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Abstract

The Rayleigh limit of the generalized Lorenz-Mie theory (GLMT) has
been recently examined in the case of off-axis circularly symmetric Bessel
beams, thereafter in the case of on-axis circularly symmetric Bessel beams,
the on-axis case providing an easier framework for the understanding of
the optical forces exerted in the Rayleigh limit of GLMT. This work is
here extended to the case of non dark on-axis axisymmetric beams of the
first kind This encompasses the case of zeroth-order circularly symmetric
Bessel beams and the case of localized models of Gaussian beams. Three
kinds of optical forces are exhibited, namely traditional gradient and scat-
tering forces, plus another kind of forces which is for the time being de-
noted as non standard forces. The relationship between the Rayleigh limit
of GLMT and the dipole theory of forces is discussed, to the best of our
present understanding.

Keywords: optical forces; gradient and scattering forces; Rayleigh regime;
generalized Lorenz-Mie theory; dipole theory of forces.
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1 Introduction.

The generalized Lorenz-Mie theory stricto sensu (GLMT) is a rigorous ana-
lytical theory describing the interaction between an arbitrary electromagnetic
shaped beam (or structured beam) and a homogeneous spherical particle de-
scribed by its diameter d and its complex index of refraction np (supposed to be
real in the context of the present paper), e.g. [1], [2], [3]. This theory had many
applications, particularly in the field of optical particle characterization, e.g.
[4], [5]. Another topic concerns the mechanical effects of light (radiation pres-
sure forces and torques) which have been investigated as well by using GLMT,
including the prediction of reverse radiation forces, e.g. [6], [7], [8], [9] with the
case of spheroids considered in the framework of an extended GLMT [10], [11].
A review devoted to GLMTs (in a plural extended meaning) and mechanical
effects of light is available from [12] with about 300 references.
However, strange as it may be, the application of GLMT to the case of small

particles in the Rayleigh regime (point-like particles) has not been considered
in a systematic way until recently, namely until [13] which dealt with longitudi-
nal optical forces exerted by off-axis circularly symmetric Bessel beams in the
Rayleigh regime in the framework of generalized Lorenz-Mie theory. One of the
interests of the Rayleigh regime with respect to the case of large particles is that
it allows one to manipulate more easily the formal computations and therefore
to provide a better picture of the physical mechanisms at work.
In particular, the GLMT may describe the incident fields using expansions

either in terms of scalar potentials [1] or in terms of vector spherical wave
functions [14] and then encodes the structure of the beam in a set of beam
shape coeffi cients (BSCs) usually denoted as gmn,TM and gmn,TE (n from 1 to ∞,
m from (−n) to (+n), TM for "Transverse Magnetic" and TE for "Transverse
Electric"). As a result the Rayleigh limit of the GLMT expresses optical forces
in terms of BSCs and will then reveal intimate features of these optical forces
which are not revealed when we use the more traditional dipole theory of forces.
In [13], the example of circularly symmetric Bessel beams has been chosen

because (i) for such beams, the gradient with respect to the axis of propagation
z of |E|2 is zero and, therefore, gradient forces were expected to be zero as
well (an expectation which has been confirmed), allowing one to concentrate
on scattering forces and (ii) the BSCs of such beams were known under closed
forms, allowing an easier implementation of the formal computations [15], [16],
[17], see also [18], [19], [20]. The complication induced by the fact that, for the
sake of generality, an off-axis configuration had been considered, was supposed
to be in part compensated by the fact the analysis was supposed to ignore, at
least partly, the details involved by the existence of gradient forces if they had
not been equal to zero.
The main findings of [13] are as follows. While the dipole theory of forces

expresses optical forces using the total electric field E, i.e. using all partial
waves of all orders (from n = 1 to ∞), the Rayleigh limit of the GLMT only
uses BSCs associated with n = 1 and n = 2. Due to this fact, as it stood
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at this moment, the equivalence between the Rayleigh limit of GLMT and the
traditional dipole theory of forces was questionable. Furthermore, beside the
traditional gradient forces (although zero in the case of circularly symmetric
Bessel beams) proportional to α3 (in which α = πd/λ, with λ the wavelength)
and to the gradient of |E|2, and the traditional scattering forces proportional to
α6 and to the Poynting vector, another kind of forces proportional to α6 but not
proportional to the Poynting vector was observed. These forces had no counter-
part in a discussion of longitudinal optical forces exerted by Gaussian beams in
the weak confinement limit in the Rayleigh limit using GLMT, such as reported
by Lock in [21], which exhibited only traditional gradient and scattering forces
of the traditional dipole theory of forces. The "new" kind of forces described in
[13] depends on the axicon angle which intervenes in the mathematical descrip-
tion of Bessel beam and they therefore have been called axicon forces. The fact
that such forces were not involved in the dipole theory of forces as expounded
in [21] and in other papers reinforced the significance of the question to know
whether the Rayleigh limit of GLMT is identical or not, and in which way, to
the dipole theory of forces. Although not completely solved in utmost rigor,
this issue will be discussed at the end of the present paper.
After [13] devoted to longitudinal forces, another paper was devoted to trans-

verse forces exerted by circularly symmetric Bessel beams on Rayleigh particles
[22]. This paper revealed the existence of transverse axicon forces similar to the
longitudinal axicon forces exhibited in [13]. Furthermore, in both cases, these
extra-forces are zero when the axicon angle is zero (or become a traditional
scattering force in this limit). These facts were a motivation to give the name
of axicon forces to the extra-forces thus involved. Also, it was a clue that they
might be specific of all kinds of beams exhibiting an axicon angle and that, for
some reason, still to be revealed, the dipole theory of forces was lacking some-
thing in the case of beams exhibiting an axicon angle, making the identification
between the Rayleigh limit of the GLMT and the dipole theory of forces more
questionable.
To advance toward the solution to such issues, it has been decided to sim-

plify the formalism at hand by considering circularly symmetric Bessel beams
in the case of an on-axis configuration rather than in a case of an off-axis con-
figuration [23]. The present paper reports on another step, still dealing with
an on-axis configuration, particularly with longitudinal forces insofar as the
transverse forces will be found to be zero. Rather than considering specifically
circularly symmetric Bessel beams, it deals with a large class of beams which
encompasses circularly symmetric Bessel beams of order l = 0 (no topological
charge) and Gaussian beams. Revisiting Gaussian beams and relaxing the as-
sumption of a weak confinement limit used by Lock [21], we shall observe that
extra-forces exist as well in the case of Gaussian beams although they do not
possess any axicon angle. Therefore, rather than using the terminology "axi-
con forces", we have used the less specific terminology "non-standard forces".
Whether we can say more on the nature of these non-standard forces is another
subject of the present paper.
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The class of beams to be considered is formed of (on-axis) non dark axisym-
metric beams of the first kind. Before embarking in the bulk of the present
paper, the terminology used in the title requires to be explained. In the present
paper, axisymmetric beams are defined as beams which, when propagating
along the z-direction, possess a component Sz of the Poynting vector which
does not depend on the azimuthal angle ϕ [24], [25]. Circularly symmetric
beams [15], [16], [17], may then be defined as axisymmetric beams which pos-
sess a supplementary symmetry property, namely that the transverse component

St =
√
S2x + S2y of the Poynting vector as well does not depend on ϕ (although

Sx and Sy may individually depend on this angle). BSCs of axisymmetric beams
satisfy very appealing expressions when all the BSCs g±1n,X (X = TM, TE) are
different from 0, e.g. Eqs.(66) and (78) and a remark between Eqs.(65) and (66)
in [25], namely:

gmn,TM = gmn,TE = 0, m 6= ±1

gn/2 = g1n,TM = g−1n,TM/K = −iεg1n,TE = iεg−1n,TE/K

}
(1)

in which K describes the polarization state of the beam and ε = ±1 defines the
beam-propagation direction. Eq.1 shows that all bi-index BSCs g±1n,X can be ex-
pressed in terms of uni-index BSCs gn, leading to very significant simplifications
of the formalism. Such axisymmetric beams are called axisymmetric beams of
the first kind and are considered in the present paper. It may happen that not
all g±1n,X are different from 0. This is the case for on-axis circularly symmetric
Bessel beams when the order is equal to l = (+2), in which case the BSCs g−1n,X
are 0, or l = (−2) in which case the BSCs g1n,X are 0, e.g. [23].
Such beams are from now on called axisymmetric of the second kind. Fur-

thermore, we may consider whether beams are dark or non dark. By definition,
an on-axis axisymmetric beam is said to be dark (more explicitly dark along its
axis of symmetry) iff (if and only if) the z−component of its Poynting vector
Sz taken along the z-direction on its axis (i.e. explicitly at θ = 0) is zero [25].
A beam which is non dark is called a non dark beam (or a bright beam). We
furthermore possess a darkness theorem telling us that, if all the BSCs g±1n,X
are zero, then the beam is dark (on the axis), e.g. [26]. This implies that ax-
isymmetric beams of the first and of the second kinds discussed above are non
dark. There are therefore three kinds of axisymmetric beams to be considered
(i) axisymmetric beams of the first kind (which are non dark), (ii) axisymmet-
ric beams of the second kind (which are non dark) and (iii) axisymmetric dark
beams. The present paper is devoted to item (i) while items (ii) and (iii) are
postponed to future works. Examples of (non dark) axisymmetric beams of the
first kind are plane waves, on-axis spherical wave fronts, circularly symmetric
Bessel beams of order l = 0, and Gaussian beams [23], [26].
The paper is organized as follows. Section 2 deals with the expressions

of optical forces. Section 3 deals with the expressions for the Poynting vector
components. Section 4 develops the example of Gaussian beams. In section 5,
optical forces observed in Section 4 are interpreted both in the framework of the
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Rayleigh limit of GLMT and in the framework of the traditional dipole theory
of forces. Section 6 is a conclusion. Main equations are Eqs.8, 15, 17, 18 for
optical forces, and Eqs.44, 58, 71, 73 for the Poynting vector.

2 Optical forces in the Rayleigh limit of GLMT.

2.1 General expressions.

For reader convenience, the general expressions concerning the radiation
pressure cross-sections Cpr,i (i = x, y, z) are recalled in this subsection, e.g. [27],
with a normalization condition reading as E0H∗0/2 = 1 (E0 andH0 being electric
and magnetic field strengths respectively, with the star denoting a complex
conjugation). Optical forces Fi are then related to the radiation pressure cross-
sections Cpr,i by Fi = Cpr,i/c in which c is the speed of light, e.g. [28], p.34.
The time-dependence of the wave is taken to be exp(iωt) which is the usual
convention in GLMT.
The transverse cross-section Cpr,x reads as:

Cpr,x =
λ2

2π

∞∑
p=1

∞∑
n=p

∞∑
m=p−16=0

(n+ p)!

(n− p)! (2)

×[Re(Sp−1mn + S−pnm − 2Up−1mn − 2U−pnm)(
δm,n+1
m2

− δn,m+1
n2

)

+
2n+ 1

n2(n+ 1)2
δnm Re(T p−1mn − T−pnm − 2V p−1mn + 2V −pnm)]

in which:

Spnm = (an + a∗m)gpn,TMg
p+1∗
m,TM + (bn + b∗m)gpn,TEg

p+1∗
m,TE (3)

T pnm = −i(an + b∗m)gpn,TMg
p+1∗
m,TE + i(bn + a∗m)gpn,TEg

p+1∗
m,TM (4)

Upnm = ana
∗
mg

p
n,TMg

p+1∗
m,TM + bnb

∗
mg

p
n,TEg

p+1∗
m,TE (5)

V pnm = ibna
∗
mg

p
n,TEg

p+1∗
m,TM − ianb

∗
mg

p
n,TMg

p+1∗
m,TE (6)
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in which the notations are the ones of [1]. In particular, an and bn are the
usual Mie coeffi cients of the usual Lorenz-Mie theory, λ is the wave-length, and
δnm is the Kronecker symbol. The y-component Cpr,y is obtained from the
x−component by changing Re to Im, while the longitudinal component reads
as:

Cpr,z =
λ2

π

∞∑
n=1

n∑
m=−n

{ 1

(n+ 1)2
(n+ 1 + |m|)!

(n− |m|)! (7)

Re[(an + a∗n+1 − 2ana
∗
n+1)g

m
n,TMg

m∗
n+1,TM

+(bn + b∗n+1 − 2bnb
∗
n+1)g

m
n,TEg

m∗
n+1,TE ]

+m
2n+ 1

n2(n+ 1)2
(n+ |m|)!
(n− |m|)!

Re[i(2anb
∗
n − an − b∗n)gmn,TMg

m∗
n,TE)]}

2.2 Axisymmetric beams of the first kind.

In Eqs.3-6, BSCs appear in terms of the form gpng
p+1∗
m . Therefore, Eq.1

implies:

Cpr,x = Cpr,y = 0 (8)

meaning that there is no transverse forces as we might have expected for a
particle located on the axis of an axisymmeteric beam. We therefore just have
to deal with Eq.7 for longitudinal forces. From Eq.1, we only have to retain
m = ±1. Then, Eq.7 reduces to:

Cpr,z =
λ2

π

∞∑
n=1

{n(n+ 2)

n+ 1
(9)

Re[(an + a∗n+1 − 2ana
∗
n+1)(g

1
n,TMg

1∗
n+1,TM + g−1n,TMg

−1∗
n+1,TM )

+(bn + b∗n+1 − 2bnb
∗
n+1)(g

1
n,TEg

1∗
n+1,TE + g−1n,TEg

−1∗
n+1,TE)]

+
2n+ 1

n(n+ 1)
Re[i(2anb

∗
n − an − b∗n)(g1n,TMg

1∗
n,TE − g−1n,TMg

−1∗
n,TE)]}

Next, we use again Eq.1 to express the result in terms of uni-index BSCs
gn, and notice that ε2 = 1, leading to:
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Cpr,z =
λ2(1 +KK∗)

4π

∞∑
n=1

{n(n+ 2)

n+ 1
Re[gng

∗
n+1(an + a∗n+1 − 2ana

∗
n+1(10)

+bn + b∗n+1 − 2bnb
∗
n+1)]

+
2n+ 1

n(n+ 1)
εRe[gng

∗
n(2anb

∗
n − an − b∗n)]}

2.3 Rayleigh limit of GLMT.

Eq.10 involves an infinite number of partial waves. However, for Rayleigh
particles, we only have to retain the (n = 1)-partial wave term in the summation,
that is to say the terms which involve only the Mie coeffi cient a1, e.g. [13],
[21]. This is due to the expressions of the Mie coeffi cients in terms of the size
parameter α and the necessity, due to the assumption that we are dealing with
Rayleigh particles, to retain only the terms of lowest-order powers of α. Indeed,
we have [28], pp. 143-144:

a1 =
2i

3

n2p − 1

n2p + 2
α3 +O(iα5) +

4

9
(
n2p − 1

n2p + 2
)2α6 (11)

b1 = O(iα5) (12)

in which np denotes the refractive index of the particle (here taken to be real)
with respect to the surrounding medium, and α is the size parameter equal to
πd/λ. The other Mie coeffi cients an and bn (n > 1) involve still higher powers
of α. Real parts of a1 are then proportional to α6 and imaginary parts are
proportional to α3 while higher powers are discarded. Therefore, we only retain:

Im(a1) =
2

3

np
2 − 1

np2 + 2
α3 (13)

Re(a1) =
4

9
(
np

2 − 1

np2 + 2
)2α6 (14)

Then, we still have Cpr,x = Cpr,y = 0, see Eq.8, while Eq.10 reduces to:

Cpr,z =
3λ2

8π
(1 +KK∗) Re[a1g1(g

∗
2 − εg∗1)] (15)
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We then use:

Re(z1z2) = Re(z1) Re(z2)− Im(z1)(z2) (16)

and Eqs.13-14 to separate the α6- and α3-terms according to:

CRepr,z =
λ2

6π
(1 +KK∗)(

m2 − 1

m2 + 2
)2α6 Re g1(g

∗
2 − εg∗1) (17)

CImpr,z =
−λ2

4π
(1 +KK∗)

m2 − 1

m2 + 2
α3 Im g1(g

∗
2 − εg∗1) (18)

Eqs.17-18 express the longitudinal optical forces (cross-sections) exerted
by (non dark) axisymmetric beams of the first kind on Rayleigh particles (while
the trivial Eq.8 corresponds to transverse forces). It is seen that longitudinal
forces are the summation of two kinds of forces, namely forces proportional to
α6 (traditionally associated with scattering forces in the dipole theory of forces,
a statement which will have to be refined later) and forces proportional to α3

(associated with gradient forces in the dipole theory of forces, as we shall confirm
later). The interpretation of these forces requires to examine the property of the
Poynting vector in the case of Rayleigh particles illuminated by axisymmetric
beams of the first kind.

3 Poynting vector.

3.1 General expressions for an arbitrary location in
space.

General expressions for the Poynting vector for arbitrary location in space
are available from [25]. For the transverse components, we have (still using the
normalization condition E0H∗0/2) in terms of spherical coordinates r, θ, ϕ:

Sx = Re

∞∑
n=1

+n∑
m=−n

∞∑
p=1

+p∑
q=−p

cpwn cpw∗p ei(m−q)ϕ (19)

[
k sinϕ

r
(ψ

′′

n + ψn)Anmpq +
ik cos θ cosϕ

r
(ψ

′′

n + ψn)Bnmpq +
i sin θ cosϕ

r2
Cnmpq]
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Sy = Re

∞∑
n=1

+n∑
m=−n

∞∑
p=1

+p∑
q=−p

cpwn cpw∗p ei(m−q)ϕ (20)

[−k cosϕ

r
(ψ

′′

n + ψn)Anmpq +
ik cos θ sinϕ

r
(ψ

′′

n + ψn)Bnmpq +
i sin θ sinϕ

r2
Cnmpq]

in which cpwn (with "pw" standing for "plane wave") are plane wave coeffi -
cients which naturally and conveniently have been introduced in the Bromwich
version of the Lorenz-Mie theory [29], reading as:

cpwn =
1

ik
(−i)n 2n+ 1

n(n+ 1)
(21)

and:

Anmpq = [αnmpqψ
′

pτ
|q|
p + qβnmpqψpπ

|q|
p ]P |m|n (22)

Bnmpq = [−qαnmpqψ
′

pπ
|q|
p − βnmpqψpτ |q|p ]P |m|n (23)

Cnmpq = αnmpq(mψ
′

nψ
′

pπ
|m|
n τ |q|p + qψnψpτ

|m|
n π|q|p ) (24)

+βnmpq(mqψ
′

nψpπ
|m|
n π|q|p − ψnψ

′

pτ
|m|
n τ |q|p )

in which :

αnmpq = gq∗p,TMg
m
n,TE − gmn,TMg

q∗
p,TE (25)

βnmpq = gmn,TMg
q∗
p,TM + gq∗p,TEg

m
n,TE (26)

Furthermore, ψn denotes Riccati-Bessel functions with the argument
kr omitted for convenience, a prime denotes a derivative of a function with
respect to the argument (and a double prime a double derivative), and πmn , τ

m
n ,

with argument cos θ omitted as well for convenience, are generalized Legendre
functions defined according to:
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πmn (cos θ) =
Pmn (cos θ)

sin θ
(27)

τmn (cos θ) =
dPmn (cos θ)

dθ
(28)

in which Pmn are associated Legendre functions here defined according to
Hobson’s convention [30]:

Pmn (cos θ) = (−1)m(sin θ)m
dmPn(cos θ)

(d cos θ)m
(29)

in which Pn(cos θ) are the Legendre polynomials.
For the longitudinal component, we shall start from [25]:

Sz =
−1

r2
Re

∞∑
n=1

+n∑
m=−n

∞∑
p=1

+p∑
q=−p

icpwn cpw∗p ei(m−q)ϕ (30)

(sin θSmqnp + cos θCmqnp )

in which:

Smqnp = kr[−gmn,TMg
q∗
p,TMψp(ψn + ψ

′′

n)P |m|n τ |q|p (31)

+gmn,TEg
q∗
p,TEψn(ψp + ψ

′′

p )P |q|p τ |m|n

+qgmn,TMg
q∗
p,TEψ

′

p(ψn + ψ
′′

n)P |m|n π|q|p

+mgmn,TMg
q∗
p,TEψ

′

n(ψp + ψ
′′

p )P |q|p π|m|n ]

Cmqnp = −gmn,TMg
q∗
p,TMψpψ

′

n(τ |m|n τ |q|p +mqπ|m|n π|q|p ) (32)

+gmn,TMg
q∗
p,TEψ

′

nψ
′

p(mπ
|m|
n τ |q|p + qπ|q|p τ

|m|
n )

−gmn,TEg
q∗
p,TMψpψn(mπ|m|n τ |q|p + qπ|q|p τ

|m|
n )

+gmn,TEg
q∗
p,TEψnψ

′

p(mqπ
|m|
n π|q|p + τ |m|n τ |q|p )
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3.2 Axisymmetric beams of the first kind for an ar-
bitrary location in space.

For axisymmetridc beams of the first kind, Eq.1 shows that we have only
to retain BSCs with m = ±1. Therefore, the strings of subscripts nmpq in
Eqs.22-26 reduce to n1p1, n1p−1, n−1p1 and n−1p−1. Using Eqs.25-26 and
expressing the bi-index BSCs in terms of uni-index BSCs using Eq.1, we find
that the non-zero terms involved in these equations are those with the strings
n1p1 and n− 1p− 1. These terms are found to read as:

αn1p1 = iεβn1p1 =
iε

2
gng
∗
p (33)

αn−1p−1 = −iεβn−1p−1 =
−iεKK∗

2
gng
∗
p (34)

The non-zero coeffi cients Anmpq, Bnmpq and Cnmpq of Eqs.22-24 are
then found to be:

An1p1 = −An−1p−1/KK∗ =
gng
∗
p

2
(iεψ′pτ

1
p + ψpπ

1
p)P

1
n (35)

Bn1p1 = Bn−1p−1/KK
∗ =
−gng∗p

2
(iεψ′pπ

1
p + ψpτ

1
p)P

1
n (36)

Cn1p1 = Cn−1p−1/KK
∗ =

gng
∗
p

2
[iε(ψ′nψ

′
pπ

1
nτ

1
p + ψnψpτ

1
nπ

1
p) (37)

+ψ′nψpπ
1
nπ

1
p − ψnψ′pτ1nτ1p]

in which arguments are omitted for convenience. Inserting Eqs.35-37 into
Eq.19, when the only allowed strings of subscripts are n1p1 and n− 1p− 1, we
obtain:

Sx =
1

2
Re

∞∑
n=1

∞∑
p=1

cpwn cpw∗p gng
∗
p (38)

{k sinϕ

r
(ψ′′n + ψn)(1−KK∗)(iεψ′pτ1p + ψpπ

1
p)P

1
n

− ik cos θ cosϕ

r
(ψ′′n + ψn)(1 +KK∗)(iεψ′pπ

1
p + ψpτ

1
p)P

1
n

+
i sin θ cosϕ

r2
(1 +KK∗)[iε(ψ′nψ

′
pπ

1
nτ

1
p + ψnψpτ

1
nπ

1
p)

+ψ′nψpπ
1
nπ

1
p − ψnψ′pτ1nτ1p]}
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Eqs.19-20 show that we pass from Sx to Sy by changing sinϕ to (− cosϕ)
and cosϕ to sinϕ. Therefore, we immediately have:

Sy =
1

2
Re

∞∑
n=1

∞∑
p=1

cpwn cpw∗p gng
∗
p (39)

{−k cosϕ

r
(ψ′′n + ψn)(1−KK∗)(iεψ′pτ1p + ψpπ

1
p)P

1
n

− ik cos θ sinϕ

r
(ψ′′n + ψn)(1 +KK∗)(iεψ′pπ

1
p + ψpτ

1
p)P

1
n

+
i sin θ sinϕ

r2
(1 +KK∗)[iε(ψ′nψ

′
pπ

1
nτ

1
p + ψnψpτ

1
nπ

1
p)

+ψ′nψpπ
1
nπ

1
p − ψnψ′pτ1nτ1p]}

Similarly, recalling that only superscripts m = ±1 are to be retained,
Eq.30 becomes:

Sz =
−1

r2
Re

∞∑
n=1

∞∑
p=1

icpwn cpw∗p {e−2iϕ(sin θS−11np + cos θC−11np ) (40)

+ sin θ(S−1−1np + S11np) + cos θ(C−1−1np + C11np)

+e2iϕ(sin θS1−1np + cos θC1−1np )}

that we do not need to work out extensively.

3.3 Axisymmetric beams of the first kind at the par-
ticle location.

Next, the Poynting vector needs to be evaluated at the particle location.
This particle location is designated by the subscript P. Formally, this particle
location can be reached by first taking an axis location (θ = 0) followed by
r = 0. Therefore, "P" below is equivalent to "θ = 0, r = 0". From Eqs.38-39,
we then obtain:

(Sx)P =
1

2
Re

∞∑
n=1

∞∑
p=1

cpwn cpw∗p gng
∗
p (41)

[
k sinϕ

r
(ψ′′n + ψn)(1−KK∗)(iεψ′pτ1p + ψpπ

1
p)P

1
n

− ik cosϕ

r
(ψ′′n + ψn)(1 +KK∗)(iεψ′pπ

1
p + ψpτ

1
p)P

1
n ]P

12



(Sy)P =
1

2
Re

∞∑
n=1

∞∑
p=1

cpwn cpw∗p gng
∗
p (42)

[
−k cosϕ

r
(ψ′′n + ψn)(1−KK∗)(iεψ′pτ1p + ψpπ

1
p)P

1
n

− ik sinϕ

r
(ψ′′n + ψn)(1 +KK∗)(iεψ′pπ

1
p + ψpτ

1
p)P

1
n ]P

Both Eqs.41-42 contain the term (P 1n)P . We however may establish
that, e.g. Eq.(40) in [25]:

P |m|n (θ = 0) = δ|m|0 (43)

Therefore, (P 1n)P = 0 and we obtain:

(Sx)P = (Sy)P = 0 (44)

which is once again what we should have expected. The same result is
obtained from Eqs.(41)-(46) from [25] because, due to Eq.1, the g0n’s are zero so
that µnp, νnp, ηnp and λnp of Eqs.(42), (43), (45) and (46) of [25] respectively
are zero.

For the longitudinal component, we start from Eq.40 and, taking the
value on the axis for θ = 0, we obtain:

(Sz)P =
−1

r2
Re

∞∑
n=1

∞∑
p=1

icpwn cpw∗p [e−2iϕC−11np +(C−1−1np +C11np)+e2iϕC1−1np ]P (45)

We expect that the ϕ-dependent term of Eq.45 should be zero, according
to the definition of an axisymmetric beam. To check this, we isolate this term
to work it out independently, denoting it as (Sz)Pϕ. We readily have:

(Sz)Pϕ =
−1

r2
Re

∞∑
n=1

∞∑
p=1

icpwn cpw∗p [cos(2ϕ)(C−11np +C1−1np )+i sin(2ϕ)(C1−1np −C−11np )]P

(46)

We now recall that, see Eq.(39) in [25]:
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π1n(θ = 0) = τ1n(θ = 0) = Ωn =
−n(n+ 1)

2
(47)

Using Eq.32, we immediately obtain:

C−11np = C1−1np = 0 (48)

so that we indeed have (Sz)Pϕ = 0 as expected, while (Sz)P reduces to:

(Sz)P =
−1

r2
Re

∞∑
n=1

∞∑
p=1

icpwn cpw∗p (C−1−1np + C11np)P (49)

To evaluate (C−1−1np )P and (C11np)P , we (i) use Eq.32 to express them in
terms of bi-index BSCs, then (ii) use Eq.1 to express them in terms of uni-index
BSCs, then (iii) express the involved generalized Legendre functions for θ = 0
using Eq.47. This leads to:

C11np = C−1−1np /KK∗ =
np(n+ 1)(p+ 1)

8
gng
∗
p[ψnψ

′

p−ψpψ
′

n−iε(ψ′nψ′p+ψpψn)]P

(50)

which, once inserted into Eq.49, leads to:

(Sz)P =
−1

8
(1 +KK∗) Re

∞∑
n=1

∞∑
p=1

ik2cpwn cpw∗p np(n+ 1)(p+ 1)gng
∗
p (51)

×[
ψnψ

′

p − ψpψ
′

n − iε(ψ′nψ′p + ψpψn)

k2r2
]P

Now, we use Eq.21, to obtain:

cpw1 cpw∗1 =
9

4k2
(52)

Furthermore, we have :

ψn(x) = xjn(x) (53)
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ψ′n(x) = (n+ 1)jn(x)− xjn+1(x) (54)

and, e.g. Eq.(11.144) in [31]:

jn(x) = 2nxn
∞∑
s=0

(−1)s(s+ n)!

s!(2s+ 2n+ 1)!
x2s (55)

Then, we use Eq.53 to establish:

[
ψn(kr)

kr
]r=0 = [jn(kr)]r=0 = δn0 (56)

and we use Eqs.53, 54, and 56 to establish:

[
ψ′n(kr)

kr
]r=0 =

2

3
δn1 (57)

Inserting Eqs.52, 56, 57 into Eq.51 finally leads to the following simple
expression:

(Sz)P =
−1

2
ε(1 +KK∗) |g1|2 (58)

It is interesting to remark that this result is valid in the case of Rayleigh
particles, although we did not need to introduce any assumption on the size of
the particle as we needed to work out the expressions of the optical forces. This
is because the size of the particle does not intervene in the concept of Poynting
vector. In other words, evaluating Sz at P is directly a "point-like" evaluation
in the same way that a Rayleigh particle is a "point-like" particle.

3.4 Restricted Poynting vector at arbitrary location.

It is interesting to remark that Eq.58 may be reached following another
path, using a restricted Poynting vector in which only (n = 1) partial waves
are retained, this restriction being inspired by the fact that Rayleigh particles
are not sensitive to higher-order partial waves. This alternative way of deriving
Eq.58 will allow one to emphasize the particular role played by the lowest-order
partial waves. Let us then consider Eq.38, retain only the (n = p = 1)-terms in
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the summation, use Eq.52, and evaluate P 11 = − sin θ, π11 = −1 and τ11 = − cos θ.
We then obtain:

Sx =
9

8k2
|g1|2 sin θ{k

r
(ψ′′1 + ψ1)[(1−KK∗) sinϕψ1 (59)

+ε(1 +KK∗) cos θ cosϕψ′1]

−ε cos θ cosϕ

r2
(1 +KK∗)(ψ′1ψ

′
1 + ψ1ψ1)}

We then remember that we pass from Sx to Sy by changing sinϕ to
(− cosϕ) and cosϕ to sinϕ. Therefore, from Eq.59, we immediately obtain:

Sy =
9

8k2
|g1|2 sin θ{k

r
(ψ′′1 + ψ1)[(KK

∗ − 1) cosϕψ1 (60)

+ε(1 +KK∗) cos θ sinϕψ′1]

−ε cos θ sinϕ

r2
(1 +KK∗)(ψ′1ψ

′
1 + ψ1ψ1)}

For Sz, we start from Eq.40 and, again retaining only the (n = p = 1)-
terms, we have :

Sz =
−1

r2
Re icpw1 cpw∗1 {e−2iϕ(sin θS−1111 + cos θC−1111 ) (61)

+ sin θ(S−1−111 + S1111) + cos θ(C−1−111 + C1111 )

+e2iϕ(sin θS1−111 + cos θC1−111 )}

Then, we evaluate the various coeffi cients Smqnp and Cmqnp involved in
Eq.61, using Eqs.31-32, evaluating the involved generalized Legendre polynomi-
als as previously, and expressing the bi-index BSCs in terms of uni-index BSCs
using Eq.1. Once these coeffi cients are inserted into Eq.61, we obtain:

S−1111 =
−K

2
kr sin θ cos θ(ψ′′1 + ψ1)ψ1 |g1|

2 (62)

S−1−111 =
−iεKK∗

2
kr sin θ(ψ′′1 + ψ1)ψ

′
1 |g1|

2 (63)
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S1111 =
−iε
2
kr sin θ(ψ′′1 + ψ1)ψ

′
1 |g1|

2 (64)

S1−111 =
−K∗

2
kr sin θ cos θ(ψ′′1 + ψ1)ψ1 |g1|

2 (65)

C−1111 =
K

2
sin2 θψ′1ψ1 |g1|

2 (66)

C−1−111 =
−iεKK∗

2
cos θ(ψ′1ψ

′
1 + ψ1ψ1) |g1|

2 (67)

C1111 =
−iε
2

cos θ(ψ′1ψ
′
1 + ψ1ψ1) |g1|

2 (68)

C1−111 =
K∗

2
sin2 θψ′1ψ1 |g1|

2 (69)

Eqs.62-69 are then inserted in Eq.61 which is then found to reduce to:

Sz =
−9ε

8k2r2
(KK∗ + 1)[kr sin2 θ(ψ′′1 + ψ1)ψ

′
1 + cos2 θ(ψ′1ψ

′
1 + ψ1ψ1)] |g1|

2 (70)

in which we have used Eq.52. This result does not depend any more on ϕ as
it should.

3.5 Restricted Poynting vector at the particle loca-
tion.

From Eqs.59-60, we observe that Sx and Sy are proportional to sin θ. There-
fore, at the particle location (more generally on the z-axis), for which θ = 0, we
have:

(Sx)P = (Sy)P = 0 (71)

in which we recover Eq.44 as it should. For Sz, Eq.70 similarly reduces to:
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(Sz)θ=0 =
−9ε

8k2r2
(KK∗ + 1)(ψ′1ψ

′
1 + ψ1ψ1) |g1|

2 (72)

and, finally, using Eqs.56-57, we obtain:

(Sz)P =
−ε
2

(KK∗ + 1) |g1|2 (73)

which is identical to Eq.58.

4 Optical forces for on-axis Gaussian beams.

4.1 Generalities.

Among the infinite set of on-axis circularly symmetric Bessel functions, the
only case corresponding to a (non dark) axisymmetric beam of the first kind is
the zeroth-order Bessel beam (which is a non vortex beam). This case has been
discussed in [23] and is not considered any more in the present paper. We then
rather study the case of Gaussian beams which has been discussed by Lock [21]
in the limit of weak beam confinement. As we shall see, such a limit actually
washes out the occurrence of what we call non-standard forces, for the time
being.

One of the diffi culties with Gaussian beams is to possess a beam descrip-
tion which perfectly satisfies Maxwell’s equations (that we call a Maxwellian
description). Indeed, the most used general description of Gaussian beams may
be the one introduced by Davis [32] in 1979. In this formulation [33], and [3],
pp.97-106, we use a linearly vector potential A = (Ax, 0, 0) whose non zero
component reads as:

Ax = ψ(x, y, z) exp(−ikz) (74)

Next, we introduce the beam confinement parameter s = 1/(kw0) in
which w0 is the beam waist radius, and we expand the function ψ in powers of
s2 according to:

ψ = ψ0 + s2ψ2 + s4ψ4 + ... (75)

The lowest-order term ψ0, which is suffi cient to afterward recursively
determine the higher-order modes, represents the fundamental mode of the
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Gaussian beam. For some reason fairly subtle to explain (but see [33]), the
fields restricted to ψ0 define the first-order Davis beam, while the higher-order
modes are named third-order, fifth-order Davis beams and so on. Explicit ex-
pressions for the kth-order Davis beams are known only up to k = 5 [34]. None
of these beams is an exact solution of Maxwell’s equations. Maxwell’s equations
are satisfied only in the limit k → ∞. We must also have in mind that s is a
small parameter. For instance, a typical figure is s ' 10−3 for λ = 0.5 µm and
w0 = 50 µm. It is 0 for a plane wave while its maximal value is s ' 1/(2π) ' 0.16
for a tightly focused beam with w0 ' λ.

Nevertheless, Davis formulation has been the basis to the development of
Maxwellian descriptions of Gaussian beams, named (i) localized approximation
(LA), (ii) modified localized approximation (MLA), and (iii) improved standard
beam description (ISBD). These Maxwellian descriptions are now going to be
studied systematically from the point of view of optical forces in the framework
of the Rayleigh limit of GLMT. In all these beams, the parameters K and ε
introduced in Eq.1 receive the values K = 1 and ε = −1 [24], [25]. Eqs.17, 18,
and 58, 73 then simplifies to:

CRepr,z =
λ2

3π
(
m2 − 1

m2 + 2
)2α6 Re g1(g

∗
1 + g∗2) (76)

CImpr,z =
−λ2

2π

m2 − 1

m2 + 2
α3 Im g1(g

∗
1 + g∗2) (77)

(Sz)P = |g1|2 (78)

Insofar as the transverse expressions are trivial, i.e. Cpr,x = Cpr,y =
0 and Sx = Sy = 0, we shall focus ourselves on the longitudinal quantities
expressed by Eqs.76-78.

4.2 Localized approximation.

The localized approximation to the evaluation of BSCs has been an invalu-
able tool to carry out GLMT computations. It has been developed in [35], [36],
[37], [38] for Gaussian beams and in [39] for laser sheets. It received a rigorous
justification for Gaussian beams in [40], see [41] for a review. In the on-axis
localized approximation framework, the uni-index BSCs read as:

gn =
eikz0

1 + iA
exp[
−(n+ 1/2)2s2

1 + iA
] (79)
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in which:

A = 2s
z0
w0

= 2kz0s
2 (80)

in which we have used the definition of the beam confinement factor, and
in which z0 defines the distance of the beam waist center with respect to the
particle and is then 0 for a beam waist location (in which case A is zero as well).

From Eqs.76-78, we need:

g1 =
eikz0

1 + iA
exp(

−9s2/4

1 + iA
) (81)

g2 =
eikz0

1 + iA
exp[
−25s2/4

1 + iA
] (82)

We then evaluate:

g1(g
∗
1 + g∗2) =

1

1 +A2
[M+N (cos Θ− i sin Θ)] (83)

in which:

M = exp(
−9s2/2

1 + 4s2
z20
w20

) (84)

N = exp(
−17s2/2

1 +A2
) (85)

Θ =
8ks4z0
1 +A2

(86)

Let us first explore the weak confinement limit when s → 0. Then
we haveM≈ 1, N ≈ 1, cos Θ ≈ 1 and sin Θ ≈ Θ, leading to:

g1(g
∗
1 + g∗2) =

1

1 +A2
[2− iΘ)] (87)
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Inserting Eq.87 into Eqs.76-77, we obtain:

CRepr,z =
2λ2

3π
(
m2 − 1

m2 + 2
)2α6

1

1 +A2
(88)

CImpr,z =
4kλ2

π

m2 − 1

m2 + 2
α3

s4z0
(1 +A2)2

(89)

Relaxing the weak confinement assumption, we may rewrite Re g1(g
∗
1 +

g∗2) as a sum of two terms according to:

Re g1(g
∗
1 + g∗2) = Re |g1|2 + Re g1g

∗
2 (90)

which induces the splitting of CRepr,z into two terms, according to:

CRepr,z = CRe,Spr,z + CRe,NSpr,z (91)

in which:

CRe,Spr,z =
λ2

3π
(
m2 − 1

m2 + 2
)2α6

1

1 +A2
exp[

−9s2

2(1 +A2)
] (92)

which is half CRepr,z of Eq.88 in the beam confinement limit, and:

CRe,NSpr,z =
λ2

3π
(
m2 − 1

m2 + 2
)2α6

1

1 +A2
exp[

−17s2

2(1 +A2)
] cos(

4s2

1 +A2
) (93)

It is interesting to remark that, in the weak confinement limit, Eq.93 reduces
as well to half CRepr,z of Eq.88. Therefore, in this limit, the summation of the S-
term of Eq.92 and of the NS-term of Eq.93 is equal to the total CRepr,z of Eq.88.
This fact is related to the other fact that CRe,Spr,z and CRe,NSpr,z have the same order
of magnitude in the present LA-case, in contrast with we shall observe for MLA
and ISBD, e.g. Eqs.113 and 123.
Next, we evaluate, neglecting higher-order terms:

M = exp(
−9s2/2

1 +A2
) ≈ 1− 9s2/2

1 +A2
+O(s4) (94)
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N = exp(
−17s2/2

1 +A2
) ≈ 1− 17s2/2

1 +A2
+O(s4) (95)

cos Θ ≈ 1 +O(s6) (96)

sin Θ ≈ 8ks4z0
1 +A2

+O(s12) (97)

Inserting these results in Eq.83, we obtain, neglecting higher-order terms:

g1(g
∗
1 + g∗2) ' 1

1 +A2
[2− 13s2

1 +A2
− i8ks

4z0
1 +A2

] (98)

Therefore, for CImpr,z of Eq.77, we obtain, using Eq.98, and again neglect-
ing higher-order terms:

CImpr,z =
4kλ2

π

m2 − 1

m2 + 2
α3

s4z0
(1 +A2)2

(99)

This result introduces an O(s4) ratio for CImpr,z/C
Re,S
pr,z or CImpr,z/C

Re,NS
pr,z .

4.3 Modified localized approximation.

The modified localized approximation has been introduced in [40], [42]. It
introduces a slight modification of the localized approximation. Further discus-
sions of LA and MLA are available from [43] and [44]. In this framework, the
uni-index BSCs read as:

gn =
eikz0

1 + iA
exp[
−(n− 1)(n+ 2)s2

1 + iA
] (100)

Then, processing similarly as for the LA-case, we have:

g1 =
eikz0

1 + iA
(101)
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g2 =
eikz0

1 + iA
exp[

−4s2

1 + iA
] (102)

g1(g
∗
1 + g∗2) =

1

1 +A2
[1 +K(cos Θ− i sin Θ)] (103)

in which Θ is defined by Eq.86 and:

K = exp(
−4s2

1 +A2
) (104)

In theweak confinement limit when s→ 0, we have K ≈ 1, cos Θ ≈ 1
and sin Θ ≈ Θ, leading to:

g1(g
∗
1 + g∗2) =

1

1 + 4s2
z20
w20

[2− iΘ)] (105)

and to:

CRe,Spr,z =
2λ2

3π
(
m2 − 1

m2 + 2
)2α6

1

1 +A2
(106)

CImpr,z =
4kλ2

π

m2 − 1

m2 + 2
α3

s4z0
(1 +A2)2

(107)

which are identical to Eqs.87-89 respectively.
If we relax the weak confinement limit assumption, we have:

K = exp(
−4s2

1 +A2
) ≈ 1− 4s2

1 +A2
+O(s4) (108)

while Eqs.96-97 are still valid. Neglecting higher-order terms, we then ob-
tain:
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g1(g
∗
1 + g∗2) ' 1

1 +A2
[2− 4s2

1 +A2
(109)

−i(1− 4s2

1 +A2
)
8ks4z0
1 +A2

]

It is then found that:

CRepr,z = CRe,Spr,z + CRe,NSpr,z (110)

in which:

CRe,Spr,z =
2λ2

3π
(
m2 − 1

m2 + 2
)2α6

1

1 +A2
(111)

CRe,NSpr,z =
−4λ2

3π
(
m2 − 1

m2 + 2
)2α6

s2

(1 +A2)2
(112)

Therefore, CRepr,z can again been separated into two terms. Furthermore,
we find that the ratio of the NS- over the S-terms is given by:

CRe,NSpr,z

CRe,Spr,z

=
−2s2

1 + 4s2
z20
w20

=
−2s2

(1 +A2)
' O(s2) (113)

which is O(s2). For CImpr,z, we obtain, neglecting higher-order terms:

CImpr,z =
4kλ2

π

m2 − 1

m2 + 2
α3

s4z0
(1 +A2)2

(114)

which is identical to Eqs.89 and 99, and introduces another O(s2) ratio for
CImpr,z/C

Re,NS
pr,z , that is to say an O(s4) ratio for CImpr,z/C

Re,S
pr,z .

24



4.4 Improved standard beams.

In [40] devoted to on-axis Gaussian beams in the Davis formulation, it
was found that the uni-index BSCs gn for the first-, third- and fifth-Davis
beams could be expressed in an unified way as the sum of a first term satisfy-
ing Maxwell’s equations and of a second term which was coordinate-dependent
in contrast with the fact that the BSCs should not depend on any coordinate,
see Eqs.(75) and (76) in [40]. These coordinate-dependent terms indicate that
the kthe-Davis beams used (k = 1, 3, 5) do not exactly satisfy Maxwell’s equa-
tions. Removing the coordinate-dependent terms and generalizing the expres-
sion of the Maxwellian contributions allowed one to introduce what was called
a S-beam (S standing for "standard"). Standard beams have been discussed
and/or used as well in [8], [33], [43], [44], and have been considered as providing
a "perfect" ("standard") on-axis description of Gaussian beams. Unfortunately,
it has been observed [8] that the standard beam description exhibited a finite
radius of convergence, therefore spoiling the possibility of evaluating radiation
pressure forces, particularly reverse forces, for some interesting ranges of para-
meters, using GLMT. The improved standard beam description has therefore
been established afterward with an infinite radius of convergence, and can then
be claimed to provide an optimal Maxwellian description of Gaussian beams.
In this framework, the uni-index BSCs gn read as, e.g. Eq.(16) in [45]:

gn =
eikz0

1 + iA

∞∑
p=0

1

p!

(−s2)p
(1 + iA)p

(n+ 1 + p)!

(n− 1− p)!
(n− 1)!

(n+ 1)!
(115)

As explained after Eq.(2) in [45], this way to write the equation seems to
make a problem when n = p = 1. To avoid this diffi culty, we shall rewrite
Eq.115 under the following form:

gn =
eikz0

1 + iA

∞∑
p=0

1

p!

(−s2)p
(1 + iA)p

(n− p)(n− p+ 1)...n(n+ 1)...(n+ p)(n+ p+ 1)

n(n+ 1)

(116)

Processing similarly as for LA and MLA, we then have:

g1 =
eikz0

1 + iA
(117)

g2 =
eikz0

1 + iA
(1− 4s2

1 + iA
) (118)
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leading to:

g1(g
∗
1 + g∗2) =

1

1 +A2
[2− 4s2(1 + iA)

1 +A2
] (119)

It is then once again found that CRepr,z can be separated into two terms
according to:

CRepr,z = CRe,Spr,z + CRe,NSpr,z (120)

in which:

CRe,Spr,z =
2λ2

3π
(
m2 − 1

m2 + 2
)2α6

1

1 +A2
(121)

CRe,NSpr,z =
−4λ2

3π
(
m2 − 1

m2 + 2
)2α6

s2

(1 +A2)2
(122)

We then note that Eq.121 is identical to Eqs.88 and 111, and that Eq.122
is identical to with Eq.112. The ratio of NS- and S-terms is then given by:

CRe,NSpr,z

CRe,Spr,z

=
−2s2

1 + 4s2
z20
w20

=
−2s2

(1 +A2)
' O(s2) (123)

which is identical to Eq.113. As far as CImpr,z is concerned, it is found to read
as:

CImpr,z =
4kλ2

π

m2 − 1

m2 + 2
α3

s4z0
(1 +A2)2

(124)

which is identical to Eqs.89, 94, 107, 114, and once again introduces an-
other O(s2) ratio when compared to NS-forces and another O(s4)-ratio when
compared to S-forces.
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5 Identification of optical forces within the frame-
work of the dipole theory of forces.

The different kinds of forces exhibited in the previous section, and derived
using the Rayleigh limit of GLMT, are now going to be interpreted through their
identification with the forces of the dipole theory of forces. We shall distinguish
(i) scattering forces, (ii) gradient forces, and (iii) non-standard forces.

5.1 Scattering forces.

In the framework of the dipole theory of forces, scattering forces are pro-
portional to the sixth power of α and to the corresponding Poynting vector
components. In the MLA-case, and in the weak confinement limit, it has been
established by Lock [21] that the force CRe,Spr,z described by Eq.106 is indeed a
scattering force in the framework of the dipole theory of forces. The superscript
S in CRe,Spr,z may then be viewed as standing for "Scattering", or standing for
"Standard", by opposition to the superscript NS in CRe,NSpr,z where it stands for
"Non-standard".
More generally, all forces labelled CRe,Spr,z are scattering forces both propor-

tional to the sixth power of α and to the z-component of the Poynting vector
(taken at P ). In the case of LA, this is obvious as exhibited by the decomposi-
tion carried out in Eq.90 when the weak confinement limit is not implemented.
Furthermore, when the weak confinement limit is assumed, it happens that
CRe,Spr,z of Eq.92 and CRepr,z of Eq.88 are all proportional to 1/(1 + A2) which is

exactly the value of (Sz)P = |g1|2 in this limit, indicating that CRe,Spr,z and C
Re
pr,z

are indeed scattering forces in this limit.
For MLA and ISBD, g1 is given by eikz0/(1 + iA), see Eqs.101 and 117

respectively, so that we still have (Sz)P = 1/(1 + A2). Therefore, CRe,Spr,z which
are proportional to 1/(1 + A2), see Eqs. 106 and 121, are indeed once again
scattering forces.

A complementary point of view is obtained if we return to the most
general framework of the Rayleigh limit of GLMT. We then have that the forces
proportional to the sixth power of α are proportional to Re(G), with G reading
as (see Eqs.(26), (43)-(46) in [13]):

G = G11 +G12 +G0 (125)

in which we have, after implementing the conditions of Eq.1 of the present
paper:

G11 = i[g−11,TMg
−1∗
1,TE − g

1
1,TMg

1∗
1,TE ] =

1

2
|g1|2 (126)
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G12 = g−11,TMg
−1∗
2,TM + g11,TMg

1∗
2,TM ] =

1

2
g1g
∗
2 (127)

G0 =
1

3
g01,TMg

0∗
2,TM = 0 (128)

We then observe that the G0-term does not contribute to any optical
force in the present case of axisymmetric beams of the first kind. Conversely
Re(G11) = |g1|2 /2, proportional to (Sz)P is at the origin of the scattering forces
discussed in the present subsection. The contribution due to the term G12 will
be discussed later.

5.2 Gradient forces.

In principle, gradient forces are proportional to the gradient of |E|2 taken
at P , e.g. [21] and references therein. We may avoid the calculation of this
gradient by noting that it has already been established [21] that CImpr,z of Eq.107
for the weak confinement limit of a Gaussian beam described using MLA is a
gradient force. Therefore all CImpr,z exhibited above, i.e. Eqs.89, 99, 114, and
124 corresponding to the weak confinement of LA, to LA without the weak
confinement assumption, to MLA without the weak confinement assumption,
and to ISBD respectively, which are all equal to CImpr,z of Eq.107, are gradient
forces as well. We observe that these gradient forces are proportional to the third
power of α. Let us also remark that these gradient forces have been evaluated
using Eq.77 which contains coupling terms g1g∗2 which imply an interaction
between partial waves of order n = 1 and partial waves of order n = 2.

5.3 Non-standard forces.

Such couplings do not occur in the case of scattering forces because they
are proportional to (Sz)P = |g1|2 which only involves contributions associated
with n = 1. These scattering forces are proportional as well to the sixth power
of α. However, we also observe other forces which are still proportional to the
sixth power of α, but are not proportional to (Sz)P = |g1|2. They therefore
do not unambiguously deserve to be called scattering forces. They are somehow
of a different "nature" insofar as they exhibit couplings between (n = 1)- and
(n = 2)-partial waves.

The origin of all these coupling terms may be already detected in Eq.7
in terms involving gmn,TMg

m∗
n+1,TM and gmn,TEg

m∗
n+1,TE , although only the (n = 1)-

Mie coeffi cient is retained in the summation. These forces, proportional to the
sixth power of α, and which are not scattering forces, have been named axicon
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forces in the study of circularly symmetric Bessel beams because their existence
and manifestations were intimately related to the existence of axicon angles in
the beam description, later on non-standard forces when it has been recognized
that they were not specific of beams exhibiting axicon terms, as we have done
in the present paper up to now. It is furthermore remarkable that they do
not appear in the case of the weak confinement limit studied by Lock [21].
Otherwise, they would have already become a matter of debate in 2004.
It is only recently that it has been recognized that these forces, resulting

from the Rayleigh limit of GLMT, have their counterparts in the dipole theory
of forces. This has been the consequence of two facts (i) that it has been
numerically demonstrated in the case of circularly symmetric Bessel beams that
the Rayleigh limit of GLMT and the dipole theory of forces numerically agree up
to 1,000 decimal places [46] and (ii) that there is a formal identification between
both approaches, independently of the kind of beams under consideration [47],
these statements holding, for the time being, for longitudinal forces (a similar
treatment is under way for transverse forces). Elaborating on Eq.(7) of Chaumet
and Nieto-Vesperinas [48], it has been established [47] that the longitudinal
optical forces, in both approaches, can be written as:

F sz =
4π

η
ωµαI ReSz +

2π

η
αI Im[∂z |E|2]−

2π

η
αI Im[(E∗.∇)Ez] (129)

which is to be evaluated at P , and in which µ is the permeability of the
medium, and η = |E0|2 /2. Also, αI is expressed versus the Mie coeffi cient
a1 according to αI = 3 Re(a1)/(2k

3). The prefactors used to write Eq.129
satisfy two conditions (i) that the normalization condition E0H∗0/2 of GLMT is
implemented in the dipole of forces as well and (ii) that F sz has been given the
dimension of area and can then directly be compared with the cross-sections of
GLMT.
Therefore, in Eq.129, the first term is related to the scattering forces of

subsection 5.1. Concerning the second term, although depending on [∂z |E|2],
it is not the gradient term of subsection 5.2. Indeed, first, being proportional
to αI , it is proportional to the sixth power of the size parameter, while the
gradient term is proportional to the third power. Second, the gradient term
involves a real part instead of the imaginary part of the second term of Eq.129.
And, finally, because |E|2 is real, this second term is zero as already mentioned
elsewhere, e.g. [46], although we preferred to formally preserve it. The third
term is related to non-standard forces (the expression "related to" is to be taken
very seriously as we shall explain and demonstrate below). Concerning this third
term, a paper by Albaladejo et al. in 2009 [49], later commented in 2013, i.e.
4 years later [50], [51], has given to it the name of curl forces. It is maybe a
matter of taste whether these curl forces must be called scattering forces as well.
Our recommendation however is to give to them a particular name to avoid any
confusion. In a review paper published the same year (in 2013) by Marago et al.
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[52], they received the name of polarization gradient forces. It happens however
that these curl forces do not identify yet with the non scattering forces. Indeed,
it has been demonstrated elsewhere [47] that they may be expressed in terms of
BSCs according to:

F c = −4παI Im[(E∗.∇)Ez] (130)

= 4παI Im{ ik
3
g02,TMg

0∗
1,TM

+ik[(g12,TMg
1∗
1,TM + g−12,TMg

−1∗
1,TM )

−i(g11,TEg1∗1,TM − g−11,TEg
−1∗
1,TM )]}

which, under the conditions of Eq.1, reduces to:

F c = 2πkαI [Re(g1g
∗
2)− Re(|g1|2)] (131)

The curl forces are therefore the summation of two contributions, the
first one corresponding to what we have called non-standard forces, e.g. the
contribution due to G12 of Eq.127 and the second one, being proportional to
the Poynting vector component (Sz)P = |g1|2, is a scattering force. In summary,
the dipole theory of forces expressed the forces as a summation of (i) scattering
forces (ii) gradient forces and (iii) curl forces, e.g. first, second and third terms
of Eq.129 respectively while the Rayleigh limit of GLMT expresses the force as
a summation of (i) scattering forces (ii) gradient forces and (iii) non-standard
forces, with however the proviso that the scattering forces of the dipole theory
of forces do not exactly identify with the scattering forces of the Rayleigh limit
of GLMT insofar as the curl forces of the former contain a contribution which
pertains to the scattering forces of the latter.

It is to be noted that curl forces have been largely ignored for many
years. It does not appear in Chaumet and Vesperinas in 2000 [48] and, in 2009,
Albaladejo et al. [49] commented that "it is usually neglected in the discussion
of optical forces on small particles". The identification of non-standard forces
is still more recent. They have been actually fortuitously isolated under the
name of axicon forces when studying the Rayleigh limit of GLMT [13]. They
present the advantage of being a pure coupling term in contrast with curl forces
which incorporate as well a scattering force contribution which does not involve
any coupling between partial waves of different order. In other words, the curl
forces have the disadvantage of summing up two kinds of contribution which,
somehow, are of a different nature.

In the present case of Gaussian beams studied in this paper, and in the
framework of the Rayleigh limit of GLMT together with the terminology used
in it, we observed that non-standard forces are smaller than scattering forces

30



by an O(s2)-factor in MLA and ISBD, typically 10−6 for a typical focussing of
the beam and still about 0.026 for a tightly focused beam. They are completely
washed out for s = 0, i.e. for a plane wave and, more generally, as can be
seen from Eq.129 whenever Ez = 0, i.e. for any pure TEM waves, in particular
for axicon forces of circularly symmetric Bessel beams when the axicon angle
is 0, e.g. [13], [22]. In contrast, for s = 0 in the LA-case, the NS-forces do
not vanish, strictly speaking, but converge to usual scattering forces. This is
in agreement with the fact that there is no NS-forces in the weak confinement
limit, i.e. for s = 0 and even for s small enough, the behavior of LA-Gaussian
beams, from the point of view of the existence of NS−forces is the same than
the one of TEM−waves. The case s = 0 requires us to make a final last remark,
noting that Eq.131 can be rewritten as:

F c = 2πkαI Re[g∗1(g2 − g1)] (132)

This equation immediately implies that curl forces vanish when s = 0
in all cases, i.e. in LA (see Eqs.81-82), MLA (see Eqs.101-102) and in ISBD
(see Eqs.117-118) in agreement with the fact that they have to vanish for pure
TEM waves.

6 Conclusion.

This paper discussed the Rayleigh limit of the GLMT in the case of (non
dark) on-axis axisymmetric beams of the first kind, with the examples of various
representations of Gaussian beams. It provided an opportunity to emphasize
the identification between the Rayleigh limit of GLMT and the dipole theory
of forces, at least for longitudinal forces (a current work is expected to be able
to establish the same kind of identification as far as transverse forces are con-
cerned). The optical forces for point-like (and small enough) particles may then
be decomposed, in both formalisms, as a summation of scattering, gradient, and
non-standard forces. However, the dipole theory of forces, as can be viewed
from Eq.129 is expressed in terms of the total field E, i.e. including all partial
waves. It may be argued that actually, insofar as the forces are evaluated at P ,
the total field will not actually play an effective role, but only the values of the
fields at P and the values of the derivatives of the field at P , which is equivalent
to retaining only two terms in a Taylor expansion of the field (J.A. Lock, private
communication). However, this restriction, which is hidden in the dipole theory
of forces, is completely exhibited in the Rayleigh limit of GLMT which expresses
the optical forces by retaining only partial waves of order (n = 1) and (n = 2).
In this latter formalism, the optical forces are therefore explicitly expressed in
terms of low-order BSCs.
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The fact that only low-order BSCs intervene in the optical forces on Rayleigh
particles may be furthermore viewed as a consequence of the Van de Hulst prin-
ciple of localization which, by the way, is at the origin of various localized
approximations such as the ones used in the present paper, see [41] for a review,
[53], [54] for complements, and [55], [56], [57], and references therein, for warn-
ings against the use of localized approximations in the case of beams exhibiting
an axicon angle and/or some amount of helicity.
According to this Van de Hulst principle of localization [28], p. 208, a partial

wave of order n is associated with rays passing at a distance from the axis equal
to (n+1/2)λ/(2π). Therefore, partial waves of order n = 1 and n = 2 correspond
to rays which pass at distances equal to 3λ/(4π) ≈ λ/4 and 5λ/(4π) ≈ λ/2 from
the axis respectively, i.e. at distances significantly smaller than the wavelength.
We may loosely state that partial waves of order n > 2 pass at distances "too
far away" from the axis to be able to interact with the "point-like" particle
located on it. A more refined discussion would admit that the influence of each
partial wave, depending on the radial dependence of a spherical Bessel function,
actually extends from the origin to infinity. But the interaction of the partial
wave with the scatterer is strongest where the numerical value of the partial
wave is the largest. The location of this largest interaction is summarized in the
principle of localization which is convenient to comment as we have done above.
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