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Abstract. In this study, the real time ultrasonic monitoring is investigated to quantify changes 

in physical and mechanical properties during the manufacture of composite structures. In this 

context, an experimental transmission was developed with the aim of characterizing a high 

temperature polymerization reaction and post-curing properties using an ultrasonic method. 

First, the monitoring of ultrasonic parameters of a thermosetting resin is carried out in a device 

reproducing the experimental conditions for manufacturing a composite material with a process 

known as RTM, that is to say an isothermal polymerization at T = 160°C. During this curing, 

the resin is changing from its initial viscous liquid state to its final viscous solid state. Between 

those states, a glassy transition stage is observed, during which the physical properties are 

strongly changing, i.e. an increase of the ultrasonic velocity up to its steady value and a 

transient increase of the ultrasonic attenuation. Second, the ultrasonic inspection of the 

thermosetting resin is performed during a heating and cooling process to study the temperature 

sensitivity after curing. This type of characterization leads to identifying the ultrasonic 

properties dependence before, during and after the glassy transition temperature Tg. Eventually, 

this study is composed of two complementary parts: the first is useful for the curing 

optimization, while the second one is fruitful for the post-processing characterization in a 

temperature range including the glassy transition temperature Tg. 

1.  Introduction 

The polymerization kinetics is of interest for the thermochemical research community [1]. In the 

recent decades, the monitoring of viscoelastic parameters of polymers and composite structures from 

the manufacturing phase to the aging phase has been investigated using various methods: DSC [2], 

rheology [3], IR [4] or ultrasound [5]. The ultrasound monitoring of resins [6-12] can operate during 

the fabrication process. In a previous study in reflection mode [13-16], the ultrasonic characteristics 

were directly related to the reaction kinetics and the reaction conversion. A transmission mode setup 

would enable to avoid overlapping of echoes during the manufacturing. In the present work, the 

ultrasonic properties are monitored at high temperature [17-20] in the transmission mode [21-25]. 

Here, the transmission characterization method is based on the direct transmission of a pulse at the 

beginning of polymerization (reference state) and enables the monitoring of the ultrasonic properties 

(instantaneous state) by means of an iterative optimization method [21,22,15]. This paper is divided 

into two parts: the first describes the theoretical equations and the general approach of the proposed 

method. The second part presents the experimental setup and associated results with an application of 

http://creativecommons.org/licenses/by/3.0
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this approach with the high temperature transducer and the RTM6 epoxy resin. 

2.  Monitoring of the ultrasonic properties 

2.1.  Low temperature monitoring 

As illustrated, Figure 1 shows the different echoes used to the monitoring of the ultrasonic proprieties 

of an epoxy resin during its polymerization with the transmission method. The structure is composed 

of two identical aluminum blocks between which the resin liquid is introduced. Multiple echoes can be 

recorded after various transmission and reflections in the constituting layers. First, the complex 

spectrum S1(f) corresponds to the direct transmitted echo s1(t) through the three-layer structure 

composed of the first aluminum block, the epoxy layer and the second aluminum block (Alu/Epo/Alu). 

Second, the complex spectrum S2(f) corresponds to the direct transmitted echo s2(t) through the three-

layer structure with a round-trip echo in the epoxy. Third, the complex spectrum S3(f) corresponds to 

the direct transmitted echo s3(t) through the structure with a round-trip echo in one of the aluminum 

blocks. These spectra S1(f), S2(f) and S3(f) are written in the following form: 
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where S0(f) is the emission signal; kAlu = /cAlu(f) + jAlu(f) and kEpo = /cEpo(f) + jEpo(f) are the 

longitudinal complex wavenumbers, in aluminum and epoxy resin respectively; dAlu and dEpo are the 

thicknesses of aluminum and resin layer, respectively; T{Alu/Epo, Epo/Alu} and R{Alu/Epo, Epo/Alu} are the 

complex transmission and reflection coefficients from aluminum to epoxy (Alu/Epo) or reversely, 

from epoxy to aluminum (Epo/Alu), respectively. 
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Figure 1. Paths of the transmission signal in three-layer structure 

composed by a first aluminum block, an epoxy layer and a second 

aluminum block (Alu/Epo/Alu). 

 

The transfer function T21(f) = S2(f)/ S1(f) contains information on the longitudinal properties of the 

epoxy resin layer, i.e. the velocity cEpo(f) and attenuation Epo(f). Consequently, the argument of the 

transfer function Arg(T21(f)) and its modulus |T21(f)| give the following frequency dependencies: 
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Similarly, the transfer function T31(f) = S3(f)/ S1(f) contains information on the longitudinal 

ultrasonic properties of the aluminum blocks, i.e. the expressions of the velocity cAlu(f) and attenuation 

Alu(f) in the aluminum layer. 

The transmission technique consists in calculating the ultrasonic properties of the epoxy relatively 

to a reference state of the epoxy at the beginning of polymerization. At the reference state, the 

spectrum S1,ref(f), corresponds to the first transmitted echo s1,ref(t): 

 , ,2

/ , / ,1, 0( ) ( ) Alu EpoAlu ref Epo refjk d jk d

Alu Epo ref Epo Alu refrefS f S f e e T T
 

    (3) 

where kAlu,ref = /cAlu,ref(f) + jAlu,ref(f) and kEpo,ref = /cEpo,ref(f) + jEpo,ref(f) correspond to the complex 

wavenumbers at a reference state, T{Alu/Epo,ref, Epo/Alu,ref} and R{Alu/Epo,ref, Epo/Alu,ref} are the complex 

transmission and reflection coefficients from aluminum to epoxy (Alu/Epo) or reversely, from epoxy 

to aluminum (Epo/Alu) fro the reference state, respectively. The transfer function T11(f) = S1(f)/S1,ref(f) 

contains information on instantaneous ultrasonic properties in epoxy. The expression of the velocity 

cEpo(f) and attenuation Epo(f) in the epoxy are written as a function of the argument of the transfer 

function Arg(T11(f)) and the modulus |T11(f)| in the following form: 
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  (4) 

where T is a transfer coefficient which is written in the following form: 
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The calculation of the ultrasonic properties during polymerization is summarized by the algorithm 

procedure in Figure 2. At the beginning of the polymerization reaction, the reference ultrasonic 

properties in epoxy are calculated from equation (2). These initial properties at the reference state are 

used to calculate the instantaneous properties in the epoxy resin as a function of time, according to 

equation (4), including the iterative calculation of transfer coefficient T (equation (5)). 

2.2.  High temperature monitoring 

As illustrated by Figure 3, the high temperature transducers with delay lines lead to a five layers 

structure (Stl/Alu/Epo/Alu/Stl), corresponding to the steel delay line of the emission transducer (Stl), 

the aluminum block (Alu), the epoxy layer (Epo), the aluminum block (Alu) and then the delay line of 

the receiving transducer (Stl). The instantaneous signal transmitted through the five layer structure is 

denoted s1,HT(t) results from the direct transmission transfer function Td = TStl/Alu.TAlu/Epo.TEpo/Alu.TAlu/Stl. 

The spectra S1,HT(f) corresponding to the transmitted echo s1,HT(t) can be written as: 
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Figure 2. Algorithm for calculating ultrasonic properties. 
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Figure 3. Direct transmission path in a five layer structure 

(Stl/Alu/Epo/Alu/Stl) and associated instantaneous signal s1,HT(t). 

 

Using the procedure described in Figure 2, the ultrasonic velocity cEpo can be written as a function 

of the time shift between the reference and the instantaneous echo t11,HT, of the time shift in the molds 

tAlu and in the delay lines tStl. The attenuation Epo is expressed as a function of the of the ratio 

between the maximum amplitude of the instantaneous echo max(s1,HT(t)) and that of the reference echo 

max(s1,HT,ref(t)), and the attenuation variation in the molds Alu and in the delay lines Stl: 
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where THT is a transfer coefficient describing the evolution of the direct transmission coefficient Td: 
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3.  Experiment 

3.1.  Experimental setup 

The experimental setup is composed of two contact transducers, one emitter and the other receiver, 

placed in contact with mold (  

(a)). The procedure for preparing the epoxy resin (Resoltech or RTM6) and the instrumentation is 

detailed in a previous work [13]. The transducer emits longitudinal waves using a pulse generator. The 

second transducer receives the echoes (  

(b)) then acquired using a digital oscilloscope. The temperature is programmed and regulated by a 

heating oven. A Pt100 temperature sensor is immersed in the epoxy resin in order to record the 

temperature changes during the polymerization. The acoustic signals and the temperature are 

automatically recorded and processed with an acquisition period of 10 minutes, using an acquisition 

program on Matlab. 
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(b) 

Figure 4. Experimental setup and associated signals: (a) experimental setup for the ultrasonic 

monitoring; (b) processed transmitted echoes s1(t), s2(t) and s3(t), including round-trip echoes s22(t), 

s23(t) and s24(t) in the epoxy layer, and associated spectra in the three-layer structure (Alu/Epo/Alu). 
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3.2.  Low temperature processing 

As illustrated Figure 5, the ultrasonic properties of the epoxy layer were evaluated while the 

polymerization was monitored as a function of the acquisition time tacq, at a setpoint temperature 

T = 40°C. These results are illustrated in Figure 5(a) for the velocity cEpo(tacq) and in Figure 5(b) for 

the attenuation Epo(tacq). 
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(a) (b) 

Figure 5. Ultrasonic properties of the epoxy resin: (a) velocity cEpo(tacq), and (b) attenuation Epo(tacq), 

while the polymerization was monitored at a setpoint temperature T = 40°C. 

3.3.  High temperature processing 

A high temperature (HT) piezoelectric transducer (GE Measurement and Control) is specifically used 

for continuous high-temperature transmission measurements (up to 180°C). The center frequency of 

the transducer is f0 = 4 MHz. This type of transducer has an integrated steel (Stl) delay line used for 

the protection of the piezoelectric material, and as illustrated in Figure 3, it results in multiple round-

trip echoes in the delay line. These delay lines make the emission-reflection configuration complicated 

by the echoes overlap. The chosen method consists in working with the first transmitted echo provided 

that we know the ultrasonic properties in the aluminum molds and the integrated steel delay lines as 

well as their evolutions as a function of the temperature. This is what was done with what we called 

the reference state. 

The polymerization monitoring at high temperature of the RTM6 resin was carried out according a 

precise protocol. The resin was degassed during 30 minutes. Meanwhile, the molds were heated at 

80°C, and once the resin was flowed in the mold, the setpoint temperature was set at 160°C. At that 

time tacq = 0, the polymerization monitoring started and the transmitted signals through the five layer 

structure were recorded periodically. As illustrated by  

(a), the liquid viscoelastic phase ranges from tacq = 0 and 1.25 h and shows a small variation, 

mainly due to the temperature increase of the resin. The second phase ranging from tacq = 1.25 to 2.25 

h is that of the glassy transition, characterized by a strong variation of the echoes amplitude and time-

of-flight. The third phase defined by tacq > 2.25 h, corresponds to the stabilization of the echoes 

properties, i.e. solidification of the epoxy. As a result, in  

(b), the associated wave velocity cEpo (m/s) and attenuation Epo (Np/m) in the epoxy layer were 

extracted using the previously described algorithm. These deduced properties of the epoxy layer 

clearly show the glassy transition around 1.75 h. 
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(a) 

 

(b) 

Figure 6. (a) Ultrasound monitoring of the transmitted signals through the five layers studied 

configuration, in the case of a RTM6 epoxy resin with a couple of high temperature transducers and (b) 

associated velocity cEpo (m/s) and attenuation Epo (Np/m) in the epoxy layer. 

4.  Conclusion 

The reference properties were estimated using different spectral and temporal methods. The transfer 

coefficient T has been determined in an analytical form and via an iterative optimization based on an 

inverse approach. Since the processing method has been described and validated, then the ultrasonic 

properties can be studied at high temperature with transducers integrating delay lines. In this five layer 

configuration, the ultrasonic properties of the epoxy resin {cEpo, Epo} can be calculated from those 

evaluated at the reference state {cEpo,ref, Epo,ref}, including also those of the aluminum molds {cAlu, Alu} 

and delay lines {cStl, Stl} and the appropriate temperature compensations through the transfer 

coefficient T. Polymerization monitoring of a RTM6 epoxy resin was carried out at high temperature, 

leading to the determination of the thermal and phase transformations through ultrasound. 
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