
HAL Id: hal-03128660
https://normandie-univ.hal.science/hal-03128660v1

Submitted on 2 Feb 2021 (v1), last revised 31 Mar 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Graph Pre-image Method Based on Graph Edit
Distances

Linlin Jia, Benoit Gaüzère, Paul Honeine

To cite this version:
Linlin Jia, Benoit Gaüzère, Paul Honeine. A Graph Pre-image Method Based on Graph Edit Distances.
Proceedings of IAPR Joint International Workshops on Statistical techniques in Pattern Recognition
(SPR 2020) and Structural and Syntactic Pattern Recognition (SSPR 2020)., Jan 2021, Venise, Italy.
�hal-03128660v1�

https://normandie-univ.hal.science/hal-03128660v1
https://hal.archives-ouvertes.fr

A Graph Pre-image Method Based on Graph
Edit Distances?

Linlin Jia1, Benoit Gaüzère1, and Paul Honeine2

1 LITIS, INSA Rouen Normandie, Rouen, France
2 LITIS, Université de Rouen Normandie, Rouen, France

Abstract. The pre-image problem for graphs is increasingly attracting
attention owing to many promising applications. However, it is a chal-
lenging problem due to the complexity of graph structure. In this paper,
we propose a novel method to construct graph pre-images as median
graphs, by aligning graph edit distances (GEDs) in the graph space with
distances in the graph kernel space. The two metrics are aligned by op-
timizing the edit costs of GEDs according to the distances between the
graphs within the space associated with a particular graph kernel. Then,
the graph pre-image can be estimated using a median graph method
founded on the GED. In particular, a recently introduced method to
compute generalized median graphs with iterative alternate minimiza-
tions is revisited for this purpose. Conducted experiments show very
promising results while opening the computation of graph pre-image to
any graph kernel and to graphs with non-symbolic attributes.

Keywords: Pre-image problem · Machine Learning · Graph Kernels ·
Graph Edit Distance.

1 Introduction

Graph structures have been increasingly attracting attention in pattern recog-
nition and machine learning. While they are able to represent a wide range of
data, from molecules to social networks, most machine learning methods oper-
ate on Euclidean data. Graph kernels allow bridging the gap between the graph
structure and machine learning thanks to the kernel trick. This trick consists in
implicitly embedding graphs into a Hilbert space, where kernel methods such
as Support Vector Machines can be easily operated. The reverse process of the
implicit embedding with kernels, namely the so-called pre-image, continues to
intrigue researchers. It corresponds to the mapping of elements from the kernel
space back to the input space. Many applications require computing the pre-
image, such as denoising or feature extraction with kernel principal component
analysis [14]. The challenge of finding the pre-image lies in the fact that the
reverse mapping does not exist in general and that most elements in the kernel

? This research was supported by CSC (China Scholarship Council) and the French
national research agency (ANR) under the grant APi (ANR-18-CE23-0014).

2 Linlin, Gaüzère and Honeine

space do not own valid pre-images in the input space. Consequently, various
methods have been developed to approximate the solution, namely, to solve the
pre-image problem. We refer interested readers to the tutorial [15].

Solving the pre-image problem for graphs opens the door to many interest-
ing applications, such as molecule synthesis and drug design. However, finding
the pre-image as a graph inherits the difficulties of traditional pre-image prob-
lems. Additionally, unlike inputs considered by traditional pre-image problems,
i.e. vectors which are usually lying in continuous spaces, graphs are discrete
structures with a variable and non-ordered number of vertices and edges. Fur-
thermore, multiple labels and attributes can be plugged into each vertex and
edge in a graph. Given these structure features, the graph pre-image problem is
more challenging to address.

Several pioneering works to construct graphs have been proposed. A method
based on the random search is proposed in [3]. It is simple to implement, but
has a very high computational complexity and is not applicable to continuous
real-valued labels, while the quality of the synthesized graph pre-images is not
guaranteed. The methods of [2] and [19] infer a graph from path frequency. How-
ever, these methods are either restricted to applying a specific sub-structure of
graphs or ignoring vertex and edge labels, which are important information for
graphs. All these studies do not fully benefit from discrete optimization that
needs to be carried out for graph pre-image. In this paper, we propose a novel
pre-image method for graphs. To this end, we bridge the gap between graph
edit distances (GEDs) and any given graph kernel, which allows uncovering the
relationship between graph space and kernel space. GED is a well-known dissim-
ilarity measure between graphs, based on elementary operations that transform
one graph to another. By optimizing the edit costs of these operations according
to distances between elements in the kernel space, the metrics of the two afore-
mentioned spaces are aligned, thus allowing constructing the graph pre-image
by a median graph method based on GEDs. Specifically, a pre-image problem
for the median graph of a graph set is addressed, based on the hypothesis that,
benefiting from the alignment of the two metrics, the median of the set of graphs
corresponds to the mean of their embeddings in the kernel space. We take ad-
vantage of recent advances in GED to solve this problem, where an iterative
alternate minimization procedure to generate median graphs is adapted [7].

The remainder of the paper is organized as follows. The next section intro-
duces preliminaries for the paper. Section 3 presents the proposed method in two
folds, learning edit costs for GEDs by the distances in kernel space (Section 3.1)
and inferring the graph pre-image (Section 3.2). Section 4 gives experiments and
analyses. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Graphs, Graph Kernels, and Graph Pre-images

A graph G = (V,E) is an ordered pair of disjoint sets, where V is the vertex set
and E ∈ V ×V is the edge set. A graph can have a label set L from a label space

A Graph Pre-image Method Based on Graph Edit Distances 3

molecule 1 graph 1

image reconstruction,

molecule synthesis,

drug design...

Fig. 1. A graph kernel maps graphs to a kernel space H, while the pre-image provides
the reverse procedure, by mapping elements from kernel space back to graphs.

and a labeling function ` that assigns a label l ∈ L to each vertex and/or edge,
where l can be symbolic (i.e. discrete values) or non-symbolic (i.e. continuous
values). Let ϕ be the set of vertex labels, Φ the set of edge labels, and n the
number of vertices in graph G (n = |V |). See [22] for more details.

A positive semi-definite kernel is a symmetric bilinear function that satisfies∑n
i=1

∑n
j=1 ci cj k(xi, xj) ≥ 0, for all xi, . . . , xn and c1, . . . , cn ∈ R. These kernels

are simply denoted as kernels in this paper for conciseness. A kernel corresponds
to an inner product between implicit embeddings of input data into an Hilbert
space H (RKHS) thanks to an implicit mapping function φ : X → H.

Graph kernels are kernels defined on graphs. For a given graph kernel, k(Gi, Gj)
corresponds to an inner product between the two mapped graphs φ(Gi) and
φ(Gj) in the kernel space H. More details on graph kernels can be found in [13,
18, 12, 11]. Given a kernel, the mapping φ(·) remains implicit and is defined by
the kernel itself. It does not have to be explicitly known thanks to the kernel
trick. However, the reverse map may be interesting and is difficult to compute
in general. Indeed, most combinations ψ =

∑
i αiφ(Gi) do not have a valid pre-

image, namely a graph G? such that φ(G?) = ψ; The pre-image problem consists
in estimating an approximate solution, namely Ĝ such that φ(Ĝ) ≈ ψ (Fig. 1).

2.2 Graph Edit Distance

The Graph Edit Distance (GED) between two graphs Gi and Gj is defined as
the cost of minimal transformation [21]:

dGED(Gi, Gj) = min
π∈Π(Gi,Gj)

C(π,Gi, Gj), (1)

where π(Gi, Gj) is a mapping between Vi∪ε and Vj∪ε encoding the transforma-
tion from Gi to Gj [8]. This transformation consists in a series of six elementary

4 Linlin, Gaüzère and Honeine

operations: removing or inserting a vertex or an edge, and substituting a label of
a vertex or an edge by another label. C(π,Gi, Gj) measures the cost associated
to π:

C(π,Gi, Gj) =
∑

v∈V (Gj)

π−1(v)/∈V (Gi)

cvfi(ε, v) +
∑

u∈V (Gi)
π(u)/∈V (Gj)

cvfr(u, ε) +
∑

u∈V (Gi)
π(u)∈V (Gj)

cvfs(u, π(u))

+
∑

f∈E(Gj)

π−1(f)/∈E(Gi)

cefi(ε, f) +
∑

e∈E(Gi)
π(e)/∈E(Gj)

cefr(e, ε) +
∑

e∈E(Gi)
π(e)∈E(Gj)

cefs(e, π(e)),
(2)

where cvfr, cvfi, cvfs, cefr, cefi, cefs are the edit cost functions associated to the
six edit operations: respectively vertex removal, insertion, substitution and edge
removal, insertion and substitution. According to [17], the edit cost functions for
graphs with non-symbolic labels can be defined as:{

cvfi(ε, v) = cvi, cefi(ε, e) = cei, cvfr(v, ε) = cvr, cefr(e, ε) = cer,

cvfs(u, v) = cvs‖`v(u)− `v(v)‖, cefs(e, f) = ces‖`e(e)− `e(f)‖,
(3)

where cvr, cvi, cvs, cer, cei, ces are the edit costs, namely the coefficients applied
to the edit operations. Let c = [cvr, cvi, cvs, cer, cei, ces]

> be the edit cost vector.
By definition, the GED can be regarded as a distance measure between

graphs. However, the problem of computing the GED is NP-hard [4]. Many
methods have been proposed to approximate GED, such as bipartite [21] and
IPFP [8]. For more details on GEDs, we refer interested readers to [21, 4].

3 Proposed Graph Pre-image Method

The main motivation of this work is to address the pre-image problem by building
connections between graph and kernel spaces. We propose to align the metrics
of the two spaces by optimizing the edit costs such that GEDs approximate the
distances in kernel space. Then, once GEDs and kernel distances are similar, we
propose to recast the pre-image problem as a graph generation problem, based
on the assumption that the median of a set of graphscorresponds to the mean
of their embeddings in the kernel space. An iterative alternate minimization
method is adapted for this purpose, in which the GEDs with the optimized edit
cost distances are used. These two steps are detailed next, and the proposed
method is summarized in Algorithm 1.

3.1 Learn Edit Costs by Distances in Kernel Space

When computing GEDs, the choice of edit costs values is essential. In practice,
they are determined by domain experts for a given dataset. With our original
idea of aligning the GEDs to the kernel metric, we propose to learn the edit costs
by the distances of the elements in the kernel space.

On one hand, the distance in H between two elements φ(Gi) and φ(Gj) is:

dH(φ(Gi), φ(Gj)) =
√
k(Gi, Gi) + k(Gj , Gj)− 2k(Gi, Gj). (4)

A Graph Pre-image Method Based on Graph Edit Distances 5

Algorithm 1 Proposed method
Input: Dataset GN , graph kernel k, thresholds of stopping criteria (rmax, imax).
Output: The approximation of the pre-image.

1: Compute dH as in (7) for GN .
2: Initialize randomly c(0) = [c(0)vr , c

(0)
vi , c

(0)
vs , c

(0)
er , c

(0)
ei , c

(0)
es]>.

3: Compute kernel distances dH of all pairs of graphs in GN with (4).
4: Let r = 0.
5: while r < rmax do
6: For fixed c(r), estimate W (r) by solving (7) using a GED heuristic (e.g. bipartite or IPFP).
7: For fixed W (r), estimate c(r+1) by solving (7) using constrained linear least square program-

ming (e.g. CVXPY).
8: r = r + 1.
9: end while
10: Find set-median Ĝ(0) by (9).
11: Let i = 0.
12: while i < imax do
13: Compute transformation π̂(i+1)

p by (10) for Ĝ(i) with c(r+1).
14: Generate Ĝ(i+1) by (11) with π̂(i+1)

p and c(r+1).
15: end while
16: Ĝ(i+1) is the graph pre-image.

On the other hand, considering Eq. (1) and the costs defined in Eq. (3), the
GED between Gi and Gj is given by:

dGED(Gi, Gj) = ω>c, (5)

with ω = [nvr, nvi, ωvs, ner, nei, ωes]
>, where nvr, nvi, ner, nei are respectively

the numbers of vertex removals, insertions, and edge removals, insertions. ωvs =∑
u∈V (Gi),π(u)∈V (Gj)

‖`v(u)− `v(π(u))‖ is the sum of distances of labels between
all pairs of vertices; and ωes =

∑
e∈E(Gi),π(e)∈E(Gj)

‖`e(e)− `e(π(e)‖ is the sum
of distances of labels between all pairs of edges.

A major difficulty, which is not straightforward from (5), is that ω and c
are interdependent. For two different edit cost vectors, respective optimal ω may
not be equivalent since the costs influence the presence or absence of each edit
operation. In addition, ω influences also c since we want to fit GED with kernel
distances, i.e., dGED(Gi, Gj) ≈ dH(φ(Gi), φ(Gj)).

Given a graph space G of attributed graphs and a kernel space H, we propose
to align GEDs in G with distances in H between each pair of graphs. In other
words, we seek to learn the edit costs of the GED, so that the GED between
each pair of graphs in G is as close as possible to its corresponding distance in
H. To achieve this goal, a least squares optimization on graph dataset GN =
{G1, G2, . . . , GN} ⊂ G is considered, namely

argmin
c,ω

N∑
i,j=1

(dGED(Gi, Gj)− dH(φ(Gi), φ(Gj)))
2 , (6)

with dGED depending on c and ω as given in (5), where ω exists for each pair of
graphs Gi and Gj in GN , which will be denoted as ω(i, j). Moreover, to ensure
that the minimum cost edit transformation π in (1) can be found, all edit costs
need to be positive, and substituting an element should not be more expensive

6 Linlin, Gaüzère and Honeine

than removing and inserting it [21]. Thus, the optimization problem becomes:

argmin
c,W
‖W>c− dH‖2 subject to c > 0, cvr + cvi ≥ cvs and cer + cei ≥ ces, (7)

where W> ∈ RN2×6 with rows ω(i, j)> and dH ∈ RN2

encoding the GEDs for
each pair of graphs of GN . To solve this constrained optimization problem, we
propose an alternating optimization strategy over c and W . The optimization
problem over c, for a fixed W , is a constrained linear least square program
problem solved using CVXPY [10, 1]. Once the edit costs obtained, the weights W
are computed by GED heuristics, such as bipartite and IPFP.

3.2 Generate Graph Pre-image

Given a set of graphs GN ⊂ G, its average point can be easily computed in the
kernel space, i.e., ψ =

∑N
i=1 αiφ(Gi) with αi = 1/N . Our objective is to estimate

its pre-image, namely the graph Ĝ whose image φ(Ĝ) is as close as possible to
ψ.

With the metric alignment principle (6), dGED(Gi, Gj) ≈ dH(φ(Gi), φ(Gj)),
for all Gi, Gj ∈ GN . Therefore, estimating the pre-image is equivalent to esti-
mating the graph median, which can be tackled as the minimization of the sum
of distances (SOD) to all the graphs of GN , namely

Ĝ = argmin
G∈G

∑
Gp′∈GN

dGED(G,Gp′). (8)

A first attempt to solve it is to restrict the solution to the set GN , namely

Ĝ = arg min
Gp∈GN

∑
Gp′∈GN

dGED(Gp, Gp′) = arg min
Gp∈GN

N∑
p′=1

min
πp′∈Π(Gp,Gp′)

c(πp′ , Gp, Gp′), (9)

where cost c(πp′ , Gp, Gp′) consists of two parts, cv(πp′ , ϕp, ϕp′) and ce(πp′ , Ap, Φp,
Ap′ , Φp′), which are costs of vertex and edge transformation, respectively. This
problem can be solved by computing all pairwise GEDs for dataset GN . The
computational complexity is in O(aN2), where a is the complexity of computing
a GED between two graphs (for instance, by bipartite or IPFP). The resulting
pre-image Ĝ is also known as the set-median of GN .

Despite its simplicity, the set-median can only be chosen from the given
dataset GN , which strongly limits the results. To obtain the pre-image from a
bigger space, we take advantage of recent advances in [7] where the proposed
iterative alternate minimization procedure (IAM) allows generating new graphs.
Next, we revisit this method and adapt it for the pre-image problem. The pro-
posed strategy alternates the optimization over all the π̂p (i.e., transformations
from Ĝ to Gp) and over the pre-image estimate Ĝ, namely

π̂p = arg min
πp∈Π(Ĝ,Gp)

c(πp, Ĝ, Gp) ∀p ∈ {1, . . . , N}; (10)

A Graph Pre-image Method Based on Graph Edit Distances 7

Ĝ = arg min
ϕ∈Hn̂v

A∈{0,1}n̂×n̂

Φ∈Hn̂×n̂e

N∑
p=1

cv(π̂p, ϕ, ϕp) +
1
2
ce(π̂p, A, Φ,Ap, Φp). (11)

The resolution of (10) is carried out by solving the GED problem N times with
time complexity of O(aN), and the computation of (11) is detailed in [7], where
the vertices and edges are updated separately. The new non-symbolic labels
assigned for a vertex v (resp. an edge e) are given by the average values of the
corresponding labels of the vertices substituted to v (resp. edges substituted to
e). The obtained pre-image Ĝ is also known as the generalized median of GN .

4 Experiments

To perform experiments, we implemented3 Algorithm 1 in Python. The C++
library GEDLIB4 and its Python interface gedlibpy are used as the core imple-
mentation to compute graph edit distances and perform IAM algorithm [5]. We
implemented a general edit cost function NonSymbolic5 for graphs containing
only non-symbolic vertex and/or edge labels and an edit cost function Letter2
specifically for dataset Letter-high based on NonSymbolic. In these functions,
all edit costs can be freely set, which is more convenient for the optimization
proposed in Section 3.1. We have modified the gedlibpy accordingly6. All exper-
iments were carried out on a computer with 8 CPU cores of Intel Core i7-7920HQ
@ 3.10GHz, 32GB memory, and 64-bit operating system Ubuntu 16.04.3 LTS.

Given the Letter-high dataset7, the goal is to compute, for a given kernel,
the pre-image of the average of each class of letters, namely ψ =

∑N
i=1 αiφ(Gi)

with αi = 1/N . Two graph kernels are considered, the shortest path (SP) kernel
[6] and the structural SP kernel [20], both being able to deal with non-symbolic
labels; see [16]. In each class (i.e., a set of distortions of a letter), all 150 graphs
are chosen to compose the graph set GN . To estimate the graph edit distances,
a multi-start counterpart of IPFP (i.e., mIPFP) is applied in both procedures of
producing set-median and generalized median, where 40 different solutions to
the LSAP are chosen [9]. The maximum number of iterations is set to rmax = 6.

Table 1 exhibits experimental results. Results of two sets of edit costs are
presented. The first set of constants is randomly generated for each class of
graphs, while the second set is given by domain experts, where cvi = cvr =
0.675, cei = cer = 0.425, cvs = 0.75 and ces = 0 [4]. It is worth noting that these
expert values take into account prior knowledge of the data, such as setting
ces to 0 as graphs in Letter-high do not contain edge labels. Moreover, we also
give as a baseline a method to generate median graphs (denoted “From median
set”), where the median graph is directly chosen from the median set GN whose
3 https://github.com/jajupmochi/graphkit-learn/tree/master/gklearn/preimage.
4 GEDLIB: https://github.com/dbblumenthal/gedlib
5 https://github.com/jajupmochi/gedlib/tree/master/src/edit_costs
6 gedlibpy (modified): https://github.com/jajupmochi/gedlibpy
7 http:// graphkernels.cs.tu-dortmund.de.

8 Linlin, Gaüzère and Honeine

Table 1. Distances in kernel space computed using different methods.

Graph Kernels Algorithms dH GM
Running Times (s)

Optimization Generation Total

Shortest path (SP)

From median set 0.406 - - -
IAM: random costs 0.467 - 142.59 142.59
IAM: expert costs 0.451 - 30.31 30.31

IAM: optimized costs 0.460 5968.92 26.55 5995.47

Structural SP (SSP)

From median set 0.413 - - -
IAM: random costs 0.435 - 30.22 30.22
IAM: expert costs 0.391 - 29.71 29.71

IAM: optimized costs 0.394 24.79 25.60 50.39

representation in kernel space is the closest to the true median’s (ψ). The average
results over all classes are presented for all methods. Column “dH GM” gives the
distances between the embedding of the computed pre-image and the element
we want to approximate in the kernel space (dH). The columns “Running Times”
give the time to optimize edit costs and generate pre-images.

For the structural SP kernel, when expert and optimized methods are given,
applying IAM provides better pre-images than choosing from the median set with
respect to dHs of the generalized medians. Compared to dH of pre-image choosing
from median sets, dH is respectively 5.33% and 4.60% smaller for algorithm with
expert and optimized costs. Moreover, dH of the algorithm with optimized costs
is 9.43% smaller than that with random costs and is almost the same as the
algorithm with expert costs, which is also the case for the SP kernel. These
results show that the algorithm with the optimized costs works better than
the one with random costs to generate pre-images as median graphs, and can
serve as a method to tune edit costs to help find expert costs, for both median
generation problems using IAM and general pre-image problems. Moreover, the
running times to optimize edit costs and generate pre-images are acceptable in
most cases.

Although these improvements seem trivial, the advantage of our method can
be valuated from other aspects. Fig. 2 presents the pre-images generated as the
median graphs for each letter of the Letter-high dataset using aforementioned
methods, which correspond to the eight rows of Table 1, row by row. Vertices
are drawn according to coordinates determined by their attributes “x” and “y”.
In this way, plots of graphs are able to display the letters that they represent,
which are possible to be recognized by human eyes. When using the SP kernel
(the first row to the fourth row), it can be seen that the pre-images chosen
directly from the median set (the first row) are illegible in almost all cases, while
the IAM with random costs provides more legible results, where letters A, K, Y
can be easily recognized (the second row). When the expert and optimized costs
are used, almost all letters are readable, despite that the pre-images of letter F
are slightly different (the third and fourth rows). The same conclusion can be
derived for the structure SP kernel as well (the fifth row to the eighth row).

This analysis indicates that even though the distances dH are similar, the al-
gorithms applying IAM are able to generate better pre-images, especially when
edit costs are optimized. This phenomenon may benefit from the nature of the

A Graph Pre-image Method Based on Graph Edit Distances 9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

SP, from median set
0

1

2
3
4

0

12

3

4
5

6

0

1

2 3

4 0

1
2

3

4
5

0

1

0
1

2

3

4

5

0

1
2

0

1

2
3

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SP, random costs
0

1

2

3 4

0

1
2

3
4

5

0

1

2

3

4 0

1
2

3

4
5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SP, expert costs
0

1

2

3 4

0

12

3

4 5

0

1

2 3

4 0

1 2

3

4 5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SP, optimized costs
0

1

2

3 4

0

12

3

4 5

0

1

2 3

4 0

1 2

3

4 5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SSP, from median set
0

1

2

3
4

0

1
2

3

4 5

0

1

2
3

4 0

1
2

3

4

5

6

0

1

0
1

2

3

4

5

0

1
2

0
1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

0
1

2 3

0

1

2

3 0 1

2 3

SSP, random costs
0

1

2

3 4

0

12

3

4
5

0

1

2 3

4 0

1
2

3

4
5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SSP, expert costs
0

1

2

3 4

0

12

3

4 5

0

1

2 3

4 0

1 2

3

4 5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SSP, optimized costs
0

1

2

3 4

0

12

3

4 5

0

1

2 3

4 0

1 2

3

4 5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

Fig. 2. Pre-images constructed by different algorithms for Letter-high, which corre-
spond to the eight rows of Table 1 row by row.

IAM algorithm. In the update procedure (11), the new non-symbolic labels as-
signed for a vertex v is given by the average values of the corresponding labels of
the vertices substituted to v [7]. It provides a “direction” to construct pre-images
with respect to features and structures of graphs. For instance, the “x” and “y”
attributes on the vertices of the letter graphs presents the coordinates of the
vertices. To this end, it makes sense to compute their average values as the new
values of a vertex as the vertex will be re-positioned at the middle of all vertices
substituted to it.

5 Conclusion and Future Work

In this paper, we proposed a novel method to estimate graph pre-images. This
approach is based on the hypothesis that metrics in both kernel space and graph
space can be aligned. We first proposed a method to align GEDs to distances
in the kernel space. Within the procedure, the edit costs are optimized. Then
the graph pre-image was generated by a new method to construct the graph
generalized median, where we revisited the IAM algorithm. Our method can
generate better pre-images than other methods, as demonstrated on the Letter-
high dataset. Future work includes generalizing our method to graphs with sym-
bolic labels and constructing pre-images as arbitrary graphs rather than median
graphs. The convergence proof of the iterative procedure will be conducted and
the non-constant edit costs will be considered. Using state-of-the-art generative
graph neural networks to solve the pre-image problem is also interesting.

References

1. Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex
optimization problems. Journal of Control and Decision 5(1), 42–60 (2018)

10 Linlin, Gaüzère and Honeine

2. Akutsu, T., Fukagawa, D.: Inferring a graph from path frequency. In: Annual Sym-
posium on Combinatorial Pattern Matching. pp. 371–382. Springer (2005)

3. Bakır, G.H., Zien, A., Tsuda, K.: Learning to find graph pre-images. In: Joint
Pattern Recognition Symposium. pp. 253–261. Springer (2004)

4. Blumenthal, D.B., Boria, N., Gamper, J., Bougleux, S., Brun, L.: Comparing
heuristics for graph edit distance computation. The VLDB Journal pp. 1–40 (2019)

5. Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: Gedlib: A c++ library
for graph edit distance computation. In: International Workshop on Graph-Based
Representations in Pattern Recognition. pp. 14–24. Springer (2019)

6. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Data Mining,
Fifth IEEE International Conference on. pp. 8–pp. IEEE (2005)

7. Boria, N., Bougleux, S., Gaüzère, B., Brun, L.: Generalized median graph via it-
erative alternate minimizations. In: International Workshop on Graph-Based Rep-
resentations in Pattern Recognition. pp. 99–109. Springer (2019)

8. Bougleux, S., Gaüzère, B., Brun, L.: Graph edit distance as a quadratic program.
In: 2016 23rd International Conference on Pattern Recognition (ICPR). pp. 1701–
1706 (Dec 2016). https://doi.org/10.1109/ICPR.2016.7899881

9. Daller, É., Bougleux, S., Gaüzère, B., Brun, L.: Approximate graph edit distance
by several local searches in parallel. In: 7th International Conference on Pattern
Recognition Applications and Methods (2018)

10. Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for con-
vex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016)

11. Gärtner, T.: A survey of kernels for structured data. ACM SIGKDD Explorations
Newsletter 5(1), 49–58 (2003)

12. Gaüzère, B., Brun, L., Villemin, D.: Graph kernels in chemoinformatics. In:
Dehmer, M., Emmert-Streib, F. (eds.) Quantitative Graph Theory Math-
ematical Foundations and Applications, pp. 425–470. CRC Press (2015),
https://hal.archives-ouvertes.fr/hal-01201933

13. Ghosh, S., Das, N., Gonçalves, T., Quaresma, P., Kundu, M.: The journey of graph
kernels through two decades. Computer Science Review 27, 88–111 (2018)

14. Honeine, P.: Online kernel principal component analysis: a reduced-order model.
IEEE Transactions on Pattern Analysis and Machine Intelligence 34(9), 1814 –
1826 (Sep 2012). https://doi.org/10.1109/TPAMI.2011.270

15. Honeine, P., Richard, C.: Preimage problem in kernel-based machine learning.
IEEE Signal Processing Magazine 28(2), 77–88 (2011)

16. Jia, L., Gaüzère, B., Honeine, P.: Graph Kernels Based on Linear Patterns:
Theoretical and Experimental Comparisons (Mar 2019), https://hal-normandie-
univ.archives-ouvertes.fr/hal-02053946, working paper or preprint

17. Kaspar, R., Horst, B.: Graph classification and clustering based on vector space
embedding, vol. 77. World Scientific (2010)

18. Kriege, N.M., Neumann, M., Morris, C., Kersting, K., Mutzel, P.: A unifying view
of explicit and implicit feature maps for structured data: systematic studies of
graph kernels. arXiv preprint arXiv:1703.00676 (2017)

19. Nagamochi, H.: A detachment algorithm for inferring a graph from path frequency.
Algorithmica 53(2), 207–224 (2009)

20. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical
informatics. Neural networks 18(8), 1093–1110 (2005)

21. Riesen, K.: Structural pattern recognition with graph edit distance. In: Advances
in computer vision and pattern recognition. Springer (2015)

22. West, D.B., et al.: Introduction to graph theory, vol. 2. Prentice hall Upper Saddle
River (2001)

