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Introduction

Rough surfaces have been the subject of many studies involving the propagation of Rayleigh type waves [1][START_REF] Ogilvy | Theory of wave scattering from random rough surface[END_REF][START_REF] Maradudin | [END_REF]. For applications involving internal interfaces guided waves, guided waves such as Lamb waves are more useful. In this paper, the propagation of Lamb waves in an anisotropic plate with a randomly rough surface on one side, the other side being considered as the reference side, is studied. A 3D model is developed for an anisotropic plate in vacuum, characterized by its thickness d, its density ρ and its (6x6) elastic constant matrix ( ) αβ c . The boundary surface (see Fig. 1). The

slopes 1 1 x h ' h ∂ ∂ = and 2 2 x h ' h ∂ ∂ =
are also assumed to be small. A perturbation method is presented in order to express the dispersion equation of the rough plate as a sum of the dispersion equation of the plate with roughless surfaces and of a perturbation. 

' h 2 ' h ( ) ( ) 3 3 x J x ~σ = σ , ( 2 
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where J is a (3x6) matrix, and are respectively the (3x1) column vector made up of the three components of the stress vector linked to the normal vector to the upper surface and the (6x1) column vector made up of the six components of the stress tensor, T denoting the transpose operation. 
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) where ( ) a η and ( ) P η are respectively the displacement amplitude and the polarisation vector of the wave ( ) η , and ω is the angular frequency of the waves.

The writing of Hooke's law [START_REF] Royer | Ondes élastiques dans les solides[END_REF] allows to express ( )

3
x σ as a function of the (6x1) column vector A made up of the six displacement amplitudes ( ) 

a η : ( ) ( )A H 3 3 x D x = σ , (4) 
omitting the factor Substituting Eq. ( 4) into Eq. ( 2) leads to
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3 x H is a diagonal matrix , (5) ( ) ( ) ⎟ 
( ) ( )A H 3 3 x D J x ~= σ . ( 6 
)

Second-order expansion

A second-order expansion of all the coefficients of the change-of-basis matrix for B to B ~ permits to express the (3x6) matrix J as a linear combination of six matrices : (7)
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Using Eq. ( 6), the stress vector ( )

3
x σ is thus also expanded at a second-order in and . 7) and (8) into Eq. ( 6) leads to a secondorder expansion of the stress vector ( )

3
x σ at the upper surface. This expansion is the sum of eighteen matrices, the zero-order term being .
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Boundary conditions

As the plate is in vacuum, the stress vector linked to the normal of the interfaces has to be zero : (9) and ( ) ( )

. x at 0 ˆ, ) x , x ( H x at 0 h ~2 d 3 2 d 2 1 3 2 d = = σ = = + - σ (10) ( ) ( ) T 13 23 33 3 , , x ˆσ σ σ = σ
is the (3x1) column vector made up of the three components of the stress vector linked to the normal vector 3

x to the lower surface :
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)
The boundary conditions ( 9) and ( 10) lead to a 6-th order homogeneous system of equations : . (

) 0 M = A 12 
M is a (6x6) matrix which is the sum of eighteen matrices and which can be expressed as follows ( )

M M I M M M M 1 0 0 0 δ + = δ + ≈ - , (13) 
where is the inverse of and I is the identity matrix.

The matrix corresponds to the homogeneous system of equations, written for roughless surfaces and is given by :

1 0 M - 0 M 0 M with ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ = + - 0 0 0 0 0 D J D J M H H ( 2 d 3 0 x = = + H H ). (14)
The homogeneous system (12) has non zero solution only if the determinant of the matrix M is equal to zero,leading to the dispersion equation for Lamb modes, which can be written in the form

M det det M = F(k 1 ,ω) = 0, (15) 
where k 1 is the projection of the wave number vector on the x 1 -axis, its real and imaginary parts being respectively noted k' 1 and k" 1 . Eq. ( 15) can be expressed as follows

( ) ( ) ( ) 0 , k F , k F , k F 1 1 0 1 = ω δ + ω ≈ ω . ( 16 
)
It can be noticed that the cancellation of the function F 0 (k 1 ,ω) = det M 0 corresponds to the dispersion equation for Lamb modes in a plate with plane surfaces. In this case, for a given pulsation , the solution is real and is denoted k ω 0 . Thus, it can be assumed that, for a given pulsation ω , the solution k 1 of Eq. ( 15) is of the form :

k 1 = k 0 + δ k 1 . (17)
The roughness of the stress-free boundary induces a small complex perturbation δ k 1 of the solution of the dispersion relation, the real and imaginary parts of which are related respectively to the shift frequency and to the attenuation of the wave. Two mechanisms contribute to the decay of a Lamb mode: its decay into bulk elastic waves and its decay into other Lamb modes, with an energy transfer between modes.

Numerical and experimental results

Experimental and numerical studies have been done on an rough shot blasted glass plate. The plate is isotropic but the roughness needs a 3D description. The profile of the surface is described by its statistical properties : its mean value R a and the mean square deviation of the surface from the flatness R q . For a random profile H(x 1 ,x 2 ), the Lamb wave is sensitive to a kind of "average" parameters ( << >> ) of the surface, involved in the dispersion equation ( 15) or (16) :

>> =<< α 1 1 ' h , , , >> =<< α 2 2 ' h >> =<< β ) x , x ( h 2 1
and γ = <<h 2 (x 1 ,x 2 )>>. These parameters depend on the Lamb mode and on the spatial wavelength Λ (given by the Power Spectrum Density of the surface S(x 1 ,x 2 )) corresponding to the roughness profile. As a first approach, α 1 , α 2 , and γ can be identified to

Λ ≅ α ≅ α a 2 1 R 4
and .

2 q R ≅ γ

The roughness has a weak effect on the phase velocities (related to k' 1 ). On the other hand, though the wave numbers k 1 are real when the plate is smooth (their imaginary part is zero), the wave numbers become complex when the surface is rough (see Fig. 2). As a consequence, the roughness has a influence mainly on the attenuation (related to k" 1 ). Experimental [START_REF] Leduc | Measurement of the effects of rough surfaces on Lamb waves propagation[END_REF] and numerical results are in very good agreement for mode S 1 (k" 1 d = 0.025 in both cases, with an improvement with respect to a 2D model [START_REF] Potel | Lamb wave propagation in isotropic media with rough interface[END_REF]) but are less good for other modes : the influence of the spatial wavelengths, through the PDS, has to be taken into account.
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 1 Figure 1: Geometry of the problem
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  plate, the particular displacement vector can be written as ,

.

  The (6x6) matrix D only depends of the elastic constants , of the slowness vector αβ c ( ) m η and of the polarisation vector ( ) P η . The (6x6) matrix ( )

  order expansion in h of the exponential propagation factors of the diagonal matrix

2 Figure 2 :

 22 Figure 2: Dispersion curves in the complex plane of k 1 d for a shot blasted glass plate ; R a = 23.3 µm, R q = 29.8 µm, mm 546 . 0 = Λ .
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