
HAL Id: hal-03111016
https://normandie-univ.hal.science/hal-03111016

Submitted on 15 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

graphkit-learn : a Python Library for Graph Kernels
Based on Linear Patterns

Linlin Jia, Benoit Gaüzère, Paul Honeine

To cite this version:
Linlin Jia, Benoit Gaüzère, Paul Honeine. graphkit-learn : a Python Library for Graph
Kernels Based on Linear Patterns. Pattern Recognition Letters, 2021, 143, pp.113-121.
�10.1016/j.patrec.2021.01.003�. �hal-03111016�

https://normandie-univ.hal.science/hal-03111016
https://hal.archives-ouvertes.fr


1

graphkit-learn: A Python Library for Graph Kernels Based on Linear Patterns

Linlin Jiaa,∗∗, Benoit Gaüzèrea, Paul Honeineb

aLITIS, INSA Rouen Normandie, Rouen, France
bLITIS, Université de Rouen Normandie, Rouen, France

ABSTRACT

This paper presents graphkit-learn, the first Python library for efficient computation of graph ker-
nels based on linear patterns, able to address various types of graphs. Graph kernels based on linear
patterns are thoroughly implemented, each with specific computing methods, as well as two well–
known graph kernels based on non-linear patterns for comparative analysis. Since computational
complexity is an Achilles’ heel of graph kernels, we provide several strategies to address this crit-
ical issue, including parallelization, the trie data structure, and the FCSP method that we extend to
other kernels and edge comparison. All proposed strategies save orders of magnitudes of computing
time and memory usage. Moreover, all the graph kernels can be simply computed with a single Python
statement, thus are appealing to researchers and practitioners. For the convenience of use, an advanced
model selection procedure is provided for both regression and classification problems. Experiments on
synthesized datasets and 11 real-world benchmark datasets show the relevance of the proposed library.

1. Introduction

Graph kernels have become a powerful tool in bridging
the gap between machine learning and graph representations.
Graph kernels can be constructed by explicit feature maps or
implicit ones using the kernel trick (Kriege et al., 2019). Many
graph kernels have been proposed by manipulating measure-
ments of different sub-structures of graphs (Ghosh et al., 2018;
Gaüzère et al., 2015a). Of particular interest are graph kernels
based on linear patterns, since they have acceptable accuracy
on many benchmark datasets with competitive computational
complexity compared to kernels based on non-linear patterns.
Moreover, they have been serving as a baseline for designing
new kernels. These kernels have been constructed using either
walk patterns (i.e., based on alternating sequences of vertices
and edges) or path patterns (i.e., walks without repeated ver-
tices), including the common walk kernel (Gärtner et al., 2003),
the marginalized kernel (Kashima et al., 2003), the generalized
random walk kernel (Vishwanathan et al., 2010), the shortest
path kernel (Borgwardt and Kriegel, 2005), the structural short-
est path kernel (Ralaivola et al., 2005) and the path kernel up to
length h (Suard et al., 2007).

∗∗Corresponding author:
e-mail: linlin.jia@insa-rouen.fr (Linlin Jia)

Although several open-source libraries for graph kernels
have been published, only parts of the aforementioned ker-
nels have been implemented so far and only limited types
of graphs were tackled. In this paper, we present the new
open-source Python library graphkit-learn, implementing
all the kernels based on linear patterns and a wide selection
of graph datasets. Table 1 compares our library with other li-
braries that implement graph kernels based on linear patterns,
showing the completeness of our library. For comparison,
two graph kernels based on non-linear patterns are also im-
plemented, namely the Weisfeiler-Lehman (WL) subtree ker-
nel (Shervashidze et al., 2011; Morris et al., 2017) and the
treelet kernel (Gaüzère et al., 2015b; Bougleux et al., 2012;
Gaüzère et al., 2012). Additionally, we propose several com-
puting methods and tricks to improve specific kernels, as well
as auxiliary functions to preprocess datasets and perform model
selection. The library is publicly available to the community on
GitHub: https://github.com/jajupmochi/graphkit-learn, and can
be installed by pip: pip install graphkit-learn.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the graphkit-learn library in detail. Sec-
tion 3 presents three strategies applied in the library to reduce
the computational complexity of graph kernels. Experiments
and analyses are shown in Section 4. Finally, Section 5 con-
cludes the paper.
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Table 1. Libraries available online including graph kernels based on linear patterns.

Libraries

Kernels implemented

LanguagesCommon
walk

Marginalized Random walk
Sylvester eq.

Random walk
conj. grad.

Random walk
fixed-point iter.

Random walk
spectral decomp.

Shortest
path (SP)

Structural
SP

Path up to
length h

GraKeLa 3 7 7 7 7 7 3 7 7 Python
pykernelsb 7 7 7 3 7 7 3 7 7 Python
ChemoKernelc 7 3 7 7 7 7 7 7 3 C++

graphkernelsd 3 7 7 7 7 7 3 7 7 Python (C++ core)
graph-kernelse 3 7 7 7 7 7 7 7 7 C++, R (C++ core)
graphkit-learnf(this paper)3 3 3 3 3 3 3 3 3 Python

a: https://github.com/ysig/GraKeL b: https://github.com/gmum/pykernels c: https://github.com/bgauzere/ChemoKernel

d: https://github.com/BorgwardtLab/GraphKernels e: https://github.com/BorgwardtLab/graph-kernels f: https://github.com/jajupmochi/graphkit-learn

2. The graphkit-learn Library

The graphkit-learn library is written in Python. Fig. 1
shows the overall architecture of the library in 3 main parts:
• Methods to load graph datasets from various formats

and to process them before computing graph kernels,
which are implemented respectively by the function
loadDataset in the module utils.graphfiles and
the function get_dataset_attributes in the module
utils.graphdataset.

• Implementations of 9 graph kernels based on linear pat-
terns and 2 on non-linear patterns in the module kernels,
which are the major contributions of the library.

• Methods to perform model selection with cross-validation
(i.e., hyper-parameter tuning), which are implemented in
the module model_selection_precomputed.

The remainder of this section describes these contents in detail.

2.1. Graph Data Processing

In graphkit-learn, the NetworkX package is applied
to handle graphs (Hagberg et al., 2008), which sup-
ports rather comprehensive graph attributes, including sym-
bolic and non-symbolic labels on vertices and edges, edge
weights, directness, etc. A dataset in graphkit-learn
is represented as a list of graphs, where each graph
is represented by a networkx.Graph class if undirected
or a networkx.DiGraph class if directed. Located in
the gklearn.utils module, graphfiles.loadDataset
loads raw data from several widely-used graph dataset
formats and transforms the data into NetworkX graphs.
The graphdataset.get_dataset_attributes extracts the
properties of a dataset, such as its size, the average vertex num-
ber and edge number, the average vertex degree, whether the
graphs are directed, labeled symbolically and non-symbolically
on their vertices and edges, etc. These attributes are useful to
graph kernels, because the kernels may utilize different com-
puting methods according to them.

2.2. Implementations of Graph Kernels

The main contribution of graphkit-learn is the implemen-
tations of graph kernels, within the module gklearn.kernels.
Our implementations provide the ability to address various
types of graphs, including unlabeled graphs, vertex-labeled
graphs, edge-labeled and fully-labeled graphs, directed and

gklearn

kernels

Based on walks

commonwalkkernel

marginalizedkernel

randomwalkkernel

Sylveter equation

conjugate gradient

fixed-point iterations

spectral decomposition

Based on paths

spkernel

structuralspkernel

untilhpathkernel

Based on non-linear patterns

treeletkernel

weisfeilerlehmankernel

utils

graphfiles.loadDataset

graphdataset.get_dataset_attributes

model_selection_precomputed

model_selection_for_precomputed_kernel

kernels

Fig. 1. The overall architecture of graphkit-learn library.

undirected graphs, and edge-weighted graphs. Only parts of
these types have been tackled by other available libraries. Ta-
ble 2 shows the types of graphs that each kernel can process.

Each kernel method takes a list of NetworkX graph objects
as the input, and returns a Gram matrix whose entries are the
evaluations of the kernel on pairs of graphs from the list. Other
arguments can be chosen by the users to specify the computing
methods and to serve as the tunable hyper-parameters of the
kernel, according to the definition of the kernel. The compu-
tation is then carried out with a single Python statement. The
specific implementation of each graph kernel is described next.
commonwalkkernel implements the common walk kernel.

Two computing methods are provided based on exponential se-
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Table 2. Comparison of graph kernels.

Kernels

Labeling

Directed Edge
weighted

Weighting Implementationssymbolic non-symbolic

vertices edges vertices edges

Common walk 3 3 7 7 3 7 a priori commonwalkkernel
Marginalized 3 3 7 7 3 7 7 marginalizedkernel
Random walk: Sylvester equation 7 7 7 7 3 3 a priori randomwalkkernel
Random walk: Conjugate gradient 3 3 3 3 3 3 a priori randomwalkkernel
Random walk: Fixed-point iterations 3 3 3 3 3 3 a priori randomwalkkernel
Random walk: Spectral decomposition 7 7 7 7 3 3 a priori randomwalkkernel
Shortest path 3 7 3 7 3 3 7 spkernel
Structural shortest path 3 3 3 3 3 7 7 structuralspkernel
Path kernel up to length h 3 3 7 7 3 7 3 untilhpathkernel
Treelet 3 3 7 7 3 7 3 treeletkernel
Weisfeiler-Lehman (WL) subtree 3 7 7 7 3 7 7 weisfeilerlehmankernel

“Weighting” indicates whether the substructures can be weighted in order to obtain a similarity measure adapted to a particular prediction task.

ries and geometric series as introduced by Gärtner et al. (2003).
The direct product of labeled graphs is implemented for the
convenience of computation.
marginalizedkernel computes the marginalized kernel

with the recursion algorithm (Kashima et al., 2003). The users
can set the argument remove_totters=True to remove totter-
ing with the method introduced by Mahé et al. (2004).

The generalized random walk kernel is implemented by
randomwalkkernel. Four possible computing methods are
provided: Sylvester equation, conjugate gradient, fixed-point
iterations, and spectral decomposition, as introduced by Vish-
wanathan et al. (2010). The argument compute_method allows
to select one of the four methods. For conjugate gradient and
fixed-point iterations, the labels of vertices at the two ends of an
edge are added to both sides of the corresponding edge labels.

The shortest path kernel is computed by spkernel. The
Floyd-Warshall’s algorithm (Floyd, 1962) is employed to trans-
form the original graphs into shortest-paths graphs (Borg-
wardt and Kriegel, 2005). structuralspkernel computes
the structural shortest path kernel introduced by Ralaivola et al.
(2005). The Fast Computation of Shortest Path Kernel (FCSP)
method is applied for both kernels. See Section 3.1 for details.
untilhpathkernel computes the path kernel up to length

h. Two normalization kernels can be chosen, the Tanimoto ker-
nel and the MinMax kernel, studied by Suard et al. (2007). It is
recommended to choose the trie data structure to store paths ac-
cording to h and structure properties of graphs (see Section 3.3).

Two graph kernels based on non-linear patterns are imple-
mented: treeletkernel for the treelet kernel (Gaüzère et al.,
2015b) and weisfeilerlehmankernel for the Weisfeiler-
Lehman (WL) subtree kernel (Shervashidze et al., 2011).

Besides, user-defined vertex kernels and/or edge kernels of
labeled graphs are supported in the shortest path kernels, the
structural shortest path kernel, and the generalized random
walk kernel computed by conjugate gradient and fixed-point it-
erations methods. These kernels allow using simultaneously
symbolic and non-symbolic labels in graph kernels, which en-
ables graph kernels to tackle more types of graph datasets.
The module utils.kernels contains several pre-defined ker-
nels between labels of vertices or edges, in which the function

deltakernel computes the Kronecker delta function between
symbolic labels, the function gaussiankernel computes the
Gaussian kernel between non-symbolic labels, the function
kernelsum and kernelproduct are respectively the sum and
product of kernels between symbolic and non-symbolic labels.
Moreover, edge weights can be included in the shortest path
kernel, the structural shortest path kernel, and the generalized
random walk kernel computed by Sylvester equation and spec-
tral decomposition methods.

2.3. Model Selection and Evaluation
For the convenience of use, a complete model se-

lection and evaluation procedure is implemented in the
module gklearn.utils.model_selection_precomputed,
in which all work is carried out by model_selection
_for_precomputed_kernel. This method first preprocesses
the input dataset, then computes Gram matrices and performs
the model evaluation with machine learning methods from the
scikit-learn library (Pedregosa et al., 2011). Support Vector
Machines (SVM) are applied for classification tasks and kernel
ridge regression for regression (Schölkopf and Smola, 2002). A
two-layer nested cross-validation (CV) is applied to select and
evaluate models, where the outer CV randomly splits the dataset
into 10 folds with 9 as validation set, and the inner CV then ran-
domly splits the validation set to 10 folds with 9 as training set.
The whole procedure is performed 30 times, and the average
performance is computed over these trails. The kernel param-
eters are tuned within this procedure. This design allows the
users to perform model selection in a single Python statement.
Demos to use the library are provided in the notebooks folder.

3. Strategies to Reduce the Computation Complexity

The computational complexity limits the practicability and
scalability of graph kernels. In this section, we consider 3
strategies to reduce the computing time and memory usage to
compute graph kernels: the Fast Computation of Shortest Path
Kernel method, parallelization, and the trie structure. Datasets
and environment settings applied in this section are described
in Section 4.2.
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3.1. The Fast Computation of Shortest Path Kernel Method

To compute the shortest path kernel between 2 graphs G1 and
G2, shortest paths between all pairs of vertices in both graphs
are compared. Each time we compare 2 shortest paths, both
their corresponding pairs of vertices are compared once, caus-
ing significant redundancy during the vertex comparison proce-
dure. If G1 has n1 vertices and G2 has n2 vertices, then there
are at most n2

1 shortest paths in G1 and n2
2 shortest paths in G2,

thus n2
1n2

2 comparisons between shortest paths and 2n2
1n2

2 com-
parisons between vertices are required to compute the kernel.
Each pair of vertices is compared 2n1n2 times on average.

The Fast Computation of Shortest Path Kernel (FCSP) re-
duces this redundancy (Xu et al., 2014). Instead of compar-
ing vertices during the procedure of comparing shortest paths,
FCSP first compares all pairs of vertices between 2 graphs, and
then stores the comparison results in an n1 × n2 matrix named
shortest path adjacency matrix; finally when comparing short-
est paths, comparison results of corresponding vertices are re-
trieved from the matrix. This method reduces vertex compar-
isons to at most n1n2 times, with an additional memory usage
of size O(n1n2). In practice, FCSP can reduce the time com-
plexity up to several orders of magnitudes.

In our implementation, we apply this vertex comparing
method to the shortest path kernel, as recommended by Xu et al.
(2014). Moreover, we also extend this strategy and apply it to
the structural shortest path kernel, which allows reducing more
redundancy since this kernel requires comparisons between all
vertices on each pair of shortest paths. If the average length of
the shortest paths in G1 and G2 is h, the new method is at most
n1n2h times faster than direct comparison.

We further extend this strategy to edge comparison when
computing the structural shortest kernel. If G1 has m1 edges
and G2 has m2 edges, then it requires m1m2 times of edge label
comparisons, compared to n2

1n2
2h times by the original method.

3.2. Parallelization

Parallelization may significantly reduce the computational
complexity. The basic concept of parallelization is to split a
set of computation tasks into several pieces, and then carry
them out separately on multiple computation units such as
CPUs or GPUs. We implement parallelization with Python’s
multiprocessing.Pool module in two aspects: In cross-
validation, parallelization is carried out over the set of trials;
parallelization is performed on pairs of graphs when comput-
ing Gram matrices of graph kernels (except for the WL subtree
kernel due to the special structure of the kernel).

Many factors may influence the efficiency of parallelization,
such as the number of computation cores, the transmission
bandwidth between these cores, the method to split the data,
the computational complexity to tackle one piece of data, etc.
Fig. 2 reveals the influence of parallelization and CPU core
numbers (7 versus 28), on runtime to compute Gram matrices
and to perform model selections for the shortest path kernel on
8 datasets. Moreover, we present the ratio between runtimes to
compute the Gram matrices on 28 and 7 cores. The values of
this ratio for large-scale datasets are around 4, which turns out
to be the inverse ratio of the number of CPU cores (28/7). It is
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Fig. 2. Left y-axis: Runtimes (in seconds) to compute Gram matrices (bot-
tom of each pillar) and perform model selections (top of each pillar) for
the shortest path kernel on each dataset on 28 CPU cores (blue pillar) and
7 CPU cores (magenta pillar) with parallelization. Right y-axis: The or-
ange dots are the ratios between the runtimes to compute Gram matrices
of each dataset on 28 and 7 cores.
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Fig. 3. Runtimes to compute the Gram matrices of the shortest path kernel
on each dataset on 28 CPU cores with different chunksize values.

worth noting that the Letter-med dataset has the largest number
of graphs (but with relatively “small” graphs), and Enzymes has
the “average-largest” graphs (the second one being PAH).

Ideally, parallelization is more efficient when more compu-
tation cores are applied. However, this efficiency may be sup-
pressed by the parallel procedure required to distribute data to
computation cores and collect returned results. Parallelizing
relatively small graphs to a large number of computation cores
may be more time consuming than non-parallel computation.
For instance, Fig. 2 shows that it takes almost the same time
to compute the Gram matrix of the small dataset Alkane on 28
and 7 CPU cores, indicating that the time efficiency raised by
applying more CPU cores is nearly neutralized by the cost to
allocate these cores. To tackle this problem, it is essential to
choose an appropriate chunksize, which describes how many
data are grouped together as one piece to be distributed to a
single computation core.
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Alkane 1.09 24.94 8.1 23.14 24.22 1.71 20.39 23.29 2.75 2.51 1.02

Acyclic 1.24 25.19 8.9 19.11 18.27 1.51 20.36 22.56 4.89 2.72 1.02

MAO 1.68 24.59 4.32 1.14 1.06 7.25 20.96 24.91 6.46 2.0 1.03

PAH 1.32 26.05 5.17 1.15 1.16 10.19 24.98 26.98 2.06 3.26 1.04

Mutag 1.16 27.23 12.09 1.39 1.57 5.69 25.43 27.47 13.5 6.17 1.01

Letter-med 1.43 1.54 14.83 1.46 1.65 1.61 2.63 2.37 31.54 30.35 1.01

Enzymes 1.43 14.66 1.85 2.03 1.73 inf 14.52 inf 16.23 17.22 1.01

AIDS 1.08 1.59 2.0 1.07 1.08 inf 1.8 2.15 1.8 21.04 1.01

NCI1 inf 1.17 1.94 inf inf inf 1.27 inf 4.14 23.94 1.07

NCI109 inf 1.27 1.93 inf inf inf 1.3 inf 6.04 32.0 1.07

D&D inf inf inf inf inf inf inf inf inf inf 1.01

Fig. 4. The ratio between runtimes of the worse and the best chunksize
settings for each graph kernel on each dataset. Darker color indicates a
better result. Gray cells with the “inf” marker indicate that the compu-
tation of the graph kernel on the dataset is omitted due to much higher
consumption of computational resources than other kernels.

In Fig. 3, runtimes to compute the Gram matrices of the
shortest path kernel with different chunksize values are com-
pared on 28 CPU cores. When chunksizes are too small, the
runtimes become slightly high, as the parallel procedure costs
too much time; as chunksizes become bigger, the runtimes
turn smaller, and then reach the minima; after that, the run-
times may become much bigger as chunksizes continue grow-
ing, due to the waste of computational resources. The mini-
mum runtime of each dataset (shown with the vertical dot lines)
varies due to the time and memory consumed to compute Gram
matrices. Computations with wise chunksize choices could
be more than 20 times faster than the worst choices. In our
experiments, for convenience of implementations and compar-
isons, the chunksize to compute an N × N Gram matrix on n♥
CPU cores is set to 100 if N2 > 100n♥; and N2/n♥ otherwise.
The value 100 is chosen since the corresponding runtimes are
close enough to their minima on all the datasets.

The ratio between runtimes of the worse and the best
chunksize settings for each graph kernel on each dataset is
shown in Fig. 4. On all available settings, the proper choices
of the chunksizes speed up the computation. Some are more
than 30 times faster than the worse chunksize settings (i.e., the
path kernel up to length h and the treelet kernel on Letter-med).

3.3. The trie Structure
In some graph kernels that require comparison of paths (i.e.,

the path kernel up to h), the paths are pre-computed for the sake
of time complexity. However, for large datasets, when the max-
imum limits of the lengths of paths are high, storing these paths
becomes memory consuming. Ralaivola et al. (2005) proposed
a suffix tree data structure for fast computation of path kernels.
Inspired by that, we employ the trie data structure (Fredkin,
1960) to store paths in order to tackle the memory problem.

The trie combines the common prefixes of paths together to
reduce space complexity. Take the path kernel up to h for ex-
ample. Let n be the average vertex number of each graph, d be
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maximum length of paths h
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Fig. 5. Memory usages to store paths in all graphs in each dataset under
different maximum length of paths h. Dot lines represent explicit storage
of paths, and solid lines represent storage using the trie structure. Note
that lines of datasets NCI1 and NCI109 overlap.

Table 3. Experimental settings.
Environments Settings

CPU Intel(R) Xeon(R) E5-2680 v4 @ 2.40GHz
# CPU cores 28

Memory (in total) 252 GB
Operating system CentOS Linux release 7.3.1611, 64 bit

Python version 3.5.2

the average vertex degree, and l the different vertex labels in to-
tal (for conciseness, only symbolic vertex labels are considered
here). When paths are stored explicitly in memory (i.e., using
the Python list object), the space complexity to store paths in
one graph is in O(n(1 + d + · · · + dh)); The trie reduces it to
O(l(1 + l + · · · + lh)), making it very efficient for large datasets
and graphs, and when h is high. See Fig. 5 for a comparison.

Although saving paths to the trie structure and retrieving
paths from it require extra computing time, less memory us-
age may avoid possible swapping between memory and hard
disk, which may save more time in practice. As a result, the
users should use trie structure according to the limits of their
computing resources. In graphkit-learn, the trie structure is
implemented for the path kernel up to h.

4. Experiments

To show the effectiveness and the practicability of the
graphkit-learn library, we tested the library on synthesized
graphs and several real-world datasets. A two-layer nested CV
is applied to select and evaluate models, which is described in
detail in Section 2.3. Table 3 summarizes the settings used in
the experiments.

4.1. Performance on Synthesized Graphs

In this section, the performance and properties of each graph
kernel are studied using synthesized graphs, with runtimes esti-
mated on the Gram matrix computations.

First, we study the scalability of the kernels by increasing the
number of graphs in the dataset (from 100 to 1000), where the
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generated unlabeled graphs consist of 20 vertices and 40 edges
randomly assigned to pairs of vertices. Fig. 6(a) shows the run-
times for all kernels. Since all the lines are linear with the y-
axis being in square root scale, this indicates that the runtimes
are quadratic in the number of graphs.

The scalability is also analyzed by increasing the number of
vertices (from 10 to 100), where 10 datasets of 100 unlabeled
graphs each were generated. The average degree of all gener-
ated graphs is equal to 2 and the edges are randomly assigned to
pairs of vertices. Fig. 6(b) shows the runtimes increasing in the
numbers of vertices, for all kernel. The path kernel up to length
h kernel and the WL subtree kernel have the best scalability.

To study the scalability of the kernels w.r.t. the average vertex
degree, we generated unlabeled graphs consisting of 20 vertices
with increasing degrees (from 1 to 10). The edges are randomly
assigned to pairs of vertices. For each of the 10 degree values,
we generated 100 graphs. Fig. 6(c) shows that most kernels
have good scalability to the degrees, the worst being the treelet
kernel, as the number of treelets in each graph increases rapidly
with the degree.

To study the scalability of the kernels w.r.t. the alphabet sizes
of symbolic vertex labels, we generated unlabeled graphs of 20
vertices and 40 edges randomly assigned to pairs of vertices.
The vertices are symbolically labeled with increasing alpha-
bet sizes, and the edges are unlabeled. For each alphabet size

(from 0 to 20), we generated 100 graphs. As Fig. 6(d) shows,
the runtimes of the path kernel up to path h increases signif-
icantly with the alphabet size. This is because the trie struc-
tures to store paths become bigger, and it requires more time to
construct and compare them. On the contrary, the runtimes of
the common walk kernel and the structural shortest path kernel
become smaller when the alphabet size becomes bigger. The
former is related to smaller direct product graphs (see (Gärtner
et al., 2003)), and the latter is caused by the reduced comparison
between vertex labels through the shortest paths.

The scalability of the kernels w.r.t. the alphabet sizes of edge
labels is studied in the same way, except that the edges are sym-
bolically labeled with increasing alphabet sizes, and the vertices
are unlabeled. For each alphabet size (0, 4, 8, . . . , 40), we gen-
erated 100 graphs. According to Fig. 6(e), the runtimes of the
path kernel up to path h increase with the alphabet sizes, caused
by the aforementioned reason concerning the trie structures. In
general, the influence of the alphabet size on the runtime is
small for all kernels.

Finally, we studied the classification performances of the ker-
nels on graphs with different amounts of entropy on degree dis-
tributions. For this reason, we generated two sets of 200 graphs
with 40 vertices. Graphs of the first set have low entropy on
degree distributions, while graphs of the second set have high
entropy (0.4 versus 2.2 on average). Each set has two classes,
one consisting of half of the graphs with one label on vertices
and the other class another label. A classification task is per-
formed on each set using the SVM classifier, and the accuracy is
evaluated. Fig. 6(f) shows that all graph kernels achieve equiv-
alent accuracy on the both degree distributions. Except for the
generalized random walk kernels computed by either Sylvester
equation or spectral decomposition that cannot deal with labels,
all graph kernels achieve high accuracy. It indicates that these
graph kernels are suitable for various degree distributions.

As a conclusion, the dataset size and the number of vertices
have the most significant effect on the computation runtimes of
the aforementioned graph kernels. For the treelet kernel, the
vertex degree is also important. These effects should be exam-
ined carefully before using the kernels.

4.2. Real-world Datasets
In the following experiments, 11 well-known real-world

datasets are considered for regression and classification tasks.
These datasets come from different fields: Alkane (Cherqaoui
and Villemin, 1994), Acyclic (Cherqaoui et al., 1994), MAO
(Brun, 2018), PAH (Brun, 2018), Mutag (Debnath et al., 1991),
Enzymes (Schomburg et al., 2004; Borgwardt et al., 2005),
AIDS (Riesen and Bunke, 2008), NCI1 (Wale et al., 2008),
NCI109 (Wale et al., 2008) and D&D (Dobson and Doig, 2003)
are chemical compounds and proteins from the bio/chemo-
informatics fields; Letter-med (Riesen and Bunke, 2008) in-
volves graphs of distorted letter drawings, within the category
of image recognition. Alkane and Acyclic are concerned with
the determination of the boiling point using regression. The
other datasets are related to classification tasks. These datasets
have a wide range of graph properties, by including labeled and
unlabeled graphs, symbolic and non-symbolic attributes, differ-
ent average vertex numbers, linear and non-linear patterns, etc.
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Alkane 15.52 43.75 8.97 11.13 12.78 12.95 7.81 8.65 9.0 2.53 26.42

Acyclic 12.93 18.77 32.5 13.15 14.2 33.05 9.03 13.1 6.66 5.99 19.8

MAO 93.0 85.62 84.52 88.57 73.71 77.67 87.81 91.62 85.43 91.19 93.05

PAH 71.8 57.67 71.5 73.93 58.33 70.73 69.4 74.5 75.27 66.3 75.93

Mutag 85.96 76.11 82.77 86.18 86.58 84.05 81.84 86.26 88.47 90.79 87.18

Letter-med 36.16 5.2 37.27 93.12 91.3 36.38 93.72 94.88 43.83 inf 36.13

Enzymes 42.81 45.92 23.24 60.89 63.11 23.68 70.09 inf 57.49 52.23 50.76

AIDS 94.71 inf 92.42 98.93 98.57 87.21 99.26 98.84 99.65 99.54 98.63

NCI1 inf inf 59.76 71.34 inf inf inf 79.88 84.84 64.84 84.63

NCI109 inf inf 60.62 67.6 67.25 inf inf 79.04 83.94 63.46 85.47

D&D inf inf inf inf inf inf inf inf 81.4 inf 77.3

Fig. 7. Accuracy achieved by graph kernels, in terms of regression error
(the upper table) and classification rate (the lower table). Red color in-
dicates the worse results and dark green the best ones. Gray cells with
the “inf” marker indicate that the computation of the graph kernel on the
dataset is omitted due to much higher consumption of computational re-
sources than other kernels.

The diversity of these particularities allows to explore the be-
havior of the graph kernels on different types of graphs and the
coverage of graphs that graphkit-learn is able to manage.
See (Kersting et al., 2016) for details on these datasets.

4.3. Performance on the Real-world Datasets

Fig. 7 shows the accuracy achieved by the aforementioned
graph kernels. Each row corresponds to a dataset and each
column to a graph kernel. All kernels achieve better results
compared with random assignment, where kernels based on
paths and non-linear patterns outperform those based on walks
on most datasets. Kernels based on paths achieve equivalent
or even better results than those on non-linear patterns, where
the path kernel up to length h dominates on most datasets with
symbolic labels; while when non-symbolic labeled graphs are
given, kernels based on shortest paths achieve the best results
(such as Letter-med and Enzymes).

These results confirm graphkit-learn’s ability to tackle
various types of graphs, which are labeled or unlabeled, with
symbolic and/or non-symbolic attributes, linear and/or non-
linear patterns, and have a wide range of average vertex num-
bers from 4 (Letter-med) to 284 (D&D). Kernels based on linear
patterns achieve competitive accuracies on graphs with non-
linear patterns compared to kernels based on non-linear pat-
terns. Along with the preceding analyses, these facts prove that
these kernels can serve as reliable methods for classification and
regression problems on graphs, as well as qualified benchmark
kernels for future graph kernels design.

Besides accuracy, we furthermore examined the computa-
tional complexity of each kernel. Fig. 8 displays the time con-
sumed to compute the Gram matrix of each kernel on each
dataset. The results are consistent with the computational com-
plexities of graph kernels. In most cases, the computation is
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Alkane 0.48 0.51 -0.42 -0.18 -0.22 -0.19 -0.12 0.02 -0.29 -0.3 0.16

Acyclic 0.36 0.62 -0.18 -0.04 -0.11 -0.1 -0.08 0.24 -0.3 -0.31 0.34

MAO 0.81 0.69 -0.47 -0.11 -0.03 0.14 0.25 0.88 -0.14 -0.28 -0.25

PAH 1.56 1.05 -0.42 0.14 0.25 0.37 0.36 1.32 -0.28 -0.24 -0.03

Mutag 1.28 1.36 -0.3 0.44 0.53 0.77 0.69 1.84 -0.07 -0.24 0.19

Letter-med 2.01 2.08 1.13 1.97 1.85 1.78 1.57 1.62 1.08 inf 2.02

Enzymes 3.9 3.18 0.72 2.62 2.79 3.4 2.85 inf 2.16 2.08 1.41

AIDS 2.83 inf 1.37 2.91 3.03 3.74 2.95 3.9 1.59 0.87 2.22

NCI1 inf inf 2.3 3.96 inf inf inf 5.12 2.04 1.48 3.02

NCI109 inf inf 2.3 4.37 4.38 inf inf 5.13 2.05 1.48 1.48

D&D inf inf inf inf inf inf inf inf 2.67 inf 2.95

Fig. 8. Computational time to compute Gram matrices of graph kernels (in
log10 of seconds). Same color legends as Fig. 7 are used.
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Fig. 9. Comparison of computational complexity versus accuracy of all
graph kernels on all datasets (a), as well as the average performance of
each kernel over all datasets (b). Markers correspond to different kernels;
Colors blue, green and red depict graph kernels based on walks, paths and
non-linear patterns, respectively.

efficient and it takes seconds or minutes to compute the whole
Gram matrix. On the largest dataset (i.e., D&D, which contains
1178 graphs with 284 vertices and 715 edges per graph aver-
age), two graph kernels can still be computed in tolerable time.
For example, the path kernel up to length h can be computed
within 8 minutes on D&D, which benefits from not only its rel-
atively lower computational complexity, but also the trie struc-
ture applied to it (see Section 3.3). Notice that it takes too much
time to compute some graph kernels on some large datasets. For
instance, the computational complexity of the common walk
kernel is in O(n6) per pair of graphs. To this end, it is irrational
to apply this kernel on graphs with large amounts of vertices.
In conclusion, these analyses illustrate the practicability of the
graphkit-learn library.

The joint performance of the computational complexity and
accuracy of each graph kernel on each dataset is shown in
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Fig. 9. Performances that cannot be acquired in reasonable time
are omitted. In Fig. 9(b), the performance of each kernel is av-
eraged on at least 5 datasets. Fig. 9 provides a helpful guidance
for the users to find the best trade-offs for each kernel. Accord-
ing to this, our implementations of graph kernels can tackle var-
ious types of graphs within reasonable time and memory usage.
The users can freely make use of the kernels or combine them
with self-developed methods.

5. Conclusion and Future Work

In this paper, we presented the Python library
graphkit-learn for graph kernel computations. It is
the first library that provides a thorough coverage of graph
kernels based on linear patterns (9 kernels based on linear
patterns and 2 on non-linear patterns for comparison). We
provided 3 strategies to reduce the computational complexity,
including the extension of the FCSP method for other kernels
and edge comparison. Experiments showed that it is easy
to take advantage of the proposed library to compute graph
kernels, in conjunction with the well-known scikit-learn
library for Machine Learning. Future work includes imple-
mentations of other non-linear kernels, a more thorough test
of graph kernels on a wider range of benchmark datasets,
a C++ implementation bound to Python interface for faster
computation, and integrating more machine learning tools for
graphs in the library, such as graph edit distance methods and
tools to solve the graph pre-image problem. Meanwhile, we
encourage interested users and authors of graph kernels to
commit their implementations to the library.
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Appendix A. Examples to Use the Library

In this appendix we show usage examples of the library. The
dataset MUTAG and the path kernel up to length h are used as
the example.

First, a single Python statement allows to load a graph
dataset:

1 from gklearn.utils.graphfiles import loadDataset
2

3 graphs , targets = loadDataset(’DATA_FOLDER/MUTAG/
MUTAG_A.txt’)

“DATA_FOLDER” is the user-defined folder to store the datasets.
With the loaded graphs, the Gram matrix can be computed as

following:

1 from gklearn.kernels import untilhpathkernel
2

3 gram_matrix , run_time = untilhpathkernel(
4 graphs , # The list of input graphs.
5 depth=5, # The longest length of paths.
6 k_func=’MinMax ’, # Or ’tanimoto ’.
7 compute_method=’trie’, # Or ’naive ’.
8 n_jobs=1, # The number of jobs to run in

parallel.
9 verbose=True)

The Gram matrix and the time spent to compute it are returned.
Besides kernel computation, a complete model selection and

evaluation procedure using a 2-layer nested cross-validation can
be performed by the following code:

1 from gklearn.utils import
model_selection_for_precomputed_kernel

2 from gklearn.kernels import untilhpathkernel
3 import numpy as np
4

5 # Set parameters.
6 datafile = ’DATA_FOLDER/MUTAG/MUTAG_A.txt’
7 param_grid_precomputed = {
8 ’depth ’: np.linspace(1, 10, 10),
9 ’k_func ’: [’MinMax ’, ’tanimoto ’],

10 ’compute_method ’: [’trie’]}
11 param_grid = {’C’: np.logspace (-10, 10, num=41,

base =10)}
12

13 # Perform model selection and classification.
14 model_selection_for_precomputed_kernel(
15 datafile , # The path of dataset file.
16 untilhpathkernel , # The graph kernel used for

estimation.
17 param_grid_precomputed , # The parameters used

to compute gram matrices.
18 param_grid , # The penelty Parameters used for

penelty items.
19 ’classification ’, # Or ’regression ’.
20 NUM_TRIALS =30, # The number of the random

trials of the outer CV loop.
21 ds_name=’MUTAG’, # The name of the dataset.
22 n_jobs=1,
23 verbose=True)

The “param_grid_precomputed” and the “param_grid” ar-
guments specify grids of hyper-parameter values used for grid
search in the cross-validation procedure. The results will be
automatically saved.

More demos and examples can be found in the notebooks
directory and the gklearn.examples module of the library.


