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1 Introduction.

The generalized Lorenz-Mie theory stricto sensu (GLMT) is a rigorous analytical theory describing the interaction between an arbitrary electromagnetic shaped beam (or structured beam) and a homogeneous spherical particle described by its diameter d and its complex index of refraction n p (supposed to be real in the context of the present paper), e.g. [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Gouesbet | Combustion measurements[END_REF], [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. This theory had many applications, particularly in the …eld of optical particle characterization, e.g. [START_REF] Gouesbet | T-matrix methods for electromagnetic structured beams: A commented reference database for the period 2014-2018[END_REF], [START_REF] Gouesbet | Van de Hulst Essay: A review on generalized Lorenz-Mie theories with wow stories and epistemological discussion[END_REF]. Another topic concerns the mechanical e¤ects of light (radiation pressure forces and torques) which have been investigated as well by using GLMT, including the prediction of reverse radiation forces, e.g. [START_REF] Corbin | Interaction between a sphere and a Gaussian beam: computations on a micro-computer[END_REF], [START_REF] Ren | Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance e¤ects[END_REF], [START_REF] Ren | Prediction of reverse radiation pressure by generalized Lorenz-Mie theory[END_REF], [START_REF] Polaert | Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam[END_REF] with the case of spheroids considered in the framework of an extended GLMT [START_REF] Xu | Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam[END_REF], [START_REF] Xu | Radiation torque exerted on a spheroid: analytical solution[END_REF]. A review devoted to GLMTs (in a plural extended meaning) and mechanical e¤ects of light is available from [START_REF] Gouesbet | Generalized Lorenz-Mie theories and mechanical e¤ects of laser light, on the occasion of Arthur Ashkin's receipt ot the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review[END_REF] with about 300 references.

However, strange as it may be, the application of GLMT to the case of small particles in the Rayleigh regime (point-like particles) has not been considered in a systematic way until recently, namely until [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] which dealt with longitudinal optical forces exerted by o¤-axis circularly symmetric Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory. One of the interests of the Rayleigh regime with respect to the case of large particles is that it allows one to manipulate more easily the formal computations and therefore to provide a better picture of the physical mechanisms at work.

In particular, the GLMT may describe the incident …elds using expansions either in terms of scalar potentials [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF] or in terms of vector spherical wave functions [START_REF] Gouesbet | T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates[END_REF] and then encodes the structure of the beam in a set of beam shape coe¢ cients (BSCs) usually denoted as g m n;T M and g m n;T E (n from 1 to 1, m from ( n) to (+n), T M for "Transverse Magnetic" and T E for "Transverse Electric"). As a result the Rayleigh limit of the GLMT expresses optical forces in terms of BSCs and will then reveal intimate features of these optical forces which are not revealed when we use the more traditional dipole theory of forces.

In [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], the example of circularly symmetric Bessel beams has been chosen because (i) for such beams, the gradient with respect to the axis of propagation z of jEj 2 is zero and, therefore, gradient forces were expected to be zero as well (an expectation which has been con…rmed), allowing one to concentrate on scattering forces and (ii) the BSCs of such beams were known under closed forms, allowing an easier implementation of the formal computations [START_REF] Wang | General description of circularly symmetric Bessel beams of arbitrary order[END_REF], [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF], [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF], see also [START_REF] Taylor | Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations[END_REF], [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding[END_REF], [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding: erratum[END_REF]. The complication induced by the fact that, for the sake of generality, an o¤-axis con…guration had been considered, was supposed to be in part compensated by the fact the analysis was supposed to ignore, at least partly, the details involved by the existence of gradient forces if they had not been equal to zero.

The main …ndings of [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] are as follows. While the dipole theory of forces expresses optical forces using the total electric …eld E, i.e. using all partial waves of all orders (from n = 1 to 1), the Rayleigh limit of the GLMT only uses BSCs associated with n = 1 and n = 2. Due to this fact, as it stood at this moment, the equivalence between the Rayleigh limit of GLMT and the traditional dipole theory of forces was questionable. Furthermore, beside the traditional gradient forces (although zero in the case of circularly symmetric Bessel beams) proportional to 3 (in which = d= , with the wavelength) and to the gradient of jEj 2 , and the traditional scattering forces proportional to 6 and to the Poynting vector, another kind of forces proportional to 6 but not proportional to the Poynting vector was observed. These forces had no counterpart in a discussion of longitudinal optical forces exerted by Gaussian beams in the weak con…nement limit in the Rayleigh limit using GLMT, such as reported by Lock in [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF], which exhibited only traditional gradient and scattering forces of the traditional dipole theory of forces. The "new" kind of forces described in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] depends on the axicon angle which intervenes in the mathematical description of Bessel beam and they therefore have been called axicon forces. The fact that such forces were not involved in the dipole theory of forces as expounded in [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF] and in other papers reinforced the signi…cance of the question to know whether the Rayleigh limit of GLMT is identical or not, and in which way, to the dipole theory of forces. Although not completely solved in utmost rigor, this issue will be discussed at the end of the present paper.

After [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] devoted to longitudinal forces, another paper was devoted to transverse forces exerted by circularly symmetric Bessel beams on Rayleigh particles [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. This paper revealed the existence of transverse axicon forces similar to the longitudinal axicon forces exhibited in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. Furthermore, in both cases, these extra-forces are zero when the axicon angle is zero (or become a traditional scattering force in this limit). These facts were a motivation to give the name of axicon forces to the extra-forces thus involved. Also, it was a clue that they might be speci…c of all kinds of beams exhibiting an axicon angle and that, for some reason, still to be revealed, the dipole theory of forces was lacking something in the case of beams exhibiting an axicon angle, making the identi…cation between the Rayleigh limit of the GLMT and the dipole theory of forces more questionable.

To advance toward the solution to such issues, it has been decided to simplify the formalism at hand by considering circularly symmetric Bessel beams in the case of an on-axis con…guration rather than in a case of an o¤-axis con-…guration [START_REF] Gouesbet | Optical forces exerted by on-axis Bessel beams on Rayleigh particles in the framework of generalized Lorenz-Mie theory[END_REF]. The present paper reports on another step, still dealing with an on-axis con…guration, particularly with longitudinal forces insofar as the transverse forces will be found to be zero. Rather than considering speci…cally circularly symmetric Bessel beams, it deals with a large class of beams which encompasses circularly symmetric Bessel beams of order l = 0 (no topological charge) and Gaussian beams. Revisiting Gaussian beams and relaxing the assumption of a weak con…nement limit used by Lock [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF], we shall observe that extra-forces exist as well in the case of Gaussian beams although they do not possess any axicon angle. Therefore, rather than using the terminology "axicon forces", we have used the less speci…c terminology "non-standard forces". Whether we can say more on the nature of these non-standard forces is another subject of the present paper.

The class of beams to be considered is formed of (on-axis) non dark axisymmetric beams of the …rst kind. Before embarking in the bulk of the present paper, the terminology used in the title requires to be explained. In the present paper, axisymmetric beams are de…ned as beams which, when propagating along the z-direction, possess a component S z of the Poynting vector which does not depend on the azimuthal angle ' [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]. Circularly symmetric beams [START_REF] Wang | General description of circularly symmetric Bessel beams of arbitrary order[END_REF], [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF], [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF], may then be de…ned as axisymmetric beams which possess a supplementary symmetry property, namely that the transverse component

S t = q S 2
x + S 2 y of the Poynting vector as well does not depend on ' (although S x and S y may individually depend on this angle). BSCs of axisymmetric beams satisfy very appealing expressions when all the BSCs g 1 n;X (X = T M; T E) are di¤erent from 0, e.g. Eqs.( 66) and ( 78) and a remark between Eqs.( 65) and (66) in [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF], namely:

g m n;T M = g m n;T E = 0, m 6 = 1 g n =2 = g 1 n;T M = g 1 n;T M =K = i"g 1 n;T E = i"g 1 n;T E =K (1) 
in which K describes the polarization state of the beam and " = 1 de…nes the beam-propagation direction. Eq.1 shows that all bi-index BSCs g 1 n;X can be expressed in terms of uni-index BSCs g n , leading to very signi…cant simpli…cations of the formalism. Such axisymmetric beams are called axisymmetric beams of the …rst kind and are considered in the present paper. It may happen that not all g 1 n;X are di¤erent from 0. This is the case for on-axis circularly symmetric Bessel beams when the order is equal to l = (+2), in which case the BSCs g 1 n;X are 0, or l = ( 2) in which case the BSCs g 1 n;X are 0, e.g. [START_REF] Gouesbet | Optical forces exerted by on-axis Bessel beams on Rayleigh particles in the framework of generalized Lorenz-Mie theory[END_REF]. Such beams are from now on called axisymmetric of the second kind. Furthermore, we may consider whether beams are dark or non dark. By de…nition, an on-axis axisymmetric beam is said to be dark (more explicitly dark along its axis of symmetry) i¤ (if and only if) the z component of its Poynting vector S z taken along the z-direction on its axis (i.e. explicitly at = 0) is zero [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]. A beam which is non dark is called a non dark beam (or a bright beam). We furthermore possess a darkness theorem telling us that, if all the BSCs g 1 n;X are zero, then the beam is dark (on the axis), e.g. [START_REF] Gouesbet | A darkness theorem for the beam shape coe¢cients and its relationship to higher-order non vortex Bessel beams[END_REF]. This implies that axisymmetric beams of the …rst and of the second kinds discussed above are non dark. There are therefore three kinds of axisymmetric beams to be considered (i) axisymmetric beams of the …rst kind (which are non dark), (ii) axisymmetric beams of the second kind (which are non dark) and (iii) axisymmetric dark beams. The present paper is devoted to item (i) while items (ii) and (iii) are postponed to future works. Examples of (non dark) axisymmetric beams of the …rst kind are plane waves, on-axis spherical wave fronts, circularly symmetric Bessel beams of order l = 0, and Gaussian beams [START_REF] Gouesbet | Optical forces exerted by on-axis Bessel beams on Rayleigh particles in the framework of generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | A darkness theorem for the beam shape coe¢cients and its relationship to higher-order non vortex Bessel beams[END_REF].

The paper is organized as follows. Section 2 deals with the expressions of optical forces. Section 3 deals with the expressions for the Poynting vector components. Section 4 develops the example of Gaussian beams. In section 5, optical forces observed in Section 4 are interpreted both in the framework of the Rayleigh limit of GLMT and in the framework of the traditional dipole theory of forces. Section 6 is a conclusion. Main equations are Eqs.8, 15, 17, 18 for optical forces, and Eqs.44, 58, 71, 73 for the Poynting vector.

2 Optical forces in the Rayleigh limit of GLMT.

2.1

General expressions.

For reader convenience, the general expressions concerning the radiation pressure cross-sections C pr;i (i = x; y; z) are recalled in this subsection, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories[END_REF], with a normalization condition reading as E 0 H 0 =2 = 1 (E 0 and H 0 being electric and magnetic …eld strengths respectively, with the star denoting a complex conjugation). Optical forces F i are then related to the radiation pressure crosssections C pr;i by F i = C pr;i =c in which c is the speed of light, e.g. [START_REF] Van De Hulst | Light scattering by small particles[END_REF], p.34. The time-dependence of the wave is taken to be exp(i!t) which is the usual convention in GLMT.

The transverse cross-section C pr;x reads as:

C pr;x = 2 2 1 X p=1 1 X n=p 1 X m=p 16 =0 (n + p)! (n p)! (2) 
[Re(S 

n 2 ) + 2n + 1 n 2 (n + 1) 2 nm Re(T p 1 mn T p nm 2V p 1 mn + 2V p nm )]
in which:

S p nm = (a n + a m )g p n;T M g p+1 m;T M + (b n + b m )g p n;T E g p+1 m;T E (3) 
T p nm = i(a n + b m )g p n;T M g p+1 m;T E + i(b n + a m )g p n;T E g p+1 m;T M (4) 
U p nm = a n a m g p n;T M g p+1 m;T M + b n b m g p n;T E g p+1 m;T E (5) 
V p nm = ib n a m g p n;T E g p+1 m;T M ia n b m g p n;T M g p+1 m;T E [START_REF] Corbin | Interaction between a sphere and a Gaussian beam: computations on a micro-computer[END_REF] in which the notations are the ones of [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF]. In particular, a n and b n are the usual Mie coe¢ cients of the usual Lorenz-Mie theory, is the wave-length, and nm is the Kronecker symbol. The y-component C pr;y is obtained from the x component by changing Re to Im, while the longitudinal component reads as:

C pr;z = 2 1 X n=1 n X m= n f 1 (n + 1) 2 (n + 1 + jmj)! (n jmj)! (7) Re[(a n + a n+1 2a n a n+1 )g m n;T M g m n+1;T M +(b n + b n+1 2b n b n+1 )g m n;T E g m n+1;T E ] +m 2n + 1 n 2 (n + 1) 2 (n + jmj)! (n jmj)! Re[i(2a n b n a n b n )g m n;T M g m n;T E )]g 2.2
Axisymmetric beams of the …rst kind.

In Eqs.3-6, BSCs appear in terms of the form g p n g p+1 m : Therefore, Eq.1 implies:

C pr;x = C pr;y = 0 (8)
meaning that there is no transverse forces as we might have expected for a particle located on the axis of an axisymmeteric beam. We therefore just have to deal with Eq.7 for longitudinal forces. From Eq.1, we only have to retain m = 1. Then, Eq.7 reduces to:

C pr;z = 2 1 X n=1 f n(n + 2) n + 1 (9) Re[(a n + a n+1 2a n a n+1 )(g 1 n;T M g 1 n+1;T M + g 1 n;T M g 1 n+1;T M ) +(b n + b n+1 2b n b n+1 )(g 1 n;T E g 1 n+1;T E + g 1 n;T E g 1 n+1;T E )] + 2n + 1 n(n + 1) Re[i(2a n b n a n b n )(g 1 n;T M g 1 n;T E g 1 n;T M g 1 n;T E )]g
Next, we use again Eq.1 to express the result in terms of uni-index BSCs g n , and notice that " 2 = 1, leading to:

C pr;z = 2 (1 + KK ) 4 1 X n=1 f n(n + 2) n + 1 Re[g n g n+1 (a n + a n+1 2a n a n+1 ( 10 
)
+b n + b n+1 2b n b n+1 )] + 2n + 1 n(n + 1) " Re[g n g n (2a n b n a n b n )]g 2.3
Rayleigh limit of GLMT.

Eq.10 involves an in…nite number of partial waves. However, for Rayleigh particles, we only have to retain the (n = 1)-partial wave term in the summation, that is to say the terms which involve only the Mie coe¢ cient a 1 , e.g. [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF]. This is due to the expressions of the Mie coe¢ cients in terms of the size parameter and the necessity, due to the assumption that we are dealing with Rayleigh particles, to retain only the terms of lowest-order powers of . Indeed, we have [START_REF] Van De Hulst | Light scattering by small particles[END_REF], pp. 143-144:

a 1 = 2i 3 n 2 p 1 n 2 p + 2 3 + O(i 5 ) + 4 9 ( n 2 p 1 n 2 p + 2 ) 2 6 (11) b 1 = O(i 5 ) (12) 
in which n p denotes the refractive index of the particle (here taken to be real) with respect to the surrounding medium, and is the size parameter equal to d= . The other Mie coe¢ cients a n and b n (n > 1) involve still higher powers of . Real parts of a 1 are then proportional to 6 and imaginary parts are proportional to 3 while higher powers are discarded. Therefore, we only retain:

Im(a 1 ) = 2 3 n p 2 1 n p 2 + 2 3 (13) Re(a 1 ) = 4 9 ( n p 2 1 n p 2 + 2 ) 2 6 (14) 
Then, we still have C pr;x = C pr;y = 0, see Eq.8, while Eq.10 reduces to:

C pr;z = 3 2 8 (1 + KK ) Re[a 1 g 1 (g 2 "g 1 )] (15) 
We then use:

Re(z 1 z 2 ) = Re(z 1 ) Re(z 2 ) Im(z 1 )(z 2 ) (16) 
and Eqs.13-14 to separate the 6 -and 3 -terms according to:

C Re pr;z = 2 6 (1 + KK )( m 2 1 m 2 + 2 ) 2 6 Re g 1 (g 2 "g 1 ) (17) 
C Im pr;z = 2 4 (1 + KK ) m 2 1 m 2 + 2 3 Im g 1 (g 2 "g 1 ) (18) 
Eqs.17-18 express the longitudinal optical forces (cross-sections) exerted by (non dark) axisymmetric beams of the …rst kind on Rayleigh particles (while the trivial Eq.8 corresponds to transverse forces). It is seen that longitudinal forces are the summation of two kinds of forces, namely forces proportional to 6 (traditionally associated with scattering forces in the dipole theory of forces, a statement which will have to be re…ned later) and forces proportional to 3 (associated with gradient forces in the dipole theory of forces, as we shall con…rm later). The interpretation of these forces requires to examine the property of the Poynting vector in the case of Rayleigh particles illuminated by axisymmetric beams of the …rst kind.

3 Poynting vector.

3.1

General expressions for an arbitrary location in space.

General expressions for the Poynting vector for arbitrary location in space are available from [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]. For the transverse components, we have (still using the normalization condition E 0 H 0 =2) in terms of spherical coordinates r, , ':

S x = Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p c pw n c pw p e i(m q)' (19) 
[ k sin ' r ( 00 n + n )A nmpq + ik cos cos ' r ( 00 n + n )B nmpq + i sin cos ' r 2 C nmpq ] S y = Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p c pw n c pw p e i(m q)' (20) 
[ k cos ' r ( 00 n + n )A nmpq + ik cos sin ' r ( 00 n + n )B nmpq + i sin sin ' r 2 C nmpq ]
in which c pw n (with "pw" standing for "plane wave") are plane wave coe¢cients which naturally and conveniently have been introduced in the Bromwich version of the Lorenz-Mie theory [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF], reading as:

c pw n = 1 ik ( i) n 2n + 1 n(n + 1) (21) 
and:

A nmpq = [ nmpq 0 p jqj p + q nmpq p jqj p ]P jmj n (22) 
B nmpq = [ q nmpq 0 p jqj p nmpq p jqj p ]P jmj n ( 23 
)
C nmpq = nmpq (m 0 n 0 p jmj n jqj p + q n p jmj n jqj p ) (24) 
+ nmpq (mq

0 n p jmj n jqj p n 0 p jmj n jqj p )
in which :

nmpq = g q p;T M g m n;T E g m n;T M g q p;T E ( 25 
) nmpq = g m n;T M g q p;T M + g q p;T E g m n;T E (26) 
Furthermore, n denotes Riccati-Bessel functions with the argument kr omitted for convenience, a prime denotes a derivative of a function with respect to the argument (and a double prime a double derivative), and m n , m n , with argument cos omitted as well for convenience, are generalized Legendre functions de…ned according to:

m n (cos ) = P m n (cos ) sin ( 27 
) m n (cos ) = dP m n (cos ) d (28) 
in which P m n are associated Legendre functions here de…ned according to Hobson's convention [START_REF] Robin | Fonctions sphériques de Legendre et fonctions sphéroidales[END_REF]:

P m n (cos ) = ( 1) m (sin ) m d m P n (cos ) (d cos ) m (29) 
in which P n (cos ) are the Legendre polynomials.

For the longitudinal component, we shall start from [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

S z = 1 r 2 Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p ic pw n c pw p e i(m q)' (30) 
(sin S mq np + cos C mq np )
in which:

S mq np = kr[ g m n;T M g q p;T M p ( n + 00 n )P jmj n jqj p ( 31 
)
+g m n;T E g q p;T E n ( p + 00 p )P jqj p jmj n +qg m n;T M g q p;T E 0 p ( n + 00 n )P jmj n jqj p +mg m n;T M g q p;T E 0 n ( p + 00 p )P jqj p jmj n ] C mq np = g m n;T M g q p;T M p 0 n ( jmj n jqj p + mq jmj n jqj p ) ( 32 
)
+g m n;T M g q p;T E 0 n 0 p (m jmj n jqj p + q jqj p jmj n ) g m n;T E g q p;T M p n (m jmj n jqj p + q jqj p jmj n ) +g m n;T E g q p;T E n 0 p (mq jmj n jqj p + jmj n jqj p )

3.2

Axisymmetric beams of the …rst kind for an arbitrary location in space.

For axisymmetridc beams of the …rst kind, Eq.1 shows that we have only to retain BSCs with m = 1. Therefore, the strings of subscripts nmpq in Eqs.22-26 reduce to n1p1, n1p 1, n 1p1 and n 1p 1. Using Eqs.25-26 and expressing the bi-index BSCs in terms of uni-index BSCs using Eq.1, we …nd that the non-zero terms involved in these equations are those with the strings n1p1 and n 1p 1. These terms are found to read as:

n1p1 = i" n1p1 = i" 2 g n g p ( 33 
)
n 1p 1 = i" n 1p 1 = i"KK 2 g n g p (34) 
The non-zero coe¢ cients A nmpq , B nmpq and C nmpq of Eqs.22-24 are then found to be:

A n1p1 = A n 1p 1 =KK = g n g p 2 (i" 0 p 1 p + p 1 p )P 1 n (35) 
B n1p1 = B n 1p 1 =KK = g n g p 2 (i" 0 p 1 p + p 1 p )P 1 n ( 36 
)
C n1p1 = C n 1p 1 =KK = g n g p 2 [i"( 0 n 0 p 1 n 1 p + n p 1 n 1 p ) (37) 
+ 0 n p 1 n 1 p n 0 p 1 n 1 p ]
in which arguments are omitted for convenience. Inserting Eqs.35-37 into Eq.19, when the only allowed strings of subscripts are n1p1 and n 1p 1, we obtain:

S x = 1 2 Re 1 X n=1 1 X p=1 c pw n c pw p g n g p ( 38 
)
f k sin ' r ( 00 n + n )(1 KK )(i" 0 p 1 p + p 1 p )P 1 n ik cos cos ' r ( 00 n + n )(1 + KK )(i" 0 p 1 p + p 1 p )P 1 n + i sin cos ' r 2 (1 + KK )[i"( 0 n 0 p 1 n 1 p + n p 1 n 1 p ) + 0 n p 1 n 1 p n 0 p 1 n 1 p ]g
Eqs. [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding[END_REF]-20 show that we pass from S x to S y by changing sin ' to ( cos ') and cos ' to sin '. Therefore, we immediately have:

S y = 1 2 Re 1 X n=1 1 X p=1 c pw n c pw p g n g p (39) 
f k cos ' r ( 00 n + n )(1 KK )(i" 0 p 1 p + p 1 p )P 1 n ik cos sin ' r ( 00 n + n )(1 + KK )(i" 0 p 1 p + p 1 p )P 1 n + i sin sin ' r 2 (1 + KK )[i"( 0 n 0 p 1 n 1 p + n p 1 n 1 p ) + 0 n p 1 n 1 p n 0 p 1 n 1 p ]g
Similarly, recalling that only superscripts m = 1 are to be retained, Eq.30 becomes:

S z = 1 r 2 Re 1 X n=1 1 X p=1 ic pw n c pw p fe 2i' (sin S 11 np + cos C 11 np ) (40) 
+ sin (S 1 1 np + S 11 np ) + cos (C 1 1 np + C 11 np ) +e 2i' (sin S 1 1 np + cos C 1 1 np )g
that we do not need to work out extensively.

3.3

Axisymmetric beams of the …rst kind at the particle location.

Next, the Poynting vector needs to be evaluated at the particle location. This particle location is designated by the subscript P: Formally, this particle location can be reached by …rst taking an axis location ( = 0) followed by r = 0. Therefore, "P " below is equivalent to " = 0; r = 0". From Eqs.38-39, we then obtain:

(S x ) P = 1 2 Re 1 X n=1 1 X p=1 c pw n c pw p g n g p (41) [ k sin ' r ( 00 n + n )(1 KK )(i" 0 p 1 p + p 1 p )P 1 n ik cos ' r ( 00 n + n )(1 + KK )(i" 0 p 1 p + p 1 p )P 1 n ] P (S y ) P = 1 2 Re 1 X n=1 1 X p=1 c pw n c pw p g n g p (42) [ k cos ' r ( 00 n + n )(1 KK )(i" 0 p 1 p + p 1 p )P 1 n ik sin ' r ( 00 n + n )(1 + KK )(i" 0 p 1 p + p 1 p )P 1 n ] P
Both Eqs.41-42 contain the term (P 1 n ) P . We however may establish that, e.g. Eq.( 40) in [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

P jmj n ( = 0) = jmj0 (43) 
Therefore, (P 1 n ) P = 0 and we obtain:

(S x ) P = (S y ) P = 0 (44) 
which is once again what we should have expected. The same result is obtained from Eqs.( 41)-( 46) from [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF] because, due to Eq.1, the g 0 n 's are zero so that np , np , np and np of Eqs.( 42), ( 43), ( 45) and ( 46) of [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF] respectively are zero.

For the longitudinal component, we start from Eq.40 and, taking the value on the axis for = 0, we obtain:

(S z ) P = 1 r 2 Re 1 X n=1 1 X p=1 ic pw n c pw p [e 2i' C 11 np +(C 1 1 np +C 11 np )+e 2i' C 1 1 np ] P (45)
We expect that the '-dependent term of Eq.45 should be zero, according to the de…nition of an axisymmetric beam. To check this, we isolate this term to work it out independently, denoting it as (S z ) P ' . We readily have:

(S z ) P ' = 1 r 2 Re 1 X n=1 1 X p=1 ic pw n c pw p [cos(2')(C 11 np +C 1 1 np )+i sin(2')(C 1 1 np C 11 np )] P (46) 
We now recall that, see Eq.( 39) in [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

1 n ( = 0) = 1 n ( = 0) = n = n(n + 1) 2 (47) 
Using Eq.32, we immediately obtain:

C 11 np = C 1 1 np = 0 (48) 
so that we indeed have (S z ) P ' = 0 as expected, while (S z ) P reduces to:

(S z ) P = 1 r 2 Re 1 X n=1 1 X p=1 ic pw n c pw p (C 1 1 np + C 11 np ) P (49) 
To evaluate (C 1 1

np

) P and (C 11 np ) P , we (i) use Eq.32 to express them in terms of bi-index BSCs, then (ii) use Eq.1 to express them in terms of uni-index BSCs, then (iii) express the involved generalized Legendre functions for = 0 using Eq.47. This leads to:

C 11 np = C 1 1 np =KK = np(n + 1)(p + 1) 8 g n g p [ n 0 p p 0 n i"( 0 n 0 p + p n )] P (50) 
which, once inserted into Eq.49, leads to:

(S z ) P = 1 8 (1 + KK ) Re 1 X n=1 1 X p=1 ik 2 c pw n c pw p np(n + 1)(p + 1)g n g p (51) [ n 0 p p 0 n i"( 0 n 0 p + p n ) k 2 r 2
] P Now, we use Eq.21, to obtain:

c pw 1 c pw 1 = 9 4k 2 (52) 
Furthermore, we have :

n (x) = xj n (x) (53) 
0 n (x) = (n + 1)j n (x) xj n+1 (x) (54) 
and, e.g. Eq. (11.144) in [START_REF] Arfken | Mathematical methods for physicists[END_REF]:

j n (x) = 2 n x n 1 X s=0 ( 1) s (s + n)! s!(2s + 2n + 1)! x 2s (55) 
Then, we use Eq.53 to establish:

[ n (kr) kr ] r=0 = [j n (kr)] r=0 = n0 (56) 
and we use Eqs.53, 54, and 56 to establish:

[ 0 n (kr) kr ] r=0 = 2 3 n1 (57) 
Inserting Eqs.52, 56, 57 into Eq.51 …nally leads to the following simple expression:

(S z ) P = 1 2 "(1 + KK ) jg 1 j 2 (58) 
It is interesting to remark that this result is valid in the case of Rayleigh particles, although we did not need to introduce any assumption on the size of the particle as we needed to work out the expressions of the optical forces. This is because the size of the particle does not intervene in the concept of Poynting vector. In other words, evaluating S z at P is directly a "point-like" evaluation in the same way that a Rayleigh particle is a "point-like" particle.

3.4

Restricted Poynting vector at arbitrary location.

It is interesting to remark that Eq.58 may be reached following another path, using a restricted Poynting vector in which only (n = 1) partial waves are retained, this restriction being inspired by the fact that Rayleigh particles are not sensitive to higher-order partial waves. This alternative way of deriving Eq.58 will allow one to emphasize the particular role played by the lowest-order partial waves. Let us then consider Eq.38, retain only the (n = p = 1)-terms in the summation, use Eq.52, and evaluate P 1 1 = sin , 1 1 = 1 and 1 1 = cos . We then obtain:

S x = 9 8k 2 jg 1 j 2 sin f k r ( 00 1 + 1 )[(1 KK ) sin ' 1 (59) 
+"(1 + KK ) cos cos ' 0 1 ] " cos cos ' r 2 (1 + KK )( 0 1 0 1 + 1 1 )g
We then remember that we pass from S x to S y by changing sin ' to ( cos ') and cos ' to sin '. Therefore, from Eq.59, we immediately obtain:

S y = 9 8k 2 jg 1 j 2 sin f k r ( 00 1 + 1 )[(KK 1) cos ' 1 (60) 
+"(1 + KK ) cos sin ' 0 1 ] " cos sin ' r 2 (1 + KK )( 0 1 0 1 + 1 1 )g
For S z , we start from Eq.40 and, again retaining only the (n = p = 1)terms, we have : Then, we evaluate the various coe¢ cients S mq np and C mq np involved in Eq.61, using Eqs.31-32, evaluating the involved generalized Legendre polynomials as previously, and expressing the bi-index BSCs in terms of uni-index BSCs using Eq.1. Once these coe¢ cients are inserted into Eq.61, we obtain:

S z = 1 r 2 Re
S 11 11 = K 2 kr sin cos ( 00 1 + 1 ) 1 jg 1 j 2 (62) S 1 1 11 = i"KK 2 kr sin ( 00 1 + 1 ) 0 1 jg 1 j 2 (63) 
S 11 11 = i" 2 kr sin ( 00 1 + 1 ) 0 1 jg 1 j 2 (64) S 1 1 11 = K 2 kr sin cos ( 00 1 + 1 ) 1 jg 1 j 2 (65) 
C 11 11 = K 2 sin 2 0 1 1 jg 1 j 2 (66) 
C 1 1 11 = i"KK 2 cos ( 0 1 0 1 + 1 1 ) jg 1 j 2 (67) 
C 11 11 = i" 2 cos ( 0 1 0 1 + 1 1 ) jg 1 j 2 (68) C 1 1 11 = K 2 sin 2 0 1 1 jg 1 j 2 (69) 
Eqs.62-69 are then inserted in Eq.61 which is then found to reduce to: S z = 9" 8k 2 r 2 (KK + 1)[kr sin 2 ( 00 1 + 1 ) 0 1 + cos 2 ( 0

1 0 1 + 1 1 )] jg 1 j 2 (70)
in which we have used Eq.52. This result does not depend any more on ' as it should.

3.5

Restricted Poynting vector at the particle location.

From Eqs.59-60, we observe that S x and S y are proportional to sin . Therefore, at the particle location (more generally on the z-axis), for which = 0, we have:

(S x ) P = (S y ) P = 0 (71)
in which we recover Eq.44 as it should. For S z , Eq.70 similarly reduces to:

(S z ) =0 = 9" 8k 2 r 2 (KK + 1)( 0 1 0 1 + 1 1 ) jg 1 j 2 (72) 
and, …nally, using Eqs.56-57, we obtain:

(S z ) P = " 2 (KK + 1) jg 1 j 2 (73) 
which is identical to Eq.58.

4 Optical forces for on-axis Gaussian beams.

4.1 Generalities.

Among the in…nite set of on-axis circularly symmetric Bessel functions, the only case corresponding to a (non dark) axisymmetric beam of the …rst kind is the zeroth-order Bessel beam (which is a non vortex beam). This case has been discussed in [START_REF] Gouesbet | Optical forces exerted by on-axis Bessel beams on Rayleigh particles in the framework of generalized Lorenz-Mie theory[END_REF] and is not considered any more in the present paper. We then rather study the case of Gaussian beams which has been discussed by Lock [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF] in the limit of weak beam con…nement. As we shall see, such a limit actually washes out the occurrence of what we call non-standard forces, for the time being.

One of the di¢ culties with Gaussian beams is to possess a beam description which perfectly satis…es Maxwell's equations (that we call a Maxwellian description). Indeed, the most used general description of Gaussian beams may be the one introduced by Davis [START_REF] Davis | Theory of electromagnetic beams[END_REF] in 1979. In this formulation [START_REF] Gouesbet | Partial wave representations of laser beams for use in light scattering calculations[END_REF], and [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], pp.97-106, we use a linearly vector potential A = (A x ; 0; 0) whose non zero component reads as:

A x = (x; y; z) exp( ikz) (74) 
Next, we introduce the beam con…nement parameter s = 1=(kw 0 ) in which w 0 is the beam waist radius, and we expand the function in powers of s 2 according to:

= 0 + s 2 2 + s 4 4 + ::: (75) 
The lowest-order term 0 , which is su¢ cient to afterward recursively determine the higher-order modes, represents the fundamental mode of the Gaussian beam. For some reason fairly subtle to explain (but see [START_REF] Gouesbet | Partial wave representations of laser beams for use in light scattering calculations[END_REF]), the …elds restricted to 0 de…ne the …rst-order Davis beam, while the higher-order modes are named third-order, …fth-order Davis beams and so on. Explicit expressions for the kth-order Davis beams are known only up to k = 5 [START_REF] Barton | Fifth-order corrected electromagnetic …eld components for fundamental Gaussian beams[END_REF]. None of these beams is an exact solution of Maxwell's equations. Maxwell's equations are satis…ed only in the limit k ! 1. We must also have in mind that s is a small parameter. For instance, a typical …gure is s ' 10 3 for = 0:5 m and w 0 = 50 m. It is 0 for a plane wave while its maximal value is s ' 1=(2 ) ' 0:16 for a tightly focused beam with w 0 ' . Nevertheless, Davis formulation has been the basis to the development of Maxwellian descriptions of Gaussian beams, named (i) localized approximation (LA), (ii) modi…ed localized approximation (MLA), and (iii) improved standard beam description (ISBD). These Maxwellian descriptions are now going to be studied systematically from the point of view of optical forces in the framework of the Rayleigh limit of GLMT. In all these beams, the parameters K and " introduced in Eq.1 receive the values K = 1 and " = 1 [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]. Eqs.17, 18, and 58, 73 then simpli…es to:

C Re pr;z = 2 3 ( m 2 1 m 2 + 2 ) 2 6 Re g 1 (g 1 + g 2 ) (76) 
C Im pr;z = 2 2 m 2 1 m 2 + 2 3 Im g 1 (g 1 + g 2 ) (77) (S z ) P = jg 1 j 2 (78) 
Insofar as the transverse expressions are trivial, i.e. C pr;x = C pr;y = 0 and S x = S y = 0, we shall focus ourselves on the longitudinal quantities expressed by Eqs.76-78.

4.2

Localized approximation.

The localized approximation to the evaluation of BSCs has been an invaluable tool to carry out GLMT computations. It has been developed in [START_REF] Gréhan | Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation[END_REF], [START_REF] Maheu | Generalized Lorenz-Mie theory: …rst exact values and comparisons with the localized approximation[END_REF], [START_REF] Gouesbet | Computations of the g n coe¢cients in the generalized Lorenz-Mie theory using three di¤erent methods[END_REF], [START_REF] Maheu | Ray localization in Gaussian beams[END_REF] for Gaussian beams and in [START_REF] Ren | Evaluation of laser sheet beam shape coe¢ cients in generalized Lorenz-Mie theory by use of a localized approximation[END_REF] for laser sheets. It received a rigorous justi…cation for Gaussian beams in [START_REF] Lock | Rigorous justi…cation of the localized approximation to the beam shape coe¢ cients in generalized Lorenz-Mie. I. On-axis beams[END_REF], see [START_REF] Gouesbet | Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review[END_REF] for a review. In the on-axis localized approximation framework, the uni-index BSCs read as:

g n = e ikz0 1 + iA exp[ (n + 1=2) 2 s 2 1 + iA ] (79) 
in which:

A = 2s z 0 w 0 = 2kz 0 s 2 (80) 
in which we have used the de…nition of the beam con…nement factor, and in which z 0 de…nes the distance of the beam waist center with respect to the particle and is then 0 for a beam waist location (in which case A is zero as well).

From Eqs.76-78, we need:

g 1 = e ikz0 1 + iA exp( 9s 2 =4 1 + iA ) ( 81 
)
g 2 = e ikz0 1 + iA exp[ 25s 2 =4 1 + iA ] ( 82 
)
We then evaluate:

g 1 (g 1 + g 2 ) = 1 1 + A 2 [M + N (cos i sin )] (83) 
in which:

M = exp( 9s 2 =2 1 + 4s 2 z 2 0 w 2 0 ) (84) N = exp( 17s 2 =2 1 + A 2 ) (85) = 8ks 4 z 0 1 + A 2 (86)
Let us …rst explore the weak con…nement limit when s ! 0. Then we have M 1, N 1, cos 1 and sin , leading to:

g 1 (g 1 + g 2 ) = 1 1 + A 2 [2 i )] (87) 
Inserting Eq.87 into Eqs.76-77, we obtain:

C Re pr;z = 2 2 3 ( m 2 1 m 2 + 2 ) 2 6 1 1 + A 2 (88) C Im pr;z = 4k 2 m 2 1 m 2 + 2 3 s 4 z 0 (1 + A 2 ) 2 (89)
Relaxing the weak con…nement assumption, we may rewrite Re g 1 (g 1 + g 2 ) as a sum of two terms according to:

Re g 1 (g 1 + g 2 ) = Re jg 1 j 2 + Re g 1 g 2 (90)
which induces the splitting of C Re pr;z into two terms, according to:

C Re pr;z = C Re;S pr;z + C Re;N S pr;z (91) 
in which:

C Re;S pr;z = 2 3 ( m 2 1 m 2 + 2 ) 2 6 1 1 + A 2 exp[ 9s 2 2(1 + A 2 ) ] (92) 
which is half C Re pr;z of Eq.88 in the beam con…nement limit, and:

C Re;N S pr;z = 2 3 ( m 2 1 m 2 + 2 ) 2 6 1 1 + A 2 exp[ 17s 2 2(1 + A 2 ) ] cos( 4s 2 1 + A 2 ) (93)
It is interesting to remark that, in the weak con…nement limit, Eq.93 reduces as well to half C Re pr;z of Eq.88. Therefore, in this limit, the summation of the Sterm of Eq.92 and of the N S-term of Eq.93 is equal to the total C Re pr;z of Eq.88. This fact is related to the other fact that C Re;S pr;z and C Re;N S pr;z have the same order of magnitude in the present LA-case, in contrast with we shall observe for MLA and ISBD, e.g. Eqs.113 and 123.

Next, we evaluate, neglecting higher-order terms:

M = exp( 9s 2 =2 1 + A 2 ) 1 9s 2 =2 1 + A 2 + O(s 4 ) (94) N = exp( 17s 2 =2 1 + A 2 ) 1 17s 2 =2 1 + A 2 + O(s 4 ) (95) cos 1 + O(s 6 ) (96) sin 8ks 4 z 0 1 + A 2 + O(s 12 ) (97) 
Inserting these results in Eq.83, we obtain, neglecting higher-order terms:

g 1 (g 1 + g 2 ) ' 1 1 + A 2 [2 13s 2 1 + A 2 i 8ks 4 z 0 1 + A 2 ] (98)
Therefore, for C Im pr;z of Eq.77, we obtain, using Eq.98, and again neglecting higher-order terms:

C Im pr;z = 4k 2 m 2 1 m 2 + 2 3 s 4 z 0 (1 + A 2 ) 2 (99) 
This result introduces an O(s 4 ) ratio for C Im pr;z =C Re;S pr;z or C Im pr;z =C Re;N S pr;z .

Modi…ed localized approximation.

The modi…ed localized approximation has been introduced in [START_REF] Lock | Rigorous justi…cation of the localized approximation to the beam shape coe¢ cients in generalized Lorenz-Mie. I. On-axis beams[END_REF], [START_REF] Gouesbet | Rigorous justi…cation of the localized approximation to the beam shape coe¢ cients in generalized Lorenz-Mie theory. II. O¤-axis beams[END_REF]. It introduces a slight modi…cation of the localized approximation. Further discussions of LA and MLA are available from [START_REF] Gouesbet | Exact description of arbitrary shaped beams for use in light scattering theories[END_REF] and [START_REF] Gouesbet | Higher-order descriptions of Gaussian beams[END_REF]. In this framework, the uni-index BSCs read as:

g n = e ikz0 1 + iA exp[ (n 1)(n + 2)s 2 1 + iA ] (100) 
Then, processing similarly as for the LA-case, we have:

g 1 = e ikz0 1 + iA (101) g 2 = e ikz0 1 + iA exp[ 4s 2 1 + iA ] ( 102 
)
g 1 (g 1 + g 2 ) = 1 1 + A 2 [1 + K(cos i sin )] ( 103 
)
in which is de…ned by Eq.86 and:

K = exp( 4s 2 1 + A 2 )
(104)

In the weak con…nement limit when s ! 0, we have K 1, cos 1 and sin , leading to:

g 1 (g 1 + g 2 ) = 1 1 + 4s 2 z 2 0 w 2 0 [2 i )] (105) 
and to:

C Re;S pr;z = 2 2 3 ( m 2 1 m 2 + 2 ) 2 6 1 1 + A 2 (106) C Im pr;z = 4k 2 m 2 1 m 2 + 2 3 s 4 z 0 (1 + A 2 ) 2 (107) 
which are identical to Eqs.87-89 respectively. If we relax the weak con…nement limit assumption, we have:

K = exp( 4s 2 1 + A 2 ) 1 4s 2 1 + A 2 + O(s 4 ) ( 108 
)
while Eqs.96-97 are still valid. Neglecting higher-order terms, we then obtain:

g 1 (g 1 + g 2 ) ' 1 1 + A 2 [2 4s 2 1 + A 2 (109) i(1 4s 2 1 + A 2 ) 8ks 4 z 0 1 + A 2 ]
It is then found that:

C Re pr;z = C Re;S pr;z + C Re;N S pr;z (110) 
in which:

C Re;S pr;z = 2 2 3 ( m 2 1 m 2 + 2 ) 2 6 1 1 + A 2 (111) C Re;N S pr;z = 4 2 3 ( m 2 1 m 2 + 2 ) 2 6 s 2 (1 + A 2 ) 2 (112) 
Therefore, C Re pr;z can again been separated into two terms. Furthermore, we …nd that the ratio of the N S-over the S-terms is given by:

C Re;N S pr;z C Re;S pr;z = 2s 2 1 + 4s 2 z 2 0 w 2 0 = 2s 2 (1 + A 2 ) ' O(s 2 ) ( 113 
)
which is O(s 2 ). For C Im pr;z , we obtain, neglecting higher-order terms:

C Im pr;z = 4k 2 m 2 1 m 2 + 2 3 s 4 z 0 (1 + A 2 ) 2 (114) 
which is identical to Eqs.89 and 99, and introduces another O(s 2 ) ratio for C Im pr;z =C Re;N S pr;z , that is to say an O(s 4 ) ratio for C Im pr;z =C Re;S pr;z :

4.4

Improved standard beams.

In [START_REF] Lock | Rigorous justi…cation of the localized approximation to the beam shape coe¢ cients in generalized Lorenz-Mie. I. On-axis beams[END_REF] devoted to on-axis Gaussian beams in the Davis formulation, it was found that the uni-index BSCs g n for the …rst-, third-and …fth-Davis beams could be expressed in an uni…ed way as the sum of a …rst term satisfying Maxwell's equations and of a second term which was coordinate-dependent in contrast with the fact that the BSCs should not depend on any coordinate, see Eqs.( 75) and (76) in [START_REF] Lock | Rigorous justi…cation of the localized approximation to the beam shape coe¢ cients in generalized Lorenz-Mie. I. On-axis beams[END_REF]. These coordinate-dependent terms indicate that the kthe-Davis beams used (k = 1; 3; 5) do not exactly satisfy Maxwell's equations. Removing the coordinate-dependent terms and generalizing the expression of the Maxwellian contributions allowed one to introduce what was called a S-beam (S standing for "standard"). Standard beams have been discussed and/or used as well in [START_REF] Ren | Prediction of reverse radiation pressure by generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | Partial wave representations of laser beams for use in light scattering calculations[END_REF], [START_REF] Gouesbet | Exact description of arbitrary shaped beams for use in light scattering theories[END_REF], [START_REF] Gouesbet | Higher-order descriptions of Gaussian beams[END_REF], and have been considered as providing a "perfect" ("standard") on-axis description of Gaussian beams. Unfortunately, it has been observed [START_REF] Ren | Prediction of reverse radiation pressure by generalized Lorenz-Mie theory[END_REF] that the standard beam description exhibited a …nite radius of convergence, therefore spoiling the possibility of evaluating radiation pressure forces, particularly reverse forces, for some interesting ranges of parameters, using GLMT. The improved standard beam description has therefore been established afterward with an in…nite radius of convergence, and can then be claimed to provide an optimal Maxwellian description of Gaussian beams. In this framework, the uni-index BSCs g n read as, e.g. Eq.( 16) in [START_REF] Polaert | Improved standard beams with applications to reverse radiation pressure[END_REF]:

g n = e ikz0 1 + iA 1 X p=0 1 p! ( s 2 ) p (1 + iA) p (n + 1 + p)! (n 1 p)! (n 1)! (n + 1)! (115) 
As explained after Eq.( 2) in [START_REF] Polaert | Improved standard beams with applications to reverse radiation pressure[END_REF], this way to write the equation seems to make a problem when n = p = 1. To avoid this di¢ culty, we shall rewrite Eq.115 under the following form:

g n = e ikz0 1 + iA 1 X p=0 1 p! ( s 2 ) p (1 + iA) p (n p)(n p + 1):::n(n + 1):::(n + p)(n + p + 1) n(n + 1) (116) 
Processing similarly as for LA and MLA, we then have:

g 1 = e ikz0 1 + iA (117) 
g 2 = e ikz0 1 + iA (1 4s 2 1 + iA ) (118) 
leading to:

g 1 (g 1 + g 2 ) = 1 1 + A 2 [2 4s 2 (1 + iA) 1 + A 2 ] (119) 
It is then once again found that C Re pr;z can be separated into two terms according to:

C Re pr;z = C Re;S pr;z + C Re;N S pr;z (120) 
in which:

C Re;S pr;z = 2 2 3 ( m 2 1 m 2 + 2 ) 2 6 1 1 + A 2 (121) 
C Re;N S pr;z = 4 2 3 ( m 2 1 m 2 + 2 ) 2 6 s 2 (1 + A 2 ) 2 (122) 
We then note that Eq.121 is identical to Eqs.88 and 111, and that Eq.122 is identical to with Eq.112. The ratio of N S-and S-terms is then given by:

C Re;N S pr;z C Re;S pr;z = 2s 2 1 + 4s 2 z 2 0 w 2 0 = 2s 2 (1 + A 2 ) ' O(s 2 ) (123) 
which is identical to Eq.113. As far as C Im pr;z is concerned, it is found to read as:

C Im pr;z = 4k 2 m 2 1 m 2 + 2 3 s 4 z 0 (1 + A 2 ) 2 (124) 
which is identical to Eqs.89, 94, 107, 114, and once again introduces another O(s 2 ) ratio when compared to N S-forces and another O(s 4 )-ratio when compared to S-forces.

5 Identi…cation of optical forces within the framework of the dipole theory of forces.

The di¤erent kinds of forces exhibited in the previous section, and derived using the Rayleigh limit of GLMT, are now going to be interpreted through their identi…cation with the forces of the dipole theory of forces. We shall distinguish (i) scattering forces, (ii) gradient forces, and (iii) non-standard forces.

5.1

Scattering forces.

In the framework of the dipole theory of forces, scattering forces are proportional to the sixth power of and to the corresponding Poynting vector components. In the MLA-case, and in the weak con…nement limit, it has been established by Lock [21] that the force C Re;S pr;z described by Eq.106 is indeed a scattering force in the framework of the dipole theory of forces. The superscript S in C Re;S pr;z may then be viewed as standing for "Scattering", or standing for "Standard", by opposition to the superscript N S in C Re;N S pr;z where it stands for "Non-standard".

More generally, all forces labelled C Re;S pr;z are scattering forces both proportional to the sixth power of and to the z-component of the Poynting vector (taken at P ). In the case of LA, this is obvious as exhibited by the decomposition carried out in Eq.90 when the weak con…nement limit is not implemented. Furthermore, when the weak con…nement limit is assumed, it happens that C Re;S pr;z of Eq.92 and C Re pr;z of Eq.88 are all proportional to 1=(1 + A 2 ) which is exactly the value of (S z ) P = jg 1 j 2 in this limit, indicating that C Re;S pr;z and C Re pr;z are indeed scattering forces in this limit.

For MLA and ISBD, g 1 is given by e ikz0 =(1 + iA), see Eqs.101 and 117 respectively, so that we still have (S z ) P = 1=(1 + A 2 ). Therefore, C Re;S pr;z which are proportional to 1=(1 + A 2 ), see Eqs. 106 and 121, are indeed once again scattering forces.

A complementary point of view is obtained if we return to the most general framework of the Rayleigh limit of GLMT. We then have that the forces proportional to the sixth power of are proportional to Re(G), with G reading as (see Eqs.( 26), ( 43)-( 46) in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]):

G = G 11 + G 12 + G 0 (125)
in which we have, after implementing the conditions of Eq.1 of the present paper:

G 11 = i[g 1 1;T M g 1 1;T E g 1 1;T M g 1 1;T E ] = 1 2 jg 1 j 2 (126) 
G 12 = g 1 1;T M g 1 2;T M + g 1 1;T M g 1 2;T M ] = 1 2 g 1 g 2 (127) 
G 0 = 1 3 g 0 1;T M g 0 2;T M = 0 (128) 
We then observe that the G 0 -term does not contribute to any optical force in the present case of axisymmetric beams of the …rst kind. Conversely Re(G 11 ) = jg 1 j 2 =2, proportional to (S z ) P is at the origin of the scattering forces discussed in the present subsection. The contribution due to the term G 12 will be discussed later.

5.2

Gradient forces.

In principle, gradient forces are proportional to the gradient of jEj 2 taken at P , e.g. [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF] and references therein. We may avoid the calculation of this gradient by noting that it has already been established [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF] that C Im pr;z of Eq.107 for the weak con…nement limit of a Gaussian beam described using MLA is a gradient force. Therefore all C Im pr;z exhibited above, i.e. Eqs.89, 99, 114, and 124 corresponding to the weak con…nement of LA, to LA without the weak con…nement assumption, to MLA without the weak con…nement assumption, and to ISBD respectively, which are all equal to C Im pr;z of Eq.107, are gradient forces as well. We observe that these gradient forces are proportional to the third power of : Let us also remark that these gradient forces have been evaluated using Eq.77 which contains coupling terms g 1 g 2 which imply an interaction between partial waves of order n = 1 and partial waves of order n = 2.

5.3

Non-standard forces.

Such couplings do not occur in the case of scattering forces because they are proportional to (S z ) P = jg 1 j 2 which only involves contributions associated with n = 1. These scattering forces are proportional as well to the sixth power of . However, we also observe other forces which are still proportional to the sixth power of , but are not proportional to (S z ) P = jg 1 j 2 . They therefore do not unambiguously deserve to be called scattering forces. They are somehow of a di¤erent "nature" insofar as they exhibit couplings between (n = 1)-and (n = 2)-partial waves.

The origin of all these coupling terms may be already detected in Eq.7 in terms involving g m n;T M g m n+1;T M and g m n;T E g m n+1;T E , although only the (n = 1)-Mie coe¢ cient is retained in the summation. These forces, proportional to the sixth power of , and which are not scattering forces, have been named axicon forces in the study of circularly symmetric Bessel beams because their existence and manifestations were intimately related to the existence of axicon angles in the beam description, later on non-standard forces when it has been recognized that they were not speci…c of beams exhibiting axicon terms, as we have done in the present paper up to now. It is furthermore remarkable that they do not appear in the case of the weak con…nement limit studied by Lock [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF]. Otherwise, they would have already become a matter of debate in 2004.

It is only recently that it has been recognized that these forces, resulting from the Rayleigh limit of GLMT, have their counterparts in the dipole theory of forces. This has been the consequence of two facts (i) that it has been numerically demonstrated in the case of circularly symmetric Bessel beams that the Rayleigh limit of GLMT and the dipole theory of forces numerically agree up to 1,000 decimal places [START_REF] Ambrosio | On longitudinal radiation pressure crosssection in the generalized Lorenz-Mie theory and its numerical relationship with the dipole theory of forces[END_REF] and (ii) that there is a formal identi…cation between both approaches, independently of the kind of beams under consideration [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identi…cation with the dipole theory of forces. I. The longitudinal case[END_REF], these statements holding, for the time being, for longitudinal forces (a similar treatment is under way for transverse forces). Elaborating on Eq.( 7) of Chaumet and Nieto-Vesperinas [START_REF] Chaumet | Time-averaged total force on a dipolar sphere in an electromagnetic …eld[END_REF], it has been established [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identi…cation with the dipole theory of forces. I. The longitudinal case[END_REF] that the longitudinal optical forces, in both approaches, can be written as:

F s z = 4 ! I Re S z + 2 I Im[@ z jEj 2 ] 2 I Im[(E :r)E z ] (129) 
which is to be evaluated at P , and in which is the permeability of the medium, and = jE 0 j 2 =2. Also, I is expressed versus the Mie coe¢ cient a 1 according to I = 3 Re(a 1 )=(2k 3 ). The prefactors used to write Eq.129 satisfy two conditions (i) that the normalization condition E 0 H 0 =2 of GLMT is implemented in the dipole of forces as well and (ii) that F s z has been given the dimension of area and can then directly be compared with the cross-sections of GLMT.

Therefore, in Eq.129, the …rst term is related to the scattering forces of subsection 5.1. Concerning the second term, although depending on [@ z jEj 2 ], it is not the gradient term of subsection 5.2. Indeed, …rst, being proportional to I , it is proportional to the sixth power of the size parameter, while the gradient term is proportional to the third power. Second, the gradient term involves a real part instead of the imaginary part of the second term of Eq.129. And, …nally, because jEj 2 is real, this second term is zero as already mentioned elsewhere, e.g. [START_REF] Ambrosio | On longitudinal radiation pressure crosssection in the generalized Lorenz-Mie theory and its numerical relationship with the dipole theory of forces[END_REF], although we preferred to formally preserve it. The third term is related to non-standard forces (the expression "related to" is to be taken very seriously as we shall explain and demonstrate below). Concerning this third term, a paper by Albaladejo et al. in 2009 [49], later commented in 2013, i.e. 4 years later [START_REF] Ru¤ner | Comment on "Scattering forces from the curl of the spin angular momentum of a light …eld[END_REF], [51], has given to it the name of curl forces. It is maybe a matter of taste whether these curl forces must be called scattering forces as well. Our recommendation however is to give to them a particular name to avoid any confusion. In a review paper published the same year (in 2013) by Marago et al.
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[52], they received the name of polarization gradient forces. It happens however that these curl forces do not identify yet with the non scattering forces. Indeed, it has been demonstrated elsewhere [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identi…cation with the dipole theory of forces. I. The longitudinal case[END_REF] that they may be expressed in terms of BSCs according to:

F c = 4 I Im[(E :r)E z ] (130) = 4 I Imf ik 3 g 0 2;T M g 0 1;T M +ik[(g 1 2;T M g 1 1;T M + g 1 2;T M g 1 1;T M ) i(g 1 1;T E g 1 1;T M g 1 1;T E g 1 1;T M )]g
which, under the conditions of Eq.1, reduces to:

F c = 2 k I [Re(g 1 g 2 ) Re(jg 1 j 2 )] (131) 
The curl forces are therefore the summation of two contributions, the …rst one corresponding to what we have called non-standard forces, e.g. the contribution due to G 12 of Eq.127 and the second one, being proportional to the Poynting vector component (S z ) P = jg 1 j 2 , is a scattering force. In summary, the dipole theory of forces expressed the forces as a summation of (i) scattering forces (ii) gradient forces and (iii) curl forces, e.g. …rst, second and third terms of Eq.129 respectively while the Rayleigh limit of GLMT expresses the force as a summation of (i) scattering forces (ii) gradient forces and (iii) non-standard forces, with however the proviso that the scattering forces of the dipole theory of forces do not exactly identify with the scattering forces of the Rayleigh limit of GLMT insofar as the curl forces of the former contain a contribution which pertains to the scattering forces of the latter.

It is to be noted that curl forces have been largely ignored for many years. It does not appear in Chaumet and Vesperinas in 2000 [START_REF] Chaumet | Time-averaged total force on a dipolar sphere in an electromagnetic …eld[END_REF] and, in 2009, Albaladejo et al. [START_REF] Albaladejo | Scattering forces from the curl of the spin angular momentum of a light …eld[END_REF] commented that "it is usually neglected in the discussion of optical forces on small particles". The identi…cation of non-standard forces is still more recent. They have been actually fortuitously isolated under the name of axicon forces when studying the Rayleigh limit of GLMT [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. They present the advantage of being a pure coupling term in contrast with curl forces which incorporate as well a scattering force contribution which does not involve any coupling between partial waves of di¤erent order. In other words, the curl forces have the disadvantage of summing up two kinds of contribution which, somehow, are of a di¤erent nature.

In the present case of Gaussian beams studied in this paper, and in the framework of the Rayleigh limit of GLMT together with the terminology used in it, we observed that non-standard forces are smaller than scattering forces by an O(s 2 )-factor in MLA and ISBD, typically 10 6 for a typical focussing of the beam and still about 0:026 for a tightly focused beam. They are completely washed out for s = 0, i.e. for a plane wave and, more generally, as can be seen from Eq.129 whenever E z = 0, i.e. for any pure TEM waves, in particular for axicon forces of circularly symmetric Bessel beams when the axicon angle is 0, e.g. [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. In contrast, for s = 0 in the LA-case, the N S-forces do not vanish, strictly speaking, but converge to usual scattering forces. This is in agreement with the fact that there is no N S-forces in the weak con…nement limit, i.e. for s = 0 and even for s small enough, the behavior of LA-Gaussian beams, from the point of view of the existence of N S forces is the same than the one of TEM waves. The case s = 0 requires us to make a …nal last remark, noting that Eq.131 can be rewritten as:

F c = 2 k I Re[g 1 (g 2 g 1 )] (132) 
This equation immediately implies that curl forces vanish when s = 0 in all cases, i.e. in LA (see Eqs.81-82), MLA (see Eqs.101-102) and in ISBD (see Eqs.117-118) in agreement with the fact that they have to vanish for pure TEM waves.

Conclusion.

This paper discussed the Rayleigh limit of the GLMT in the case of (non dark) on-axis axisymmetric beams of the …rst kind, with the examples of various representations of Gaussian beams. It provided an opportunity to emphasize the identi…cation between the Rayleigh limit of GLMT and the dipole theory of forces, at least for longitudinal forces (a current work is expected to be able to establish the same kind of identi…cation as far as transverse forces are concerned). The optical forces for point-like (and small enough) particles may then be decomposed, in both formalisms, as a summation of scattering, gradient, and non-standard forces. However, the dipole theory of forces, as can be viewed from Eq.129 is expressed in terms of the total …eld E, i.e. including all partial waves. It may be argued that actually, insofar as the forces are evaluated at P , the total …eld will not actually play an e¤ective role, but only the values of the …elds at P and the values of the derivatives of the …eld at P , which is equivalent to retaining only two terms in a Taylor expansion of the …eld (J.A. Lock, private communication). However, this restriction, which is hidden in the dipole theory of forces, is completely exhibited in the Rayleigh limit of GLMT which expresses the optical forces by retaining only partial waves of order (n = 1) and (n = 2): In this latter formalism, the optical forces are therefore explicitly expressed in terms of low-order BSCs.

The fact that only low-order BSCs intervene in the optical forces on Rayleigh particles may be furthermore viewed as a consequence of the Van de Hulst principle of localization which, by the way, is at the origin of various localized approximations such as the ones used in the present paper, see [START_REF] Gouesbet | Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review[END_REF] for a review, [START_REF] Wang | Note on the use of localized beam models for light scattering theories in spherical coordinates[END_REF], [START_REF] Gouesbet | Second modi…ed localized approximation for use in generalized Lorenz-Mie theories and other theories revisited[END_REF] for complements, and [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF], [START_REF] Gouesbet | On the validity of the use of a localized approximation for helical beams. I. Formal aspects[END_REF], [START_REF] Ambrosio | On the validity of the use of a localized approximation for helical beams. II. Numerical aspects[END_REF], and references therein, for warnings against the use of localized approximations in the case of beams exhibiting an axicon angle and/or some amount of helicity.

According to this Van de Hulst principle of localization [START_REF] Van De Hulst | Light scattering by small particles[END_REF], p. 208, a partial wave of order n is associated with rays passing at a distance from the axis equal to (n+1=2) =(2 ). Therefore, partial waves of order n = 1 and n = 2 correspond to rays which pass at distances equal to 3 =(4 )

=4 and 5 =(4 ) =2 from the axis respectively, i.e. at distances signi…cantly smaller than the wavelength. We may loosely state that partial waves of order n > 2 pass at distances "too far away" from the axis to be able to interact with the "point-like" particle located on it. A more re…ned discussion would admit that the in ‡uence of each partial wave, depending on the radial dependence of a spherical Bessel function, actually extends from the origin to in…nity. But the interaction of the partial wave with the scatterer is strongest where the numerical value of the partial wave is the largest. The location of this largest interaction is summarized in the principle of localization which is convenient to comment as we have done above.
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