmax (A.12)
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Estivalezes, V. Gleize, T.-H. Lê, M. Terracol, and S. Vincent, Eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12.419

[12] Hecht, M. W., D. D. Holm, M. R. Petersen, and B. A. Wingate, 2008: Implementation of the lans-α turbulence model in a primitive equation420

ocean model. Journal of Computational Physics, 227 (11), 5691 – 5716.421

[13] Hecht, M. W., D. D. Holm, M. R. Petersen, and B. A. Wingate, 2008: The lans-α and leray turbulence parameterizations in primitive equation422

ocean modeling. Journal of Physics A: Mathematical and Theoretical, 41 (34), 344 009.423

[14] Kraichnan, R. H., 1967: Inertial ranges in two dimensional turbulence. Physics of Fluids, 10 (7), 1417–1423.424

[15] Launder, B. and D. Spalding, 1974: The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineer-425

ing, 3 (2), 269 – 289.426

[16] Lazure, P. and F. Dumas, 2008: An external-internal mode coupling for a 3d hydrodynamical model for applications at regional scale (MARS).427

Adv. Water Resources, 31, 233–250.428

[17] Leith, C. E., 1968: Diffusion approximation for two-dimensional turbulence. The Physics of Fluids, 11 (3), 671–672, doi:10.1063/1.1691968.429
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