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THE WORD PROBLEM FOR HECKE–KISELMAN MONOIDS

OF TYPE An AND Ãn

VICTORIA LEBED

Abstract. We exhibit explicit and easily realisable bijections between Hecke–

Kiselman monoids of typeAn/Ãn; certain braid diagrams on the plane/cylinder;

and couples of integer sequences of particular types. This yields a fast solu-
tion of the word problem and an efficient normal form for these HK monoids.

Yang–Baxter type actions play an important role in our constructions.

1. Introduction

In this paper we study the word problem for two closely related monoids Ln and
Cn (with n ∈ N), defined by generators and relations as follows. The generators
are xi, 1 6 i 6 n, and the relations are

x2
i = xi, 1 6 i 6 n,(1)

xixj = xjxi, 1 < i− j < n(−1),(2)

xixi+1xi = xi+1xixi+1 = xixi+1, 1 6 i < n(+1).(3)

Both (−1) and (+1) are omitted for Ln, and preserved for Cn. Thus to get Cn from
Ln one replaces one far-commutativity relation (2) with one braid-like relation (3).
For the generators of Cn, the subscripts are taken modulo n; thus, xn+1 means x1.

These monoids are particular cases of Hecke–Kiselman monoids HKΘ [GM11],
defined for any partially oriented graph Θ. The monoid Ln corresponds to the
linearly oriented chain An (hence the L in the name we chose), and Cn to the linearly

oriented cycle Ãn (hence the C in the name, which goes back at least to [MO19]).
HK monoids are quotients of 0-Hecke monoids (to get those, remove the = xixi+1

part from the relations), which are themselves quotients of Artin–Tits monoids,
useful in the study of the representation theory thereof. The = xixi+1 part of (3)
comes from Kiselman monoids from convexity theory [Kis02, KM09]. HK monoids
have applications to computer simulations via discrete sequential dynamical systems
[CD15]; and to the representation theory of the path algebra of the quiver Θ via
projection functors [Gre12, GM14, GM17].

As shown in [Sol96], and later more explicitly and with a simpler proof in [GM11],
Ln is isomorphic to the Catalan monoid CMn+1. This is the monoid of all order-
preserving order-decreasing transformations of the set {1, 2, . . . , n+1}, appearing in
diverse combinatorial and representation-theoretic contexts. This solves the word
problem for Ln, and identifies its size as the Catalan number Cn+1 = 1

n+2

(
2n+2
n+1

)
.

In this paper we establish bijections between:
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(i) the elements of Ln;
(ii) positive braids on n+1 strands without bigons nor triangles (that is, any two

strands intersect at most once, and no triples of strands intersect pairwise);
(iii) increasing couples of increasing integer sequences bounded by 1 and n+ 1,

that is, 2k integers, for any 0 6 k 6 n, satisfying the inequalities

b1 < b2 < . . . < bk 6 n+ 1
∨ ∨ . . . ∨

1 6 a1 < a2 < . . . < ak

(iv) the set of 321-avoiding permutations from Sn+1.
Our bijections are explicit, and proofs are self-contained. We also recall a bijection
between the sequences from (iii) and the Catalan monoid CMn+1, which reflects
a deeper connection between the two [MS18]. The cardinality of CMn+1 being
Cn+1, we recover not-so-widely-known interpretations of Catalan numbers, given by
counting the braids from (ii), the sequences from (iii), or 321-avoiding permutations.

The monoids Ln serve us as a toy model for studying the Cn, crucial for under-
standing HKΘ for a general graph Θ. We thus start with the simpler case Ln, which
makes often technical constructions for Cn more intuitive.

The word problem for Cn was solved in [MO19] by exhibiting a finite Gröbner
basis. That solution was reformulated in terms of confluent reductions in [AD19].
Further, the reduced form (with respect to the Gröbner basis from [MO19]) of
almost all the elements of Cn was given in [OW20]. This was used to show that the
algebra K [Cn], where K is a field, is Noetherian, and then to classify all graphs Θ
for which K [HKΘ] is Noetherian.

Our main results are the following bijections, inspired by the case of Ln:
(i) the elements of Cn;
(ii) positive braids on n strands on a cylinder generated by the elementary

crossings, without contractible bigons nor contractible triangles (cf. Fig. 6);
(iii) n-close increasing couples of increasing integer sequences, that is, 2k inte-

gers, for any 0 6 k < n, satisfying the inequalities

b1 < b2 < . . . < bk < b1 + n
∨ ∨ . . . ∨

1 6 a1 < a2 < . . . < ak 6 n

To construct such a sequence couple for a word x in the generators xi, we develop
an algorithm linear in the number of letters in x. This efficiently solves the word
problem for Cn. In the opposite direction, from such a sequence couple we deduce a
word in the xi, yielding preferred representatives of all the elements of Cn, different
from the reduced forms from [OW20]. The diagrammatic interpretation (ii) is less
useful in practice, but crucial in our proof of the bijection (i) ↔ (iii).

To compare elements in Ln or Cn, we make these monoids act on the powers
of certain sets, generalising the action from [AD13] crucial in [OW20]. Multiple
examples of such actions are given.

2. Yang–Baxter like actions

In this section we make the monoid Ln or Cn act on the powers An+1 or An of
a set A locally, that is, the generator xi affects only the components i and i+ 1 of
A•. This generalisation of the actions by Yang–Baxter operators was considered,
in the case of braid groups, in [Ito18]. Diverse examples are given. One of them
will further be shown to be faithful, and play a key role in our arguments.
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Definition 2.1. An Ln-chain (resp., Cn-chain) on a set A is a collection of idem-
potent maps σi : A×A→ A×A, i = 1, . . . , n, satisfying the relation

(σi × IdA)(IdA×σi+1)(σi × IdA) = (IdA×σi+1)(σi × IdA)(IdA×σi+1)(4)

= (σi × IdA)(IdA×σi+1)

for all 1 6 i < n (resp., for all 1 6 i 6 n). As usual, we set σn+1 = σ1.

When all the σis coincide (= σ), one recovers the notion of an idempotent Yang–
Baxter operator satisfying the Kiselman property (IdA×σ)(σ × IdA)(IdA×σ) =
(σ × IdA)(IdA×σ).

Proposition 2.2. Let σ1, . . . , σn be an Ln-chain (resp., Cn-chain) on A. Then an
action of the monoid Ln (resp., Cn) on An+1 (resp., An) can be defined as follows:

xi 7→ Idi−1
A ×σi × Idn−iA for all i

in the case Ln, and

xi 7→ Idi−1
A ×σi × Idn−i−1

A for all i < n,(5)

xn 7→ θ−1(σn × Idn−2
A )θ(6)

in the case Cn. Here the map θ permutes the components of An by moving the last
component to the beginning.

Despite appearances, the assignment (6) is of the same nature as (5): arranging
the components of An on the circle rather than a line, it says that σn should be
applied to components n and 1 of An, which now become neighbours.

Proof. Relations (1)–(3) hold true by an easy inspection. �

Example 2.3. The identities σi(a, b) = (a, b) yield an Ln- or an Cn-chain on any
set.

Example 2.4. Generalising the preceding example, one can put σi(a, b) = (a, pi(b)),
where pi : A→ A are any projectors: p2

i = pi.

Example 2.5. Consider a set A and n maps fi : A→ A. Then the maps σi(a, b) =
(a, fi(a)) form an Ln-chain and a Cn-chain. Indeed, the idempotence is obvious,
and the three parts of (4) applied to a triple (a, b, c) all yield (a, fi(a), fi+1fi(a)).
Taking A = Z, fi = IdZ for i < n and fn(a) = a+ 1, we get a mirror version of the
Cn-actions from [AD13, Proof of Lemma 2.6]. Taking A = Z, fi = IdZ for i 6 n,
and considering the action on the element (1, 2, . . . , n, n+ 1) ∈ An+1, one recovers
the isomorphism between Ln and the Catalan monoid from [GM11].

Example 2.6. Consider a monoid A and n monoid homomorphisms fi : A → A.
Then the maps σi(a, b) = (1, fi(a)b) form an Ln-chain and a Cn-chain. Indeed, the
idempotence follows from fi(1) = 1, and the three parts of (4) applied to a triple
(a, b, c) all yield (1, 1, fi+1fi(a)fi+1(b)c). When all the fi are equal, one recovers
the idempotent Yang–Baxter operators from [SV20], which generalise the fi = IdA
case from [Leb13].

Example 2.7. Let the set A be endowed with an associative operation ∗ satisfying
the absorption property a∗ (a∗ b) = a∗ b. The set Z with the operation min or max
is an elementary example. Then the maps σi(a, b) = (a, a∗ b) form an Ln-chain and
a Cn-chain. Indeed, the idempotence follows from the absorption property, and the
three parts of (4) applied to a triple (a, b, c) all yield (a, a ∗ b, a ∗ b ∗ c).
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3. From HK monoids to diagrams

This section presents a diagrammatic version of the monoids Ln and Cn, inspired
by the classical braid interpretation of braid monoids. As in all subsequent sections,
we start with the more intuitive Ln case, and then adapt our arguments to the Cn.

By an n-diagram we mean a continuous map d :
⊔n+1
i=1 Ii → R× I sending n+ 1

disjoint copies of the unit intervals I = [0, 1] to the unit strip, in such a way that:
(A) the vertical projection sends each strand d(Ii) bijectively onto I;
(B) d sends the endpoints 0, 1 ∈ Ii to (k, 0) and (l, 1) respectively, for some

k, l ∈ {1, 2, . . . , n+ 1};
(C) d is injective except for a finite number of interior double points.

See Fig. 1 for examples. These n-diagrams are considered up to n-diagram isotopy,
with the usual notion of isotopy for topological objects. They can be thought of as
braid or, alternatively, 4-valent graph diagrams.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Figure 1. Examples of 4-diagrams

We also need 2- and 3-moves for n-diagrams, depicted on Fig. 2. These moves are
local: they involve only a small region of the diagram, outside of which the diagram
remains unchanged. These moves are reminiscent of the Reidemeister moves 2 and
3, and are motivated by the Hecke–Kiselman relations.

2-move 3-move 3-move

Figure 2. Local 2- and 3-moves for n-diagrams

One composes two n-diagrams by putting the first one on top of the second one
and shrinking the result; see Fig. 3 (left). This defines a monoid structure, which
survives in the quotient by 2- and 3-moves. This quotient monoid will be called the
diagrammatic linear Hecke-Kiselman monoid, denoted by DLn. Like braid monoids,
it is generated by the elementary n-diagrams d1, . . . , dn from Fig. 3 (right).

d′

d
dd′ = d2 =

1 2 3 4

Figure 3. Left: Composing 2-diagrams d and d′. Right: The
elementary 3-diagram d2

Proposition 3.1. The monoid map εn : Ln → DLn sending each Hecke-Kiselman
generator xi to the elementary n-diagram di is bijective.
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Proof. The map εn is well defined since the defining relations (1), (2), and (3) of
Ln are realised in DLn by 2-moves, isotopies, and 3-moves respectively. Moreover,
εn is surjective since the dis generate the monoid DLn.

Next, we need to check the injectivity of εn. The relation εn(w) = εn(w′) means
that the n-diagrams εn(w) and εn(w′) are related by a sequence of isotopies and 2-
and 3-moves. An isotopy can be realised in Ln by the far-commutativity relations
(2). Now, given a 2- or 3-move, one can apply an isotopy on both sides of the move
so that no double points have heights lying between the heights of the double points
involved in the move. And such “close” 2- and 3-moves are realised in Ln by the
relations (1) and (3) respectively. �

Let us now move to the Cn. By an extended ñ-diagram we will mean a continuous
map d :

⊔n
i=1 Ii → S1 × I, where the circle S1 is seen as the interval [1, n+ 1] with

glued endpoints 1 and n+1, satisfying the conditions (A)-(C) above, and considered
up to isotopy. They can be thought of as braid or 4-valent graph diagrams on a
cylinder. Some examples are given in Fig. 4. Here cylinders are cut along the
line x = 1 and represented by squares. Braids on a cylinder have been extensively
studied in the literature, and are known under various names (annular, affine etc.);
see for example [tD98, KP02, CP03] and references thereto.

1 2 3 4 5 1 2 3 4 5

Figure 4. Left: A 4̃-diagram. Right: The extended 4̃-diagram t

Extended ñ-diagrams form a monoid under the stack-and-shrink composition.
Consider the submonoid generated by the elementary ñ-diagrams d̃1, . . . , d̃n, de-
fined by the same pictures as the elementary n-diagrams di. Its elements will be
called ñ-diagrams. In other words, we forbid the 2π

n twist t from Fig. 4 (which,

together with the d̃is, generates the whole monoid of extended ñ-diagrams). For

example, the left 4̃-diagram from Fig. 4 decomposes as d̃2d̃4d̃1d̃3; actually, it has 4
different decompositions due to isotopy: one can exchange d̃1 and d̃3, and d̃2 and
d̃4. The quotient of this monoid by the same local 2- and 3-relations as in the linear
case will be called the diagrammatic circular Hecke-Kiselman monoid DCn.

The proof of Proposition 3.1 extends verbatim to this new setting, and yields

Proposition 3.2. The monoid map ε̃n : Cn → DCn sending each Hecke-Kiselman
generator xi to the elementary ñ-diagram d̃i is bijective.

4. Weakly entangled braid diagrams

In this section we show how to “disentangle” any n- or ñ-diagram using 2- and
3-moves. We will later see that the result of this disentanglement is unique.

A weakly entangled braid n-diagram, or n-web for short, is an n-diagram without
bigons nor triangles. That is, any two strands intersect at most once, and there are
no pairwise intersecting strand triples. The set of n-webs, considered up to isotopy
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as usual, is denoted by WLn. Note that a composition of webs need not be one.
Webs have two useful alternative descriptions:

Proposition 4.1. For an n-diagram d, the following statements are equivalent:
(1) d is an n-web;
(2) d has neither minimal bigons nor minimal triangles;
(3) d can be isotoped to an n-diagram where each strand is either vertical

or projects injectively to the x-axis, and when two strands cross, the x-
coordinate is strictly increasing (when followed from bottom to top) for one
of them and strictly decreasing for the second one.

Here a bigon/triangle is called minimal if it is not intersected by other strands.
For instance, the first 4-diagram from Fig. 1 is a 4-web; the second one has a
minimal bigon and a non-minimal triangle; and the third one has a non-minimal
bigon and both minimal and non-minimal triangles.

The condition on strands in 3 is equivalent to saying that, when followed from
bottom to top, they always go straight up / to the right / to the left. Such strands
will be called trivial, right, and left respectively. Moreover, each crossing should
be an intersection of a right strand and a left strand. For instance, in the first 4-
diagram from Fig. 1, strands 1 and 3 are right, 2 and 4 are left, and 5 is trivial. Here
and below strands are numbered by the x-coordinate of their lower endpoint. The
trivial/right/left property does not depend on the concrete diagram representing
an n-web, since it is determined by the endpoints of the strand only. It is thus
legitimate to talk about a trivial/right/left strand of an n-web.

Proof. Implication 1 ⇒ 2 is trivial.
To show 3 ⇒ 1, present an n-diagram as explained in 3. In a bigon, the strand

going to the left at the lower intersection goes to the right at the upper one. The
same happens to the strand connecting the lower and the upper intersections in a
triangle. Thus an n-diagram satisfying 3 has neither bigons nor triangles.

To show 2 ⇒ 3, take an n-diagram without minimal bigons nor minimal trian-
gles, and present it as a composition of elementary n-diagrams. Let us follow each
strand from bottom to top. If each strand goes in the same direction (left or right)
at each intersection it crosses, then, by slightly moving some vertical segments if
necessary, one gets an n-diagram satisfying 3. Now, assume that one strand goes to
different directions at some of its intersections. Then among pairs of intersections
connected by a common strand changing direction in between, choose one with
the minimal height difference. Let us denote this common strand by s, the two
intersections realising the desired property by A and B, and the two other strands
going through A and B by sA and sB respectively; see Fig. 5. By the minimality

s

A

B
sB

sA

s

A

B
sB

sA

C

Figure 5. The closest intersections connected by a direction-
changing strand
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condition in the choice of A and B, s does not run through any intersections be-
tween A and B. If sA = sB , then, since sA cannot cross s between A and B, sA
and s form a bigon between A and B. This bigon is minimal: indeed, if a strand
intersects this bigon, then it crosses sA at some point D between A and B, and
the pair (D,A) or (D,B) breaks the minimality condition in the choice of the pair
(A,B). In the alternative case sA 6= sB , the strands sA and sB have to cross at
some point C between A and B. This yields a triangle ABC, which is minimal by
an argument exploring once again the minimality condition on A and B. �

We will now show that 2- and 3-moves can reduce any n-diagram to an n-web,
whose uniqueness will be proved later on. In other words, n-webs yield normal
forms of n-diagrams, easy both to construct and to compare.

Concretely, the inclusion of the set of n-webs into the set of n-diagrams induces
a map ι : WLn → DLn.

Proposition 4.2. The map ι : WLn → DLn is surjective.

Proof. Take an n-diagram d which is not an n-web. By Proposition 4.1, d contains
a minimal bigon/triangle. A 2-/3-move can be used to remove it, reducing the
crossing number of d by 1. Since the crossing number can be reduced only a finite
number of times, one can iterate this process until getting an n-web, which is
equivalent to d modulo 2- and 3-moves. Thus d lies in the image of ι. �

Let us now turn to ñ-diagrams. They can have two types of bigons/triangles:
contractible and non-contractible, according to whether or not the bigon/triangle
delimits a contractible part of the cylinder; see Fig. 6.

Figure 6. Contractible (left figures) and non-contractible (right
figures) bigons and triangles

All arguments from this section can be adapted verbatim to ñ-diagrams if one
considers only contractible bigons and triangles, and if by “right/left” one means
“going in the positive/negative direction of the S1 factor of the cylinder S1 × I”.
One obtains the set WCn of ñ-webs, and a map ι̃ : WCn → DCn satisfying:

Proposition 4.3. The map ι̃ : WCn → DCn is surjective.

Remark 4.4. It is interesting to note that a diagram with a non-contractible trian-
gle necessarily contains either a contractible triangle or a contractible bigon. This
can be seen using a minimality argument similar to that from the proof of Propo-
sition 4.1. Thus an ñ-web cannot contain non-contractible triangles. Another way
of seeing this is observing that two of the three strands forming a triangle (con-
tractible or not) in an ñ-web should be of the same type, right or left, and thus
cannot intersect.
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Remark 4.5. The disentanglement procedures for diagrams from Propositions 4.2
and 4.3 can be translated into rewriting procedures for words in Ln and Cn. Indeed,
killing a bigon or a triangle boils down to applying a generalised version of relation
(1) or (3) respectively in the length-reducing direction. The generalisation in ques-
tion allows one to insert some generators xj coherently on both sides, provided that
these generators far-commute, in the sense of (2), with the generators involved in
the relation. This rewriting approach is developed in [MO19, AD19].

5. Integer sequences and permutations encoding webs

An n-diagram d induces a permutation p(d) ∈ Sn+1 of {1, 2, . . . , n + 1}: just
send the x-coordinate of the lower endpoint of each strand to the x-coordinate of its
upper endpoint. In this section we show that an n-web w is completely determined
by the permutation p(w), which establishes an explicit bijection between WLn and
321-avoiding permutations from Sn+1. Moreover, all one needs to reconstruct p(w)
are the endpoints of all right strands of w, encoded with two integer sequences.
Similar two-integer-sequence description is developed for ñ-webs. This yields a
very efficient way of representing, comparing, and enumerating n- and ñ-webs.

Denote by S321
n+1 the set of all 321-avoiding permutations from Sn+1, that is, per-

mutations s that do not completely permute any triple: one cannot simultaneously
have i < j < k and s(i) > s(j) > s(k). Also, denote by IIn the set of all increasing
couples of increasing integer sequences bounded by 1 and n+1, that is, 2k integers,
for any 0 6 k 6 n, satisfying the inequalities

b1 < b2 < . . . < bk 6 n+ 1
∨ ∨ . . . ∨

1 6 a1 < a2 < . . . < ak

For a permutation s ∈ Sn+1, denote by r(s) its right sequence couple, consisting
of the ordered sequence (at) of all the is with s(i) > i, and of the sequence (bt) of
the same size defined by bt = s(at). This sequence couple satisfies all conditions
from the definition of IIn, except for the monotonicity of (bt).

Proposition 5.1. The maps p and r above induce bijections

WLn
π−→

1:1
S321
n+1

ρ−→
1:1

IIn .

This proposition allows us to talk about the right sequence couple of an n-web
w, which is simply ρ ◦ π(w). For instance, the right sequence couple of the first
4-diagram from Fig. 1 is ((1, 3), (3, 4)).

Proof. Take an n-web w. Its strands i < j intersect if and only if p(i) > p(j). Since
w has no pairwise intersecting triples, p(w) is 321-avoiding. Hence the map π is
well defined.

We will next construct the drawing map δ : S321
n+1 → WLn, and show that it

is the inverse of π. Take a permutation s ∈ S321
n+1, and construct a diagram in

R × I by connecting with a straight segment the points (i, 0) and (s(i), 1) for all
i ∈ {1, 2, . . . , n+ 1}. These segments will have only simple intersections, since s is
321-avoiding. So we get an n-diagram. Two segments cannot form a bigon, and
triangles are ruled out as s is 321-avoiding. Thus we get an n-web, denoted by δ(s).
By construction, π ◦ δ(s) = s. Next, using an inductive argument, we will explain
how to isotope any n-web w to δ ◦π(w). This can be thought of as the linearisation
of w. We will actually prove the statement for a slightly wider class of objects,
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called wide n-webs: their upper endpoints are allowed to be of the form (i, 1) for
any integer i. The case n = 1 is trivial. Let us then consider any n, and assume
the case n − 1 settled. Proposition 4.1 easily adapts to wide n-webs: the relevant
definition for trivial/right/left strands is crossingless or going to the right/left of
any intersecting strand, respectively. Thus all strands of w can be assumed to be
trivial, right, or left. Consider the strand l in w connecting the point (1, 0) to some
(i, 1). It is either trivial or right. Then l crosses either no strands or several left
strands, called active. The strand l can be isotoped up, as in Fig. 7.A; indeed, the
grey zone contains only left strands, which do not intersect. The remaining strands
are static during this isotopy. In the pictures in Fig. 7, only l and the active strands
are drawn, and the old and the new positions of l are depicted using a solid and a
dashed line respectively. If l is isotoped close enough to the upper border R× {1},
then the induction hypothesis can be applied to the remaining n strands, while
keeping l static. In the resulting n-web, l can be isotoped to the straight position,
as in Fig. 7.C, since once again the grey zone cannot contain any intersections. The
resulting n-web is precisely δ ◦ π(w).

A B C

Figure 7. Linearising an n-web inductively

Let us now turn to sequence couples. To show that the map ρ is well defined, we
need to take a 321-avoiding permutation s and show that r(s) ∈ IIn. That is, for
any i < j such as i < s(i) and j < s(j), we need to check that s(i) < s(j). Since
j < s(j), there are more elements from {1, 2, . . . , n + 1} that are > j than those
> s(j). As a result, there exists a k > j with s(k) < s(j). But then an i with i < j
and s(i) > s(j) would create a forbidden 321 pattern in s.

It remains to describe the completion map κ : IIn → S321
n+1, and show that it is

the inverse of ρ. Take a sequence couple c = ((a1, . . . , ak), (b1, . . . , bk)) from IIn.
Let ak+1 < . . . < an+1 and bk+1 < . . . < bn+1 be the complements of the sequences
(at) and, respectively, (bt) in {1, 2, . . . , n + 1}. Define a permutation κ(c) ∈ Sn+1

by sending each at to bt. One needs to show that κ(c) is 321-avoiding. Take any
i < j < m. Two of the three elements i, j, k have to belong either to {a1, . . . , ak}
or to {ak+1, . . . , an+1}. But then they are not reversed by κ(c), forbidding the
321 pattern. Hence a well defined map κ : IIn → S321

n+1. Moreover, with the above
notations, we will prove that ρ◦κ(c) = c. That is, the permutation κ(c) should not
increase any of ak+1, . . . , an+1. Suppose that, on the contrary, at < s(at) for some
t > k. As in the previous paragraph, this implies that bu = s(au) < s(at) = bt
for some au > at. One cannot have u > k, since then one would have bu > bt by
the construction of κ(c). But u 6 k is not possible either, since this would imply
au < bu, and then in δ ◦ κ(c) two right strands au and at would intersect. Finally,
for any s ∈ S321

n+1, one has κ ◦ ρ(s) = s. To see this, it suffices to check that κ
completes the permutation s correctly on the elements non-increased by s. That
is, for i < j with s(i) 6 i, s(j) 6 j, one necessarily has s(i) < s(j). The argument
here is the same as that in the proof of r(s) ∈ IIn in the previous paragraph. �
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Observe that all the maps from the proposition, as well as their inverses, are
explicit, and have realisations linear in n (for ρ and its inverse) or in the diagram’s
crossing number (for π and its inverse).

Remark 5.2. Diminishing each bi by 1, one gets a slightly modified condition on
the sequence couple:

b1 < b2 < . . . < bk 6 n

> > > >

1 6 a1 < a2 < . . . < ak

This form suggests a bijection between IIn and monotonic lattice paths along the
edges of a grid with (n+1)×(n+1) square cells which do not pass above the diagonal:
just record the coordinates of the “corners” of such a path. These paths provide one
of the most classical realisations of the Catalan number Cn+1. Recording all integer
points of such a path, one gets a bijection with the Catalan monoid CMn+1, that
is, the monoid of all order-preserving and order-decreasing total transformations of
the set {1, 2, . . . , n+ 1}.

It is time to turn to ñ-webs. Here again the key information is contained in
the endpoints of all the right strands. To completely determine an ñ-web, one
needs to add certain homology information—namely, how many times each right
strand turns around the core of the cylinder. These two types of information can be
conveniently blended into something as simple as a couple of sequences, as follows.

For an ñ-web w, denote by r(w) its right sequence couple. The first sequence in
this couple is the ordered sequence (at) of the x-coordinates of the lower endpoints
of all the right strands of w. (Recall that ñ-webs are drawn on the cylinder S1 × I,
where the circle S1 is seen as the interval [1, n+1] with glued endpoints 1 and n+1;
for a strand starting at (1, 0) ≡ (n+1, 0), we choose at = 1.) Next, define a sequence
(bt) of the same size by bt = s(at) +n ∗ht, where (s(at), 1) is the upper endpoint of
the strand starting at (at, 0) (again, when the x-coordinate is 1 ≡ n+ 1, we choose
1), and ht is the number of times this strand crosses the segment {n+ 1

2}× I. The
number ht is well defined if one works only with the representatives of w where our
strand is right, which exist by the ñ-analog of Proposition 4.1.

Denote by IICn the set of all n-close increasing couples of increasing integer
sequences, that is, 2k integers, for any 0 6 k < n, satisfying the inequalities

b1 < b2 < . . . < bk < b1 + n
∨ ∨ . . . ∨

1 6 a1 < a2 < . . . < ak 6 n

Proposition 5.3. The map r above induces a bijection

WCn
%̃−→

1:1
IICn .

Note that we do not give an intermediate step for this bijection, which would
play the role the 321-avoiding permutations played for n-webs. This yields a slightly
shorter proof. The price to pay is the difficulty of constructing the inverse for %̃: we
do it inductively, which is convenient for turning this construction into an algorithm,
but makes the resulting ñ-web less tractable. An alternative “straight-line” version

of %̃−1, similar to the “straight-line” inverse of the map WLn
π−→

1:1
S321
n+1 described

in the proof of Proposition 5.1, will be given below. Less algorithmic, it is aimed
at a diagrammatic-thinking reader.
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Proof. Take an ñ-web w. We first need to check that r(w) ∈ IICn. As usual, we
rewrite w as a composition of elementary n-diagrams di where at each intersection
a right strand goes to the right and a left strand goes to the left. This is possible
due to the ñ-analog of Proposition 4.1. We then follow w from bottom to top, and
observe how the sequence (bt) changes after each di. One starts with bt = at for
all t. If i < n, and the strand going to the right at the crossing di starts at some
(au, 0), then s(au) increases by 1 and hu remains constant, so bu increases by 1. If
i = n, then s(au) changes from n to 1, but hu increases by 1 since the strand crosses
the line x = n + 1

2 , so the overall increase of bu is once again 1. The remaining
right strands do not move, hence the remaining bt stay constant. Since the bt can
only increase, and since each right strand goes through at least one crossing di,
at the end one has bt > at for all t. Further, we start with a strictly increasing
integer sequence bt = at, with bk = ak ≤ n < n + 1 ≤ a1 + n = b1 + n, and at
each step exactly one bu increases by 1. If at some step the monotonicity of (bt) or
the condition bk < b1 + n is broken, then when this happens for the first time one
has bu = bu+1 for some u, or else bk = b1 + n. Thus two of the bts coincide modn,
which means s(au) = s(av) for u 6= v. Hence two of the upper endpoints coincide,
which is impossible. Therefore r(w) satisfies all the conditions defining IICn.

We will now define the spiral map σ̃ : IICn → WCn, and show that it is the
inverse of %̃. Take a sequence couple ((at), (bt)) ∈ IICn. We will work inductively
on the size k of (bt), and in the case of the same size on the maximal term bk.
One sets σ̃(∅, ∅) to be the trivial ñ-web. In the general case, let bu, . . . , bk be the
maximal tail of (bt) consisting of consecutive numbers. In particular, bu−1 < bu−1
if bu−1 exists. Then decrease each of bu, . . . , bk by 1, and discard all elements at and
bt with bt = at. Denote the new sequence couple by ((a′t), (b

′
t)). By construction, it

is again from IICn, and either its size or the maximal element (or both) diminished.
If σ̃((a′t), (b

′
t)) was chosen to be w′, then put

w = σ̃((at), (bt)) = d̃bu−1 · · · d̃bk−1w
′.

By construction, at each crossing of w, a strand starting at a point of the form
(at, 0) goes to the right, and a strand starting at a point not of this form goes to
the left. Each strand starting at some (at, 0) goes to the right at least once, since
at < bt. Thus w as an ñ-web, its right strands are precisely those starting from the
points (at, 0), and %̃(w) = ((at), (bt)). As a consequence, %̃ ◦ σ̃ = Id.

To show that σ̃ ◦ %̃ = Id, we will exhibit an isotopy between any ñ-webs w and v
sharing the same right sequence couple. This is done by induction on the number
of crossings of v. Write v = d̃iv

′, where the ñ-web v′ has less crossings than v.
The crossing d̃i involves a right strand rv ending at (i + 1, 1), and a left strand lv
ending at (i, 1). In w, there is a right strand rw with the same endpoints as rv,
since w and v share the same right sequence couple. Let its highest (with respect
to the y-coordinate) crossing A be with a left strand lw. Observe that lw has no
crossings above A. Indeed, such crossings are possible only with right strands, the
rightmost of which has to end at (i, 1), which is then the endpoint of a right strand
in w and of the left strand lv in v. But this is impossible for ñ-webs sharing the
same right sequence couple. As a result, lw has to end at (i, 1), and the crossing A

can be isotoped to the top of w, which allows one to write w = d̃iw
′. The induction

hypothesis can then be applied to w′ and v′. �
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The adjective “spiral” used for the map σ̃ comes from the shape of the resulting
ñ-webs when the crossing number is big. Following such an ñ-web upwards, one
sees the right strands first assemble together in a co-shuffle-like way, then spiral
around the core of the cylinder, and then shuffle again with the left strands.

We finish this section with a sketch of a diagrammatic construction of %̃−1,
omitting the proofs, which are similar to those given for Propositions 5.1 and 5.3.
Consider the universal covering p : R× I → S1 × I of our cylinder, which identifies
points (x, y) and (x+ n, y) for all x ∈ R, y ∈ I. Given an ñ-web w, take its strand
s starting at some (i, 0) ∈ S1 × I and consider the unique lift of s to R× I starting
at (i, 0) ∈ R × I. For a right strand starting at (at, 0), one gets a strand in R × I
ending precisely at (bt, 1). Here ((at), (bt)) is the right sequence couple of w. A
trivial strand lifts to itself. And a left strand starting at (cu, 0) lifts to a strand
ending at (du, 1). Here the sequences (cu), (du) are constructed as follows. The cu
form the ordered sequence of the x-coordinates of the lower endpoints of all the left
strands of w. Next, we put du = s(cu) − n ∗ gu, where (s(cu), 1) ∈ S1 × I is the
upper endpoint of the strand starting at (cu, 0), and gu is the number of times this
strand, drawn always going in the negative direction, crosses the segment {n+ 1

2}×I.
The sequence couple ((cu), (du)) is completely determined by ((at), (bt)). Indeed,
define (c′u) and (d′′u) as the ordered sequences of the elements of {1, 2, . . . , n} not
belonging to (at) and (bt modn) respectively. One gets sequences of size n−k. Put
h =

∑
t ht, and divide it by n − k to obtain h = q(n − k) + r, with q, r ∈ N ∪ {0}

and r < n − k. Then put d′u = d′′u − n ∗ (q + 1) for the last r elements of the
sequence (d′′u), and d′u = d′′u−n∗q for the remaining ones. Reorder the d′u to get an
increasing sequence. Discard all c′u and d′u with c′u = d′u. The resulting sequences
are precisely ((cu), (du)). They can be thought of as the left sequence couple of w,
and satisfy the conditions defining IICn, with all the inequalities at < bt replaced
with at > bt. Now, to compute %̃−1((at), (bt)) for any ((at), (bt)) ∈ IICn,

(1) construct the sequences ((cu), (du)) as described above;
(2) draw in R × I straight segments connecting (at, 0) to (bt, 1) and (cu, 0) to

(du, 1) for all t and u;
(3) project everything to the cylinder via the map p;
(4) add vertical segments if necessary (that is, if one gets c′u = d′u for some u

when constructing ((cu), (du))).

Example 5.4. Let us illustrate our algorithm on the case n = 4, k = 2, a1 =
2, a2 = 3, b1 = 6, b2 = 9. We have 6 = 2 + 4 ∗ 1 and 9 = 1 + 4 ∗ 2, hence
h1 = 1, h2 = 2, h = h1 + h2 = 3. The Euclidean division of h = 3 by n − k = 2
yields 3 = 1 ∗ 2 + 1, hence q = r = 1. Further, the complements of {a1 = 2, a2 = 3}
and {b1 mod 4 = 2, b2 mod 4 = 1} in {1, 2, 3, 4} are {1, 4} and {3, 4} respectively, so
c′1 = 1, c′2 = 4, d′′1 = 3, d′′2 = 4, d′1 = 3 − 4 ∗ 1 = −1, d′2 = 4 − 4 ∗ 2 = −4. The
reordering of the d′i yields (−4,−1). No omissions are necessary since c′u > 0 > d′u
for all u. Thus the left sequence couple is ((1, 4), (−4,−1)). The graphical part of
the algorithm is realised in Fig. 8. No vertical segments are necessary. Reading
this diagram from bottom to top, one sees that the corresponding element of Cn is

x = x4x3x1x4x2x1x3x2x4x3.
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6 9−1−4

1 2 3 4 5

p

x = 4.5

1 2 3 4 5

Figure 8. Reconstructing a 4̃-web from its right sequence couple
((2, 3), (6, 9))

6. Main result

We are now ready to prove all the bijections announced in the Introduction.

Theorem 6.1. Fix an n ∈ N. The maps ε, ι, and ρ ◦ π described above yield
bijections between

(i) the elements of the Hecke–Kiselman monoid Ln;
(ii) the set WLn of n-webs;

(iii) the set IIn of increasing couples of increasing integer sequences bounded by
1 and n+ 1.

Most parts of the theorem were treated in Propositions 3.1, 4.2, and 5.1. The bi-
jections and surjections established there are summarised in the following diagram:

Ln
ε

1:1
//

ϕ

��

DLn

IIn S321
n+1

ρ

1:1
oo WLn

ι
OOOO

π

1:1
oo

The algebraic/diagrammatic part of the story is on the left/right respectively.
We will now describe a map ϕ : Ln → IIn making the above diagram commute,

in the sense of ϕ ◦ ε−1 ◦ ι = ρ ◦ π. The injectivity, and hence the bijectivity, of
ι follow and complete the proof of the theorem. As a by-product, we obtain an
explicit bijection ϕ, which can be realised as an elementary algorithm linear in
max{n, length(x)}, where x ∈ Ln is seen as a word in the generators xi.

The map ϕ is constructed using the Ln-chain σi(a, b) = (a, a) on the set N; cf.
Example 2.5. Let us look at how an x ∈ Ln acts on (1, 2, . . . , n+ 1) ∈ Nn+1. Each
generator xi either has no effect, or propagates some element a to the right, i.e.,
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replaces the right neighbour b > a of some a by a. Now, consider only the a’s
present in the result y = x · (1, 2, . . . , n + 1) of this action. Order them to get the
sequence (at). Denote by bt the place of the rightmost occurrence of at in y. Throw
away the couples with bt = at. Since the propagation happens only to the right,
we get a sequence couple ((at), (bt)) ∈ IIn, declared to be ϕ(x).

Lemma 6.2. One has ϕ ◦ ε−1 ◦ ι = ρ ◦ π.

Proof. One needs to understand y = x · (1, 2, . . . , n+ 1) for an x corresponding to
an n-web w. Let ((at), (bt)) be the non-left sequence couple of w, that is, we record
the endpoints of right and trivial strands. Then y contains only the at’s, and the
element at occupies in y the positions bt−1 + 1, . . . , bt (we put b0 = 0). Throwing
away the couples with bt = at, one gets, on the one hand, the right sequence couple
of w, which is ρ ◦ π(w); and, on the other hand, ϕ(y) = ϕ ◦ ε−1 ◦ ι(w). �

Similarly, in the case Cn we get

Theorem 6.3. Fix an n ∈ N. The maps ε̃, ι̃, and %̃ described above yield bijections
between

(i) the elements of the Hecke–Kiselman monoid Cn;
(ii) the set WCn of ñ-webs;

(iii) the set IICn of n-close increasing couples of increasing integer sequences.

Indeed, Propositions 3.2, 4.3, and 5.3 yield

Cn
ε̃

1:1
//

ϕ̃
��

ψ̃

ww

DCn

SC IICn? _
ηoo WCn

ι̃

OOOO

%̃

1:1
oo

We will now describe a map ψ̃ : Cn → SC, where SC is the set of all couples of
integer sequences. Denoting by η : IICn ↪→ SC the obvious injection, we will then
prove that ψ̃ ◦ ε̃−1 ◦ ι̃ = η ◦ %̃. The injectivity, and hence the bijectivity, of ι̃ follow
and complete the proof of the theorem. As a by-product, we get Im(ψ̃) ⊆ IICn,

so ψ̃ induces a map ϕ̃ : Cn → IICn satisfying ϕ̃ ◦ ε̃−1 ◦ ι̃ = %̃. The bijectivity
of ι̃ implies that we obtain an explicit bijection ϕ̃, which can be realised as an
elementary algorithm linear in max{n, length(x)}, where x ∈ Cn is seen as a word
in the generators xi.

The map ψ̃ is constructed using the Cn-chain σi(a, b) = (a, a) for i < n, and
σn(a, b) = (a, a+ n), on the set N; cf. Example 2.5. Let us look at how an x ∈ Cn
acts on (1, 2, . . . , n) ∈ Nn. Each generator xi either has no effect, or propagates
some element a to the right, or replaces the first element with the last element +n.
Now, consider only those a ∈ {1, 2, . . . , n} which coincide modn with at least one
entry of y = x · (1, 2, . . . , n). Order them to get the sequence (at). For each at,
consider the maximal number mt coinciding with at modn and occurring in y, and
denote by s(at) the place of the rightmost occurrence of mt in y. Decompose mt as
at + n ∗ ht, and put bt = s(at) + n ∗ ht = s(at) +mt − at. Throw away the couples

with bt = at. Declare the resulting sequence couple ((at), (bt)) to be ψ̃(x).
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Example 6.4. Let us evaluate ψ̃ on the element x = x4x3x1x4x2x1x3x2x4x3 ∈ C4

from Example 5.4. We need to compute y = x · (1, 2, 3, 4):

(1, 2, 3, 4)
x37→ (1, 2, 3, 3)

x47→ (7, 2, 3, 3)
x27→ (7, 2, 2, 3)

x37→ (7, 2, 2, 2)
x17→ (7, 7, 2, 2)

x27→ (7, 7, 7, 2)
x47→ (6, 7, 7, 2)

x17→ (6, 6, 7, 2)
x37→ (6, 6, 7, 7)

x47→ (11, 6, 7, 7) = y.

Modulo 4, this yields (3, 2, 3, 3), which contains only 2 and 3. Thus a1 = 2, a2 =
3, m1 = 6 = 2 + 4 ∗ 1, m2 = 11 = 3 + 4 ∗ 2, h1 = 1, h2 = 2. Further, s(a1) = s(2)
is the rightmost occurrence of m1 = 6 in y, which is 2, and s(a2) = s(3) is the
rightmost occurrence of m2 = 11 in y, which is 1. Finally, b1 = s(a1) +m1 − a1 =
2 + 6− 2 = 6, b2 = s(a2) +m2 − a2 = 1 + 11− 3 = 9. This is the expected result,
since in Example 5.4 x was constructed out of the 4̃-web %̃−1((2, 3), (6, 9)).

Lemma 6.5. One has ψ̃ ◦ ε̃−1 ◦ ι̃ = η ◦ %̃.

Proof. One needs to understand y = x · (1, 2, . . . , n) for an x corresponding to an
ñ-web w. Let ((at), (bt)) be the non-left sequence couple of w, that is, we record the
endpoints of right and trivial strands. Modulo n, y contains only the at’s, and the
element at occupies in y the positions bt−1+1, . . . , bt if t > 1, and bk+1, . . . , b1+n if
t = 1. Here k is the size of (at). To get from integers modulo n to integers, observe
that in the propagation story the +n phenomenon happens only when an element
propagates from the last position to the first one, that is, when the generator xn is
applied, which in an ñ-web corresponds to the elementary diagram d̃n, which is the
only case when a right strand crosses the x = n + 1

2 line, which in its turn is the
only situation when the corresponding bt is augmented by n. Thus, throwing away
the couples with bt = at as usual, one gets, on the one hand, the right sequence
couple of w, which is %̃(w); and, on the other hand, ψ̃(y) = ψ̃ ◦ ε̃−1 ◦ ι̃(w). �
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[OW20] Jan Okniński and Magdalena Wiertel. Combinatorics and structure of Hecke–Kiselman

algebras. Commun. Contemp. Math., 22(7):2050022, 42, 2020.
[Sol96] Andrew Solomon. Catalan monoids, monoids of local endomorphisms, and their presen-

tations. Semigroup Forum, 53(3):351–368, 1996.
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