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Abstract

Rayleigh-Debye-Gans (RDG) theory is a commonly used approximation for light scattering

and absorption by nanoparticles in the visible spectrum. The aim of this study is to advance

our understanding for the origin of empirically observed deviations between accurate calcu-

lations of forward scattering and the absorption cross-sections and those predicted by RDG.

For this purpose, we investigate the internal electric field within bi-spherical nanoparticles

in several cases. The fixed-size constituent spheres of the bispheres are either separated or

overlapped and are investigated using the discrete dipole approximation (DDA). To study

the internal electric fields, we apply a phasor approach, which provides a semi-graphical

way to understand the deviation of the forward scattering (A) and that of the absorption

cross section (h) with respect to the RDG. The phasor approach reveals the influence of the

bisphere orientation, absorption function E(m), scattering function F (m), and wavelength.

It is observed that RDG tends to overestimate the forward scattering, i.e., A < 1, as well as

absorption h < 1 for larger size parameters, and thus, shorter wavelength. At the opposite

limit, a decreasing absorption function E(m) leads to RDG underestimating the true scat-

tered intensity. An explanation for this effect is a competition between the non-uniformity

of the internal electric field and the phase shift of the phasors, leading to different results

than those predicted by RDG and the amount of dipoles scattering in-phase.
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Nomenclature

Manuscript symbols2

λ Wavelength [m]

ρ Phase shift parameter4

φ Phase shift of the internal electric field relative to RDG [◦]

Orientation state of the particle6

A Forward scattering correction to RDG

a Particle radius [m]8

Cabs Absorption cross section [m2]

Csca Scattering cross section [m2]10

d Dipole-dipole separation distance [m]

dCsca/dΩ Differential scattering cross section [m2]12

dij Distance between sphere centers in a bisphere [m]

E(m) RDG absorption function14

Einc Incident electric field [kg m s−3 A−1]

Eint Internal electric field [kg m s−3 A−1]16

Eint
RDG RDG internal electric field [kg m s−3 A−1]

Esca Scattering electric field [kg m s−3 A−1]18

Esca
1 Far-field scattering amplitude [kg m2 s−3 A−1]

F (m) RDG scattering function20

h Absorption correction to RDG

k Wave number [m−1]22

m = n+ iκ Complex refractive index

n̂inc Unit vector in the direction of the incident wave24

r Vector from the origin to the detector: observation point [m]

r̂ Unit vector in the direction of r26

ri Position of the ith volume element [m]

〈x〉 Orientation average of x28

x Average of x over the particle volume

xp Particle size parameter30
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zx,i, zy,i, zz,i Phasors

[· · · ]hh Horizontal-horizontal polarization32

[· · · ]vv Vertical-vertical polarization

[· · · ]v Vertical incident polarization34

Appendix symbols

µo Magnetic permeability of free space [m kg s−2 A−2]36

χ Electric susceptibility

Bsca Scattered magnetic field [kg s−2 A−1]38

I Light intensity (irradiance) [W m−2]
↔
I Cartesian identity dyadic40

Pi Electric polarization of element i [C m−2]

r̂⊗ r̂ Dyadic product of vectors r̂ and r̂42

S Poynting vector [W m−2]
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Highlights44

• RDG limits are explored for an overlapped bisphere.

• Forward scattering and absorption corrections are related to the internal electric field46

non-uniformity.

• Optical index, orientation and wavelength dependencies are investigated.48

• The coupling between the spheres is limited to two sphere diameters of distance.

• Sharp curvatures produce large gradients of the electric field, and thus, RDG devia-50

tions.
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1. Introduction52

Nanometer sized aerosol particles and colloids are generated intentionally in certain in-

dustrial processes [1] or unintentionally and without control, e.g., from vehicular activity54

and polymer combustion [2, 3]. Due to their small size and thermal agitation, these particles

are often encountered in aggregated form. Different techniques exist to analyse the emission56

or generation of these particles, with light scattering methods being a particularly effective

technique. Indeed, light-scattering techniques enable an affordable and in-situ diagnostic58

method with the possibility of high spatial and temporal resolution. A common challenge

for light scattering studies of aerosols is how to best interpret the data to retrieve particle60

properties of interest. For this purpose, fast and efficient methods based on simplified models

for scattering are used. Rayleigh scattering is one example, involving a simple formulation,62

but it is limited to particles with small size parameter xp = ka � 1 where k = 2π/λ, λ is

the (vacuum) wavelength, and a is the particle radius.64

Rayleigh Debye Gans (RDG) theory is another approximation for light scattering for

particles that is based on the Rayleigh approximation and is applicable to non-spherical66

objects. In addition to the constraint on the size parameter, the particle has to be nearly

transparent, i.e., |m−1| � 1, where m = n+iκ is the wavelength-dependent complex-valued68

refractive index and the related phase shift parameter ρ = 2xp|m− 1| should also be ρ < 1.

Under these conditions, the absorption-cross section is Cabs = 6πV E(m)/λ where V is the70

particle volume and

E(m) = Im
{
m2 − 1

m2 + 2

}
(1)

is the absorption function [4]. Similarly, the forward-scattering differential cross-section for72

vertically polarized incident light and scattered light polarized in the same direction is [4]

dCsca
vv

dΩ
(θ = 0◦) =

9π2V 2

λ4
F (m) (2)

where the scattering function is74

F (m) =

∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣2 . (3)

At other scattering angles θ, scattered light originating from different regions in a particle can

interfere, which reduces the overall scattering intensity. This effect depends on the particle76
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size and shape [5]. In that case, Eq. (2) is modulated by a function called the structure factor.

A frequently encountered case where such a description for angular scattering is used is for78

fractal aggregates where the approximation is called RDG for Fractal Aggregates (RDG-FA).

The approximation is typically applied to fractal aggregates of spherical primary particles,80

or monomers, of soot nanoparticles and is extensively described in the literature, e.g., see [6].

At the monomer scale, the RDG approximation assumes the electric field is uniform within82

the monomer based given that a � λ. The interference diminishing the scattered intensity

as described by the structure factor then originates from the differing position of the many84

monomers composing an aggregate.

Most formulations for the structure factor rely on the hypothesis that each volume ele-86

ment in a monomer particle “sees,” and then scatters, only the incident light. That is, scat-

tering from the monomer is envisioned as each volume element responding to the incident88

field ignoring any perturbation caused by scattering from the other elements in the particle.

This simplification is refereed to as “no internal coupling” or as the “absence of multiple90

scattering,” and its utility is to greatly simplify the mathematical description of scattering

from the entire aggregate. Formally, this simplification is only justified for m→ 1, i.e., when92

refraction effects are negligible. Yet, in many applications m can be large, and often features

a significant imaginary part describing absorption, and internal coupling is not negligible94

leading to substantial disagreement between the true angular-scattering and that predicted

by RDG-FA.96

A number of studies investigate and quantify the error made by invoking the RDG ap-

proximation. For fractal aggregates in particular, Farias et al. [7] show that the RDG-FA98

is a reasonable approximation to within 10% error if xp ≤ 0.3. Nevertheless, it seems that

theory is not suitable for particular aggregates as super-aggregates Ceolato et al. [8]. More100

recently, the error is studied in terms of correction factors A and h, which bring the RDG-

FA approximately into agreement with the true forward-scattering (A) and absorption cross102

section (h) behavior of aggregates. Liu and Smallwood [9] quantify the error of the RDG-FA

approximation focusing on absorption, h, and vary the number of monomers in the aggre-104

gate as well as the wavelength, concluding an error h ≤ 10%. Dependence of the correction

factors with a number of parameters are described in other work, including the effect of the106
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monomer number [10], wavelength [11], monomer overlapping and necking [12], coating [13],

monomer polydispersity [14] and finally m [15]. These studies show a strong impact of those108

parameters on the correction factors A and h. Indeed, RDG can overestimate or underes-

timate the cross-sections by more than 40% at shorter wavelengths and by 10% at longer110

wavelengths. Kelesidis et al. [16] recently report an underestimation reaching 50%. In some

of the studies mentioned, an empirical relationship between A and h is reported, namely112

h = 1.11A, which has yet to be justified theoretically.

Unfortunately, despite the amount work dedicated to the topic of the RDG approxima-114

tion’s validity, the correction factors A and h do not yield simple and universally applicable

analytical expressions useful to improve the precision of scattering-measurement interpre-116

tation. The explanation relies on the complicated interactions of electromagnetic coupling

within and among monomers, which continue to limit our understanding for the scattering118

phenomenon even for such small-scale particles. It is therefore justified to take a fresh look

at the problem and apply new tools. In this paper, the RDG correction is examined for120

nanoparticles by studying the internal electric field within the particles. Indeed, contrary to

the basic assumption of the RDG approximation – that the internal field in a monomer is122

uniform – complex structures such as aggregates are known to exhibit significantly different

amplitudes of the internal electric field from one monomer to another. The new tool applied124

here is that of phasor analysis introduced by Berg [17, 18]. Here, the phasor is a complex

number representing the contribution to the far-field scattered field due to the local internal126

field at a volume element in a particles. The analysis is useful because it can provides, in

some cases, a semi-graphical way to understand how the particle’s morphology affects it128

scattering behavior. An example is the explanation in [19] for why orientational averaging is

critical to find approximate agreement between RDG and and the exact scattering for soot130

fractal aggregates.

In this study, phasor analysis is adapted to quantify how each volume element in a particle132

contributes to departures of the true scattering from the RDG prediction. Slices through

the particles are visualized and examined to reveal which parts of the particles cause under-134

or over-estimation of the scattering relative to RDG. This novel approach is applied to the

study of the electromagnetic coupling between two equal-sized spherical monomers since136
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they are the simplest case representing "multiple scattering" in an aggregate. Specifically,

we focus on monomers that are (i) separated, (ii) in point contact, or (iii) overlapping. The138

influence of λ and m are investigated. The analysis is carried out using the Lorentz-Lorenz

factor, i.e., E(m) and F (m), which represent, respectively, the absorption and scattering140

efficiency of a particle in RDG theory. This work contrasts [15] where the influence of the

real part n and imaginary part κ of the refractive index m is investigated.142

After presentation of the numerical setup, the correction to RDG for forward scattering

is first presented for the bisphere configurations. Then, the phasor analysis is presented to144

explain the observed trends of that correction. Finally, the internal electric field is interpreted

as a local contribution to the correction to bring to RDG respectively for forward scattering146

A and for absorption h.

2. Numerical Setup148

Because the aim is to investigate overlapped spheres, among other considerations, the

discrete dipole approximation (DDA) model [20–22] is used rather than T-matrix [23], which150

has difficulty with such particles. The DDA is a general method to compute the scattering

and absorption of electromagnetic waves by particles of arbitrary geometry and composition.152

The main approximation in the DDA is that the particle is represented by a collection of

discrete coupled electric-dipoles that reside on a cubic lattice spanning the particle volume.154

In other words, the DDA formulation can be interpreted as replacing a particle by a set

of interacting dipoles. The accuracy of DDA is thus determined by the fineness of this156

lattice and many well-validated public codes are available; we choose that of Drain here [24]

called DDSCAT. More precisely, the module “N SPHERES” in DDSCAT is used to generate158

a pair of spherical particles. The code provides the internal electric field, which is then

post-processed for the phasor analysis with an in-house Python code.160

We consider two spherical particles, i.e., a bisphere, where the radius of each sphere is

fixed at a = 21.1 nm and separation distance dij with respect to each sphere’s center, i and162

j, varies, see Fig.1. The incident light is a linearly polarized plane wave that propagates

along the x-axis and is polarized along the y-axis. The majority of the computations below164

are performed with λ = 532 nm except for the study of the wavelength dependence. A large
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range for m is explored and a constant dipole-dipole separation of d = 1.77 nm is used to166

fulfill the DDA accuracy criteria according to Draine et al.[24], which is |m|kd < 0.5 (see

Appendix A) and |m−1| < 2. We used a value of d = 0.44 nm in the figures (Figs. 6, 7 and168

E.11), where cross-sectional views through the bisphere are shown to display the internal-

field behaviour with an higher resolution. Because the criteria of Draine et al. is already170

satisfied, those more refined cases remain valid and the corresponding average quantities

are not affected (see Appendix B). The internal fields are calculated for 400 isotropically172

distributed orientations of the bisphere. We find that such a distribution is sufficient to

simulate a randomly oriented mirror-symmetric particle the bisphere here [25].174

Figure 1: Scattering arrangement consisting of two identical spherical monomers illuminated by a linearly

polarized plane wave. The wave propagates along the x-axis, n̂inc = x̂, and is polarized along the y-axis,

i.e., Êinc, with the origin at the geometric center of the particle arrangement. Each particle has radius a and

center-to-center separation dij . The detector at r resides in the horizontal x-z scattering plane and r resides

in the particle’s far-field zone as defined by [26].

It is shown in [22] that the DDA can be derived from the volume integral equation (VIE),

which is a solution to the Maxwell wave equation describing scattering from any particle.176

The VIE can be discretized in a manner suitable for phasor analysis as follows. First, we

consider a linearly polarized plane wave incident on a bisphere with electric field given by178

Einc(r) = Einc
o exp(ikn̂inc · r) (4)

where the polarization is taken along the y-axis, i.e., Einc
o = Eoŷ with Eo being real-valued for

simplicity, and the propagation direction is along the x-axis, i.e., n̂inc = x̂. Next, we consider180
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a well-collimated detector located at an observation point r that is confined to the x-z plane

and is restricted to the particle’s far-field zone. The meaning of a well collimated detector182

is described in [27], but for the purposes here can be assumed to measure the intensity of

the scattered wave. In such a case, the scattered wave is also polarized along the y-axis for184

a symmetric particle like the bisphere, see Appendix C for further explanation. In other

words, we are describing the vertical-vertical polarization configuration between incident and186

scattered light and will denote this by the subscript “vv.” Next, a scattering amplitude Esca
1,vv

is isolated from the simplified VIE as188

Esca
1,vv(r̂) = ŷ

3k2

4π

m2 − 1

m2 + 2
Eo

∫
V

m2 + 2

3Eo
Eint
y (r′) exp(−ikr̂ · r′)dV ′. (5)

Note that the actual scattered field Esca(r) involves multiplication of Eq. (5) by the spherical

wave term exp(ikr)/r as explained in Appendix C. The significance of Esca
1,vv is that it190

describes the angular dependence r̂ of the scattered light independent of the distance from

the particle r. Finally, the integral in Eq. (5) is discretized into N small cubical volume192

elements ∆V such that the particle volume V = N∆V , which gives

Esca
1,vv(r̂) = ŷ

3k2

4π

m2 − 1

m2 + 2
Eo

N∑
i=1

zy,i(r̂) ∆V, (6)

where the phasors zy,i are given by194

zy,i(r̂) =
m2 + 2

3Eo
Eint
y (ri) exp(−ikr̂ · ri). (7)

In Eq. (7), ri is the location of a volume element in the particle, Eint is assumed uniform in

a given ∆V , and the sum in Eq. (6) runs over all N volume elements. We note for later use196

below, that when Eq. (6) is evaluated in the forward-scattering direction, r̂ = n̂inc = x̂, the

phasors in Eq. (7) simplify to198

zy,i(x̂) =
m2 + 2

3Eo
Eint
y (ri) exp(−ikx′i), (8)

where x′i is the x-component of the ri volume element.

The physical interpretation of Eq. (6) is that the scattered electric field at the detector200

can be though of as the superposition of many spherical waves, or wavelets, with complex-

valued amplitudes given by the phasors zy,i, that are radiated from each volume element202
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in the particle depending on the locally defined internal electric field Eint. The wavelets

interfere due to magnitude and phase shifts caused by variations in Eint from one ri to204

another, the different locations of the volume elements themselves, and the direction to the

detector. In other words, Eq. (6) can be thought of as Huygens’ principle, except with the206

complete vector nature of the electromagnetic wave taken into account and no approximation

other than the discretization of the integral in Eq. (6). Being simply complex numbers, the208

phasors can be graphically presented in a polar plot, which gives access to the contribution

of each volume element as the direction r̂ varies; this is the gist of phasor analysis [17]. In210

the following, we use phasor analysis to identify and understand the deviations from the

RDG theory in Sec. 3.2 by linking the phasors with the correction term Avv and hv. Before212

doing so, however, a preliminary investigation will show the circumstances under which such

deviations occur for a bispere considering different m and dij. The results will be used to214

predict the possible behaviours and outcomes of the in subsequent phasor analysis.

3. Results216

3.1. RDG correction to forward scattering: A global approach

Figure 2(a) and Fig. 2(b) report the forward scattering RDG correction A for two spheres218

of size parameter is ka = 0.249 as a function of dij from being overlapped with dij/2a ≤ 1,

in point contact for dij/2a = 1, and separated for dij/2a > 1. The symbols corresponds220

to different values of m. In Fig. 2(a), the scattering function is fixed at F (m) = 0.3 and

absorption function E(m) is varied. In Fig.2(b), the absorption function is fixed at E(m) =222

0.3 while F (m) varies. The data reported in these plots include bars to indicate the standard

variation for the individual orientations orientation averaging.224

Notice in Fig. 2(a) and Fig. 2(b) that deviation of the forward scattering compared to

RDG can be observed even for an isolated sphere, dij/2a = 0. The deviation does not exceed226

1.07 in this figure indicating a relatively low underprediction of RDG for a single sphere,

which is explained by the small size parameter ka = 0.249. Also, the standard deviation in228

Fig. 2(a) and Fig. 2(b) is zero since an isolated sphere is perfectly isotropic. Yet, the fact the

m 6= 1 seems to have a strong influence on correction A as detailed in Fig. 2(c). Indeed, larger230

corrections are favored by a high scattering function F (m) and a low absorption function

11



E(m). This result is in agreement with Sorensen’s study [15], which shows an increase of232

A the real part of the refractive index n and a decrease with increasing imaginary part κ.

Nevertheless, when represented as a function of n and κ, as reported in Appendix D, the234

influence of κ seems to be weaker than that of n. The results in Fig. 2(a) and 2(b) display

a similar influence of E(m) and F (m) on A. Figure 2(c) shows a general under-prediction236

of RDG for an isolated sphere that is small compared to the wavelength since A is bounded

in the range [≈ 1− 1.16]. Next we will show that increasing the absorption function E(m)238

also increases the homogeneity of the internal electric field in the bisphere.

Increasing the distance dij for an overlapping bisphere shows that the correction factor A240

is linearly increased or linearly decreased depending on the value of m as seen in Fig. 2. The

maximum deviation to the correction regarding the one for the isolated sphere is reached for242

dij/2a ≈ 0.8 (corresponding to an overlapping coefficient of 0.2). It is interesting to notice

that this level of overlap is often observed for flame-generated soot [28, 29]. The range of244

A is larger for this distance than for isolated spheres (RDG correction more important for a

bisphere) but the hierarchy related to the optical index is similar. Indeed, the corresponding246

dependence to the optical index is reported in Fig. 2(d) showing a similar trend compared

to Fig. 2(c). One can also observe an increase of the bars amplitude indicating an increasing248

dispersion by increasing dij/2a up to 0.8 related to the particle orientation, which is explained

by an increase of the particle anisotropy.250

For dij/2a > 0.8, the deviation of the correction factor from A = 1 decreases along with

the standard deviation bars. The deviation follows an exponential decay, or increase, with252

dij depending on the value for m as shown by the dashed lines in Fig. 2(a) and Fig. 2(b).

Notice that the trends appear to converge to an asymptotic value that is corresponds A254

for an isolated sphere, i.e., when dij = 0. Several interpretations can be formed from these

observations. First, the RDG approximation performs well, < 10% error, if the component256

spheres of the bisphere are separated by dij/2a & 2. This short coupling-distance is observed

by [30] where similar ranges are reported for larger metallic spheres. Second, the asymptotic258

behavior implies that electromagnetic coupling between the component sphere does not ap-

pear to affect the internal field experienced by each spheres when treated in the independent260

scattering approximation. It is interesting to note the relative small-size of the standard de-
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Figure 2: Evolution of forward scattering correction to RDG, A, for a bisphere. Plots (a) and (b) show A as

a function of the bisphere’s center-to-center separation dij normalized by the sphere diameter 2a where m

is changed to keep F (m) or E(m) constant, respectively. Plot (c) shows the dependence of A as a function

of m for a single sphere (dij = 0) with ka = 0.249 and (d) shows the same for an overlapping bisphere with

dij/2a > 0.8 which provided the maximum amplitudes for A in plot (a) and (b). In plot (c) and (d), the

symbols indicate the F (m) and E(m) values for the refractive indexes considered in plots (a) and (b). The

black triangle in plot (c) and (d) corresponds to the domain related to soot material, delimited by organic,

graphitic, and amorphous compositions at λ = 532 nm (see Table 1 in [15]).
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viation bars as dij increases while also noting that the anisotropy of the separated-bisphere262

particle is increasing with dij.

The present global analysis highlights that the dependence of A on the orientation of264

the particle is characterised by a balance between anisotropy and electromagnetic coupling

itself, favored for larger F (m) and lower E(m). This study covers a large domain of E(m)266

and F (m), larger than one related to soot particles (represented by the dark triangles in

Fig. 2(c) and Fig. 2(d)) which is the intended application of this study and for which the268

magnitude of the correction is reduced. The following section aims at going one step further

and explaining the influence of the particle orientation on the amplitude of A by using the270

phasor representation.

3.2. RDG correction to forward scattering: Phasor representation272

We now apply the phasor analysis of Berg [17] in an effort to understand the influence

of particle morphology and m on the deviation of the forward-scattering differential cross-274

section from that given by the RDG approximation. A phasor zy,i is as a complex number

associated with the volume element at ri in the particle. The summation of all phasors for276

the entire particle volume V is proportional to the far-field scattering amplitude Esca
1,vv as

given by Eq.6. Each phasor itself is proportional to the internal electric field Eint
y within its278

volume element and depends on ri and direction r̂ to the detector, i.e., the scattering angle,

as shown by Eq. (7). These dependencies lead to constructive or destructive interference280

between the wavelets described by the phasors, recall Sec. 2.

The phasor as defined here, Eq. (7), is proportional to that used in Berg [17] but is282

modified in order to analytically express the deviation from RDG theory. Further explanation

is given in Appendix C, but we note that the correction to the RDG forward-scattering for284

the vertical-vertical scattering configuration when the orientation of the bisphere is given by

ψ can be expressed as286

Avv(ψ) =

dCsca
vv

dΩ
(0◦)

dCsca
RDG,vv

dΩ
(0◦)

= |zy,i|2 , (9)

where the phasors are given by Eq. (8). The overbar in Eq. (9) denotes spatial averaging of

the phasors over V , see Eq. (F.5), and the vertical bars denote absolute value. For a spherical288

14



particle Avv = Ahh where hh denotes the horizontal-horizontal polarization configuration for

scattering. We note that the A investigated in Yon et al. [11], Sorensen et al. [15] as well as290

in section 3.1 corresponds to the orientation averaging of Avv i.e by considering different ψ.

After orientation averaging A = 〈Avv〉 = 〈Ahh〉, where the brackets represent the orientation292

averaging.

In the RDG approximation for a particle with a� λ, the internal electric field is uniform294

and proportional to the incident field Eq. (4) as [31]:

Eint
RDG(r) =

(
3

m2 + 2

)
Einc(r). (10)

When Eq. (10) holds, the phasors in Eq. (8) simplify to zRDG = 1 + 0i for the forward296

direction r̂ = n̂inc, and consequently via Eq. (9), A = 1 meaning that no correction is

necessary. Physically, this corresponds to all of the wavelets of the particle radiating to r in298

phase. To compare the true forward scattering to this approximation with phasor analysis

in the following, the DDA of Sec. 2 is used to calculate the internal field needed in Eq. (8).300

A phasor plot is a polar plot where the horizontal and vertical axes represent, respectively,

the real part and imaginary part of the phasor. Figure 3 presents three phasor plots corre-302

sponding to an isolated sphere and two overlapped spheres (a bisphere) with dij/2a = 0.8

and with different orientations. The phasors are represented by green points. One can see304

that a dispersion of the phasor points exists around the theoretical value expected for the

RDG approximation, i.e., zRDG = 1 + 0i, even for the isolated sphere in Fig. 3(a). Never-306

theless, the corresponding mean spatial averaging (large yellow point) is located close to the

RDG value. Since A is the square of the modulus of the mean phasor, Eq. (9), this means308

that the correction to the RDG prediction is close to 1. The dispersion of the phasors in

Fig. 3(a) is caused by a non-uniformity of the internal electric field. Yet, the character of the310

non-uniformity appear to such that a sufficient degree of partial cancellations of the phasors

in the mean yield a result approximately consistent with RDG. This conclusion also holds312

for the horizontally oriented bisphere in Fig. 3(b) although to a lesser degree. In Fig. 3(c)

where a vertically oriented bisphere is considered, the phasors are dispersed to a greater ex-314

tent. In particular, the dispersion is shifted outside of the disc of modulus 1 (the semicircle

shown) producing an average phasor modulus greater than 1 and a corresponding correction316
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to the RDG of Avv(ψ) = 1.072 (in the orientation configuration of plot c). Compare this

to Avv(ψ) = 0.923 for the horizontally oriented bisphere in Fig. 3(b). In conclusion, the318

phasor dispersion for the bisphere can be similar to or much greater than the dispersion for

an isolated sphere depending on the bisphere orientation. The different dispersion produce320

different values for the average phasor modulus, and thus, the RDG approximation.

(a) (b) (c)

A vv = 1.006 A vv = 0.923 A vv = 1.072

Individual phasor
Spatial average of the phasors
RDG

Individual phasor
Spatial average of the phasors
RDG

Figure 3: Phasor plots for an isolated sphere (a), and a bisphere with overlapping component spheres where

dij/2a = 0.8 in (b) and (c). The orientation of the bisphere is shown relative to the propagation direction

of the incident wave, i.e., n̂inc = x̂. The size parameter for the isolated sphere, which is the same as the

component sphere forming the bisphere, is ka = 0.249 and the refractive index for all is m = 1.17 + 0.77i.

For comparison, the sphere-volume equivalent size parameter for the bisphere is kave = 0.314. Note that the

polarization of the incident wave, Eq. (4) is directed along the y-axis and parallel to the symmetry axis of

the bisphere in (c).

The orientation dependence of the phasors is examined further in Fig. 4. In Fig. 4(a)322

the spatially averaged phasors zy,i for different orientations of a bisphere are shown by the

open symbols for the value of E(m) indicated as the bisphere changes orientation from324

horizontal to vertical. The horizontal and vertical bisphere-orientations are, respectively, at

the beginning (bottom left corner) and at the end (top right corner) of the empty-symbol326

point groups for a given absorption function E(m) and are shown for the E(m) = 0.50 case

by the gray figures. The bisphere orientations are relative to n̂inc. The unity modulus is328

shown in Fig. 4(a) as the solid black line, which reveals that for some bisphere orientations

(plot b), |zy,i| < 1, i.e., Avv(ψ) < 1, while for most other orientations Avv > 1. Remember330

that the RDG forward scattering is represented by the black point, zRDG = 1+ 0i. The filled
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symbols in Fig. 4(a) show the phasors for a given E(m) after averaging over all orientations,332

〈zy,i〉 (" |〈zy,i〉|2 6= 〈|zy,i|2〉 = 〈Avv(ψ)〉). Here, we see by looking at each |zy,i(ψ)| that A can

be less than one, indicating that RDG overpredicts the forward scattering, in the case that334

E(m) = 0.50, (green symbols). For the smaller values of the absorption function, namely

E(m) = 0.20 (blue) and E(m) = 0.35 (red), we see that A increases to values larger than336

one, indicating that RDG underpredicts the forward scattering. The overall dispersion of

the empty symbols increases in extent as the value of E(m) decreases, which agrees with the338

behavior of the standard-deviation bars in Fig. 2(a) and Fig. 2(b). We can thus conclude

that the less the material’s absorption, the more the bisphere phasors disperse showing a340

stronger orientation-dependence of the non-uniformity of the internal electric field. In other

words, increasing absorption of the material tends to enhance the uniformity of the internal342

electric field, and thus, will decrease the correction A needed to bring to RDG into agreement

with the true forward scattering (see Appendix E).344

Another feature of Fig. 4(a) is that for each E(m) considered, the phasors disperse in the

complex plane in a line-like pattern as the bisphere orientation evolves from horizontal to346

vertical. Moreover, the three phasor-pattern lines intersect not so far from zy,i ≈ 0.96 + 0i,

which is close, but not equal, to the RDG approximation at zRDG = 1 + 0i. The shift348

observed of this intersection point from zRDG is dominated by the exponential term in the

phasor definition, i.e., Eq. (8). This exponential is dominated by the size parameter of the350

particle, and thus, expresses the deviation of the true forward scattering from RDG as due

to the condition xp � 1 being violated. The refractive index m, however, affects the slope352

of the phasor-pattern lines. This indicates that for a given material, on average, a constant

phase-shift of the internal electric field relative to that predicted by RDG, i.e., Eq. (10), is354

observed for all bisphere orientations. Figure 4(b) shows this phase shift φ for different m

in terms of F (m) and E(m). We observe that φ is small when E(m) is small, in agreement356

with Fig. 4(a) and in accord with the second hypothesis of the RDG approximation that

ρ = 2xp|m − 1| < 1. As mentioned, increasing E(m) result in the internal electric field358

becoming more uniform, and hence more in accordance with RDG, but the field phase will

depart from that predicted by RDG. Indeed, we see in Fig. 4(b) that φ can reach 90◦ for360

the largest E(m) and F (m) considered. However, as can be seen for the soot particles
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(dark triangle domain), the phase is restricted in a range covering 30◦ to 60◦, which globally362

corresponds to straight lines between E(m) = 0.20 and E(m) = 0.35 in Fig. 4(a).

Figure 4: Effects of orientation ψ and refractive index m in phasor analysis. Plot (a) shows the spatially

averaged phasors zy,i (open symbols) for different orientations of an overlapped-sphere bisphere particle with

dij/2a = 0.8. The pair of vertical or horizontally aligned gray disks indicate the bispheres’ orientation with

respect to n̂inc. Three different refractive indices having the same scattering function F (m) = 0.30 but

different absorption functions E(m) are considered in (a): E(m) = 0.50 with m = 1.17 + i0.77 for the green

points, E(m) = 0.35 with m = 1.53 + i0.75 for the red points, and E(m) = 0.20 with m = 1.90 + i0.57 for

the blue points. The filled symbols in (a) correspond to the orientation average of all the phasors 〈zy,i〉. Plot

(b) shows the phase-shift angle φ in degrees of the internal electric field relative to the RDG internal field,

Eq. (10). Note that φ is also the slope of the phasor-pattern lines, open points, in the complex plane in plot

(a). The black triangle in plot (c) ans (d) corresponds to the domain related to soot material, délimited by

organic, graphitic, and amorphous compositions at λ = 532 nm (see Table 1 in [15]).

Similarly to Fig. 4(a), Fig. 5 illustrates the impact of the wavelength for a certain range364

of λ on the phasor distributions for the same bisphere as in Fig. 4(a) with a fixed refractive

index m = 1.17 + 0.77i. The chosen range of wavelength is motivated by the conventional366

laser based techniques used for the characterization of soot particles, covering the visible

domain. To begin, we consider once again the spatially averaged phasors zy,i, open symbols,368

as the bisphere evolves in orientation (varying Ψ isotropically). Solid symbols represent

the orientation average of the phasors, 〈zy,i〉. Once more, we find that the phasors form370

a quasi-linear pattern in the complex plane as the orientation changes, but the slope and

position of the pattern changes with λ. Notice that the overall length of the linear patterns372
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appear little affected by changing λ, in contrast to the effect due to the changes in m as

shown in Fig. 4(a). The alignment of the (linear) phasor patterns is globally conserved but374

the phase angle is affected. Decreasing λ increases xp and produces a horizontal shift of a

phasor pattern towards the imaginary axis of the complex plane. This effect is driven by the376

exponential term in Eq. (8). In contrast to what happens when m changes, different λ cause

a vertical shift of a phasor-pattern line, which can be explained by an increase of the the378

imaginary part of the internal field. Despite intricacies of the phasor distributions, we see

that when orientationally averaged (filled symbols), the results show that an approximate380

value of |〈zy,i〉|2 = 0.963 ± 0.004 holds for the wavelengths λ = 442 nm − 1064 nm. The

corresponding value for A is indicated by the red dashed semi-circle. The departure to this382

value for λ = 266 nm is about 7%. Finally, we note that because this analysis holds m

fixed as λ varies, we are ignoring the spectral dispersion that must otherwise be taken into384

account. That is, our intent above is to understand how the parameters a, λ, m, and the

bisphere orientation affect the phasor distributions rather than applying the analysis to a386

specific material. The wavelength has a strong effect on the phasor’s horizontal shift as well

as in the phase shift (slope) but, the mean value is relatively robust (0.963) for a wide range388

of λ. In comparison, by varying m, strong variations are been noticed.

In conclusion, the required correction to RDG for the forward scattering (A) due to dipo-390

lar coupling effects results from the combination of different effects. First, the electric field

non uniformity depends on the orientation. Indeed, lowers E(m) will increase the dispersion392

of the phasors in the polar plot. Second, the optical index and wavelength clearly impact the

electric phase and thus also slope of the observed lines. Third, the intersection of the lines394

with the x axis can be shifted due to the increase of the size parameter. This effect explains

the appearance of A < 1 (average phasor inside the polar plot). Hence larger A occurs396

for smaller E(m) and smaller particles compared to the wavelength. Contrarily, lower A is

obtained for large size parameters and larger E(m). The wavelength seems to have a lower398

impact compared to the optical index, since phasor dispersion is less affected. The same

conclusion can be extended to the effect of particle radius. Indeed, as shown by Mishchenko400

[32] when introducing the Scale Invariance Rule (SIR), the dimensionless scattering char-

acteristics of an object is not changed if size parameter xp = ka is kept constant nor the402
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Figure 5: Phasor plot for spatially averaged phasors zy,i, open symbols, for different orientations of a bisphere

with dij/2a = 0.8 and different wavelengths λ. The bisphere is the same as in Fig. 4 and the refractive index

is m = 1.17 + 0.77i corresponding to E(m) = 0.50 and F (m) = 0.30. Black filled symbols correspond to

the orientation averaged phasor 〈zy,i〉 and the red dashed semi-circle the phasor where |〈zy,i〉| give a value

A = 0.963.

correction factors to bring to RDG theory. Concretely, based on the provided results, for

a wavelength λ = 532nm, the correction factors can be determined for a between 10 and404

40nm.

3.3. RDG correction to the forward scattering: Spatial description406

The previous sections show that the largest corrections to bring to RDG theory into

agreement with the true forward-scattering are mainly due to the spatial non-uniformity of408

the internal electric field, which strongly depends on the bisphere orientation. This section

aims to determine where non-uniformity resides. For a given orientation of the particle,410

Avv(ψ) results from individual dipole contributions. Indeed, by noting that zy,i = ay,i + iby,i

where ay,i and by,i are real values, we can define via Eq. (9) individual-dipole corrections to412
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RDG as

Avv,i(ψ) = a2y,i + b2y,i︸ ︷︷ ︸
magnitude

−
[
(ay,i − ay,i)2 + (by,i − by,i)2

]︸ ︷︷ ︸
dispersion

. (11)

This equation ensures that A = Avv,i(ψ). The local contribution of the correction to RDG,414

meaning for the volume element at ri, is thus related to the magnitude of the associated

phasor minus a dispersion term for that phasor. Figure 6 displays cross-sectional plots416

through an isolated sphere, Fig. 6(a) and (b), a bisphere in horizontal orientation in Fig. 6(c)

and (d), and a bisphere in vertical orientation in Fig. 6(e) and (f). The left column here,418

plots (a), (c) and (e), show the local contributions to the RDG correction, Avv,i(ψ), while

the right column, plots (b), (d) and (f), show the dispersion term of Eq. 11. Note that420

the discretization of the bisphere volume over the cubic lattice in the DDA results in a

misrepresentation of the true particle-shape across the particle surface. Indeed, some degree422

of a surface effect is seen in Fig. 6. These “shape errors” are well known in DDA studies,

e.g., see [22], and there is a possibility that such errors could generate erroneous phasor424

calculations. In Appendix B, we investigate this possibility and find that for the conditions

considered in this study, shape errors are negligible.426

For an isolated sphere, Fig. 6(a), the spatial variation of the internal field causes a

variation of Avv,i(ψ). The correction is larger across the surface exposed to the oncoming428

incident wave and decreases with distance into the particle along the x-axis. The gradient

of Avv,i(ψ) decreases with an increasing E(m) as shown in Fig. E.11, which reduces the430

overall correction A. The dispersion term, Fig. 6(a), on the other hand is negligible. For

the bisphere, Fig. 6(c), (d), (e), and (f), both Avv,i and the dispersion term exhibit strong432

gradients at the location of sharpest curvature of the shape, i.e., at the intersections of the

spheres. This effect is reminiscent of the field enhancements found in the vicinity of sharp434

edges at the intersection of perfect conductors [33]. Of course, these spheres are not perfect

conductors and the behavior of the field near the sphere-sphere intersection is an area for436

further study. Some work related to this situation is available, showing evidence for field

enhancement here, see [34].438

Figure 6 also explains why the dispersion is larger for the bisphere than an isolated

sphere; compare plot (b) to plots (d) and (f). The cusp-like feature of the bisphere cause440
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Figure 6: Representation of the local correction to RDG in different particles. Cross-sectional plots are

shown for and isolated sphere in the first row, a horizontal- or vertical-oriented bisphere with dij/2a = 0.8

in the second and third rows, respectively. The first column plots Avv,i while the second column plots the

dispersion term of Avv,i of Eq. (11). The refractive index is m = 1.17 + 0.77i, corresponding to E(m) = 0.5

and F (m) = 0.3, λ = 532 nm, and the component spheres of the bisphere have radii a = 21.1 nm. The

incident wave is polarized vertically, along the y-axis, and propagates along the x-axis.
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larger contributions to the dispersion term for both particle orientations, see plots (d) and

(f). Observe that in these regions in the particle exhibit an opposite trend in terms of local442

correction to RDG Avv,i, i.e., plots (c) and (e). The contact between spheres contributes

an overall correction of A < 1 for the horizontal orientation and A > 1 vertical where the444

volume elements in the neighborhood of this contact produce the largest dispersion in the

phasor plot.446

The analysis confirms what is expected; that the orientation of the bisphere impacts the

scattered intensity in the forward direction [35]. The internal distribution of the correction448

to the RDG approximation uncovers causes for the large phasor-dispersion in Figs. 4 and

5. Sharp curvatures produce large gradients of the electric field, and thus, significant over-450

or under-estimation relative to the RDG depending on the particle orientation. For all λ

considered, Fig.5), horizontal alignment favors A < 1 and vertical alignment A > 1.452

3.4. RDG correction to the absorption cross section

Drain’s expression [21] can be used to express the particle’s absorption cross section Cabs
454

in terms of the internal electric field, see Appendix F. Consequently, it is also possible to

formulate a correction factor for Cabs in terms of phasors given vertically polarized incident456

light, namely

hv(ψ) =
Cabs

v

Cabs
RDG,v

= |zx,i|2 + |zy,i|2 + |zz,i|2, (12)

where x, y, and z denote the components of the internal electric field. Similar to Avv, the458

absorption correction hv depends on the particle orientation relative to the incident field.

Equation (12) shows that both non-uniformity of the internal field as well as the particle460

geometry will affect the correction value. After averaging over the particle orientations one

obtains h = 〈hv(ψ)〉.462

The three phasor-components of Eq. (12) contributing to h are shown in Fig. 7 for a hor-

izontally and vertically oriented bisphere. We see here that the |zx,i|2 and |zz,i|2 components464

are negligible compared to |zy,i|2. Notice that changes in h are driven by exactly the same

phenomena as those in A which are also based on the zy,i phasors. Indeed, it is shown that466

hv(ψ) ≈ |zy,i|2 corresponds to the addition of Avv,i and the dispersion term, Eq. 11. Simi-

larly, h corresponds to the sum of the results reported in each row of Fig. 6. These results468
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Figure 7: Local correction to the RDG absorption cross-section, h, for a horizontally or vertically oriented

bisphere with dij/2a = 0.8, left and right column, respectively. Each row shows |zx,i|2, |zy,i|2, or |zz,i|2 in a

cross-section through the bisphere. The refractive index is m = 1.17 + 0.77i, corresponding to E(m) = 0.5

and F (m) = 0.3, λ = 532nm, and the component sphere radii are a = 21.1 nm. The incident wave is

polarized vertically along the y-axis and propagates along the x-axis.
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explain the strong correlation between A and h reported in Yon et al. [10, 11, 12, 14], Liu

et al. [13] and Sorensen et al. [15]. Consequently, the overall understanding of phenomenon470

impacting A described in previous sections stays valid for h.

4. Conclusion472

The objective of this work is to enhance the domain of applicability for the RDG ap-

proximation so that more accurate optical characterization of nano-particle aerosols and474

colloids is possible. The absorption and scattering cross-sections provided by the RDG ap-

proximation can be inaccurate if xp � 1, or |m − 1| > 1, and if the nano-particles are not476

spherical and present a certain degree of overlapping. Indeed, if the deviation between the

RDG approximation and exact scattering-calculations was already possible based on DDA478

or T-Matrix approaches, an understanding for the exact role played by size, refractive index,

and morphology were less obvious.480

Here, we consider a bisphere particle and examine the deviation of the RDG approxi-

mation from the exact scattering-calculations through the analysis of the internal electric482

field using a phasor approach. This phasor analysis clearly indicates that non-uniformity

of the field caused by electromagnetic coupling is the origin of the deviation. The coupling484

between the spheres is limited at short range (no coupling for spheres that are more than

two diameters apart). Moreover, the reinterpretation of the electric field in terms of RDG486

correction maps is proposed for forward scattering and for the absorption cross-sections. It

appears that, according to the particle orientation relative to the incident wave, RDG can488

overestimate or underestimate the scattering and absorption efficiency. The underestimation

is moderate in particular if the absorption function E(m) is increased or if the wavelength490

is decreased, which is due to an increase of the phase shift of the internal electric field. In

contrast, increasing the size parameter will result in RDG overestimating the cross-sections.492

The sharp curvatures occurring at the location of the bisphere interpenetration enhances

the electromagnetic coupling which leads to higher deviations of the corrections to bring to494

RDG. Our study also explains the previously observed strong relationship between correction

factors in RDG applied to soot fractal-aggregates for forward scattering and absorption.496

This study shows the utility and effectiveness of phasor analysis and motivates its further
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application. For example, a logical next-step would be to extend the study beyond a bisphere498

to an ensemble of N spheres with an arrangement that obeys the fractal-scaling law. Such

work may ultimately reveal a complete formulation to correct the RDG approximation for500

the purpose of efficiently modeling absorption and scattering by soot fractal aggregates; a

problem of importance, e.g., in atmospheric science.502

Acknowledgments

This work was financed by ANR ASTORIA (N◦ ANR-18-CE05-0015). We also thank the504

CRIANN numerical resources supported by the Normandy region. MB acknowledges support

from the National Science Foundation, awards 1453987 and 1665456, and the U.S. Air Force506

Office of Scientific Research award FA9550-19-1-0078.

Appendix A. Applicability of the DDA508

Fig. A.8 shows the refractive index dependence of the DDA criterion |m|kd for a fixed

interdipolar distance d = 1.77 nm and λ = 532 nm as a function of F (m) and E(m). The510

main advantage of the DDA is that it is limited only by the interdipolar distance d through

the |m|kd criterion. If accurate calculations are desired, numerical study [36] indicates that512

|m|kd < 0.5 should be used. As can be seen, the criteria is very well respected even for the

highest values of |m| (|m|kd = 0.066). However, the criterion is calculated for λ = 532 nm514

while in Fig. 5 reports a wavelength dependence. For this figure, at λ = 266 nm (which

is the most critical wavelength), the criterion is still respected (|m|kd = 0.059) due to the516

chosen optical index.

Appendix B. Dipolar density effect518

Figure B.9 shows the effect of the DDA dipole-density on the slices of Avv,i for a vertically

oriented bisphere with dij/2a = 0.8 and m = 1.17 + 0.77i. Plot (a) is a result of DDA520

computation based on 14000 dipoles for the bisphere whereas plots (b) and (c) correspond

repsectively to 3 and 64 times the value in plot (a). As can be seen, an edge effect resulting522

from the cubic discretization of the bisphere shape always exist but has negligible effect on the
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Figure A.8: Evolution of the DDA citerion |m|kd as a function of the refractive indexm for a fixed interdipolar

distance d = 1.77nm and λ = 532nm.

determination of the spatially averaged Avv, indicating that the mean phasor is well-defined524

even for the smallest dipole density used.

Figure B.9: Effect of the dipole density (number of dipole per volume unit, related to the dipole inter-distance

d) on the spatial representation of the correction to bring to RDG forward scattering into agreement with

DDA calculations for the vertical-vertical polarization configuration. The wavelength is 532nm and the

monomer radius is a = 21.1 nm. The incident wave is polarized vertically, along the y-axis, and propagates

along the x-axis.
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Appendix C. Volume integral equation526

Following [25, 37], the scattered electric field Esca at an observation point r in a particle’s

far-field zone is related to the internal field Eint via the volume integral equation (VIE) as528

Esca(r) =
k2

4π

exp(ikr)

r
(m2 − 1)

(↔
I − r̂⊗ r̂

)
·
∫
V

Eint(r′) exp(−ikr̂ · r′) dV ′, (C.1)

where
↔
I is the Cartesian identity dyadic and r̂ ⊗ r̂ is the dyadic formed by the direct

product of r̂ with itself [33, 37]. A useful appendix of dyadic analysis can be found in530

[38]. In Eq. (C.1), the particle’s refractive index m is uniform in the particle volume V

otherwise the (m2 − 1) must be brought into the integral. Using Cartesian coordinates532

where r = rxx̂ + ryŷ + rzẑ = (rx, ry, rz)
T, this product is given by

r̂⊗ r̂ =
1

r2


rxrx rxry rxrz

ryrx ryry ryrz

rzrx rzry rzrz

 . (C.2)

In the far-field zone, the scattered field is represented by an outward propagating spherical534

wave modified by a scattering amplitude Esca
1 [26]

Esca(r) =
exp(ikr)

r
Esca

1 (r̂). (C.3)

where the wave is transverse, i.e., r̂ · Esca
1 (r̂) = 0. Equation (C.3) shows that Esca

1 depends536

on the direction r̂ but not the distance r to the observation point r. Moreover, the scattered

wave is transverse, r̂ · Esca and the scattered magnetic field is given by538

Bsca(r) =
exp(ikr)

cr
r̂× Esca

1 (r̂), (C.4)

where c = ω/k is the speed of light.

Now consider the behavior of the dyadic term (
↔
I − r̂ ⊗ r̂) acting on the integral in540

Eq. (C.1). In the forward-scattering direction r̂ = n̂inc = x̂ and using Eq. (C.2) this dyadic

becomes542

↔
I − n̂inc ⊗ n̂inc =


1 0 0

0 1 0

0 0 1

−


1 0 0

0 0 0

0 0 0

 =


0 0 0

0 1 0

0 0 1

 (C.5)
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such that for an arbitrary vector A, (
↔
I − n̂inc⊗ n̂inc) ·A = Ayŷ +Azẑ. Applying this result

to Eq. (C.1) shows that the forward-scattered electric field is given by544

Esca(xx̂) =
k2

4π

exp(ikx)

x
(m2 − 1)

∫
V

[
Eint
y (r′)ŷ + Eint

z (r′)ẑ
]

exp(−ikx′) dV ′, (C.6)

which via Eq. (C.3) leads to the forward-scattering amplitude

Esca
1 (x̂) =

k2

4π
(m2 − 1)

∫
V

[
Eint
y (r′)ŷ + Eint

z (r′)ẑ
]

exp(−ikx′) dV ′. (C.7)

Finally, noting that the study is restricted to forward scattering resolved along the vertical546

polarization direction only, i.e., along the polarization direction of the incident wave, Eq. (4),

we retain only the y-component in Eq. (C.7) giving548

Esca
1,vv(x̂) = ŷ

k2

4π
(m2 − 1)

∫
V

Eint
y (r′) exp(−ikx′) dV ′, (C.8)

which is equivalent to Eq. (5) when Eq. (5) is evaluated at r̂ = n̂inc.

We note that for an isolated sphere illuminated by the incident wave of Eq. (4), the550

contribution of Eint
z to Esca will cancel out in the integral in Eq. (C.7) provided that r resides

in the horizontal scattering plane, the x-z plane, at a fixed distance r. In short, the reason552

for this is that the internal field in a sphere exhibits several planes of reflection symmetry,

which in this case are the x-y (vertical) and x-z (horizontal) planes. Upon reflection of a554

point r′ in the sphere about the horizontal plane, Eint
z (r′) changes sign while Eint

y (r′) does

not [18]. In other words, for an isolated sphere with r constrained as described, Esca
1 = Esca

1,vv556

and the polarization state of the incident wave is thus preserved upon scattering.

Even the bisphere will exhibit the same reflection symmetry of its internal field when558

illuminated by Eq. (4) and its axis of rotation is parallel to n̂inc. If, again, r is constrained to

the horizontal plane at fixed distance r, only the Eint
y need be retained in Eq. (C.7) and the560

polarization state of the scattered wave will be the same as the incident wave. However, if the

bisphere is rotated such that its axis of rotation is not parallel to n̂inc, this reflection symmetry562

is spoiled and, in general, Esca
1 6= Esca

1,vv and both internal-field components in Eq. (C.7) must

be retained. In Sec. 2, we do not retain the Eint
z in Eq. (C.7) despite considering the average564

scattering from a bisphere in 400 isotropically distributed orientations. The reason for this is

because we specifically want to examine the vertically-scattered light so as to best compare566

to the RDG approximation where Eint has only one component given by Eq. (10).
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Appendix D. Forward-scattering correction568

Fig. D.10 shows the refractive index dependence of the forward-scattering correction Avv

for an isolated sphere of radius a = 21.1 nm as a function of n and κ where m = n+ iκ. The570

symbols in the plot correspond to the various values for m used in Fig. 2. Similar to the

behavior seen in Fig. D.10, Sorensen et al.[15] observe that increasing n will increase Avv572

and decreasing κ will decrease Avv. However, we see here that the κ has a comparatively

weak impact on Avv, suggesting that the correction factor is dominated by n. It is this574

observation that motivates us to examine the behavior of Avv as a function of F (m) and

E(m) in Fig. 2(c) rather than as a function of n and κ.576

Figure D.10: Refractive index m dependence of the RDG correction factor Avv for an isolated sphere with

radius a = 21.1 nm where the symbols correspond to those in Fig. 2.

Appendix E. Spatial representation of the correction to RDG

Figure E.11 reports different cross-sectional views of an isolated sphere of radius a =578

21.1 nm for a variable E(m) and fixed F (m) = 0.30, where the first column [plots (a), (c),

and (d)] correspond to the local contributions to the RDG correction (Avv, and the second580

column [plots (b), (d), and (f)] correspond to the dispersion term, cf. Eq. (11). The first row

is for a refractive index of m = 1.17 + 0.77i corresponding to E(m) = 0.5, the second row for582

m = 1.53 + 0.75i corresponding to E(m) = 0.35, and the last last row for m = 1.90 + 0.57i
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corresponding to E(m) = 0.20. The incoming light is polarized vertically (y direction),584

propagates along the x direction with a wavelength of λ = 532nm.

Figure E.11: Representation of the local correction to RDG in cuts of the material for different E(m) of an

isolated sphere where F (m) = 0.30. First column corresponds to Avv,i(ψ) (local correction to RDG for a

given orientation) and second one represents the dispersion contribution of Avv,i(ψ) to Avv(ψ). Plots (a)-(b)

corresponds to a refractive index of m = 1.17 + 0.77i, corresponding to E(m) = 0.5, plots (c)-(d) have

m = 1.53 + 0.75i corresponding to E(m) = 0.35, and plots (e)-(f) have m = 1.90 + 0.57i corresponding to

E(m) = 0.20. The wavelength is 532nm and the monomer radius is a = 21.1 nm. The incoming light is

polarized vertically (y direction) and propagates along the x direction.

31



Appendix F. Phasor definition of deviation ratios586

We next consider the derivation of Eq. (9) within the framework of the phasor description

for forward scattering. The intensity of the scattered wave in the vertical-vertical polarization588

configuration Isca
vv is defined in terms of the time-averaged Poynting vector of that wave 〈Ssca〉t

and is related to the differential scattering cross section as [37]590

dCsca
vv

dΩ
(r̂) =

r2Isca
vv (r)

I inc =
r2

I inc |〈S
sca(r)〉t| , (F.1)

where I inc = (1/2)
√
εo/µoE

2
o , εo is the permittivity of free space, µo is the permeability of

free space, i.e., 1/(εoµo) = c2, and it is understood that only the vertical component of the592

scattered field is used as indicated in Eq. (F.2) below. The Poynting vector in Eq. (F.1) can

be simplified using Eqs. (C.3) and (C.4) as594

〈Ssca(r)〉t =
1

2µo
Re {Esca(r)× [Bsca(r)]∗} =

1

2r2

√
εo
µo
|Esca

1 (r̂) · ŷ|2 r̂, (F.2)

Then, using Eq. (F.1) with Eq. (6) and selecting the forward-scattering direction we find

that596

dCsca
vv

dΩ
(n̂inc) =

∣∣Esca
1 (n̂inc) · ŷ

∣∣2
E2

o
=

(
3k2

4π

)2

F (m)

∣∣∣∣∣
N∑
i=1

zy,i(n̂
inc) ∆V

∣∣∣∣∣
2

. (F.3)

Meanwhile, the analog to Eq. (F.3) in the RDG approximation is given by Eq. (5) with Eint
y

replaced by Eq. (10) using Eq. (4). Then, for this analog, again using Eq. (F.1) with Eq. (6)598

and selecting the forward-scattering direction, we find that

dCsca
RDG

dΩ
(n̂inc) =

|Esca
1 (r̂) · ŷ|2

E2
o

=

(
3k2

4π

)2

F (m)V 2 (F.4)

because zy,i(n̂inc) = 1 + 0i, and therefore,
∑N

i=1 zy,i(n̂
inc) ∆V = N∆V = V . The ratio of600

Eqs. (F.3) and (F.4) defines the deviation measure of Eq. (9), i.e.,

Avv(ψ) =

dCsca
vv

dΩ
(n̂inc)

dCsca
RDG

dΩ
(n̂inc)

=

∣∣∣∣∣ 1

V

N∑
i=1

zy,i(n̂
inc) ∆V

∣∣∣∣∣
2

= |zy,i|2 . (F.5)

In a similar fashion, it is possible to define a deviation measure for the total absorption602

cross section Cabs relative to the RDG approximation for an incident vertically polarized
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wave. Using the optical theorem, Draine et al. [21] provide a definition for Cabs in terms of604

the dipole moments Pi in the DDA as

Cabs
v =

4πk

|Einc|2
N∑
i=1

[
Im
{
Pi ·

(
α−1Pi

)∗}− 2k3

3
Pi ·P∗i

]
. (F.6)

In Eq. (F.6), Pi is the complex-valued electric dipole moment associated with a volume606

element ∆V and α is the polarizability, which is taken as constant throughout the particle

volume V in our case. This expression differs from that of Purcell and Pennypacker [20] due608

to the (2/3)k3Pi ·Pi term, which is included to account for radiation reaction. Each dipole

is established by an exciting field Eexc as Pi = αEexc(ri) where this field is not the same as610

the (macroscopic) field Eint appearing in Eq. (C.1). The exciting field is the field due to the

incident wave plus the fields radiated to dipole i from all other dipoles excluding the field612

of dipole i itself [21]. Yet, Yurkin et al. [22] show that the moments are proportional to the

macroscopic internal field as Pi = χEint(ri)∆V where χ is the electric susceptibility given by614

[39] as χ = 1
4π

(m2− 1). Installing these definitions in Eq. (F.6) and noting that |Einc|2 = E2
o

gives616

Cabs
v =

k

4π

|m2 − 1|2

E2
o

[
Im
{

1

α∗

}
− 2k3

3

]
(∆V )2

N∑
i=1

{
Eint(ri) ·

[
Eint(ri)

]∗}
. (F.7)

To express this in terms of phasors, we must generalize Eq. (7) to the case when all vector

components of the internal field are considered, i.e., we take618

zν,i(r̂) = n̂ν
m2 + 2

3Eo
Eint
ν (ri) exp(−ikr̂ · ri) (F.8)

where ν = {x, y, z} and n̂ν = {x̂, ŷ, ẑ}. Then, Eq. (F.8) can be inverted to express the

internal field in terms of phasor components as620

Eint(ri) =
3Eo

m2 + 2
[zx,i(r̂)x̂ + zy,i(r̂)ŷ + zz,i(r̂)ẑ] exp(ikr̂ · ri). (F.9)

Note that the field product in Eq. (F.7) will remove the exponential in Eq. (F.9), and thus,

we can ignore the exponential in Eq. (F.8). Then, using Eq. (F.9) in Eq. (F.7) gives622

Cabs
v =

9k

4π
(∆V )2F (m)

[
Im
{

1

α∗

}
− 2k3

3

] N∑
i=1

[
|zx,i|2 + |zy,i|2 + |zz,i|2

]
. (F.10)
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As demonstrated, in the RDG regime for a vertically incident light source, zy,i = 1+i0 and

zx,i = zz,i = 0. Also, by replacing α by the Draine [21] expression αCM [1− i
2π

(k3∆V )m
2−1

m2+2
]−1624

(αCM : Clausius Mossotti relation) and by assuming that the DDA discreatization is high

enough to ensure k3∆V → 0, the term i
2π

(k3∆V )m
2−1

m2+2
in brackets becomes negligible and626

we then obtain

Cabs
v,RDG =

6k4

4π
N(∆V )2F (m)

[
2π

k3∆V
Im
{(

m2 + 2

m2 − 1

)∗}
− 1

]
(F.11)

Once again, with the assumption that the DDA discretization is high enough to ensure628

k3∆V → 0, the term −1 in brackets will also be negligible. After simplification of the

remaining terms in Eq. (F.11), we obtain the classical expression of the RDG absorption630

cross section

Cabs
v,RDG =

6πV

λ
E(m) (F.12)

with E(m) given by Eq. (1). Finally, the ratio of Eq. (F.10) with the same equation using632

zy,i = 1 + i0 and zx,i = zz,i = 0 gives the deviation measure hv for the absorption cross

section634

hv =
Cabs

v

Cabs
v,RDG

=
1

N

N∑
i=1

[
|zx,i|2 + |zy,i|2 + |zz,i|2

]
, (F.13)

which is Eq. (12).
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