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Abstract—Convolutional neural networks (CNN) have estab-
lished state-of-the-art performance in computer vision tasks
such as object detection and segmentation. One of the major
remaining challenges concerns their ability to capture consistent
spatial attributes, especially in medical image segmentation. A
way to address this issue is through integrating localization
prior into system architecture. The CoordConv layers are ex-
tensions of convolutional neural network wherein convolution
is conditioned on spatial coordinates. This paper investigates
CoordConv as a proficient substitute to convolutional layers
for organ segmentation in both fully and weakly supervised
settings. Experiments are conducted on two public datasets,
SegTHOR, which focuses on the segmentation of thoracic organs
at risk in computed tomography (CT) images, and ACDC, which
addresses ventricular endocardium segmentation of the heart in
MR images. We show that if CoordConv does not significantly
increase the accuracy with respect to standard convolution, it may
interestingly increase model convergence at almost no additional
computational cost.

Index Terms—Image segmentation, Fully Convolutional Net-
works, CoordConv, Location Prior, Weakly Supervised Learning,
MRI, CT

I. INTRODUCTION

Convolutional neural networks (CNN), a class of deep
learning models, have long emerged as powerful tools with
outstanding performance given a variety of applications such
as object detection and semantic segmentation. Despite their
breakthrough, CNN performance is still prone to degradation
due to the lack of spatial features that would be especially
helpful for image segmentation, where pixelwise decision must
be taken [1]. Recent advances in the domain have focused
on integrating location prior onto CNN training in order to
overcome this inadequacy.
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To guide medical segmentation, priori information such
as shape and the topology of organs have often been in-
vestigated as means of maintaining anatomical plausibility.
In this context, plenty of work has been developed prior to
the advent of deep learning for segmentation given varia-
tional approaches. Multi-atlas based approaches and machine
learning based techniques were also ways to integrate prior
information through relying on labeled data [2]. However,
there is no straightforward way to transfer these previous
works to deep learning networks, since the latter have some
specific constraints including differentiability and optimization
of the loss function. Moreover, there is still limited research
on which information to model, how to model it, and how to
integrate it into deep neural networks, and more specifically
into the CNN. Since the priors compensate for the need of a
massive training set and are not based explicitly on the ground
truth labels, weakly supervised image segmentation, which
makes use of only coarse-grained annotations, can greatly
benefit from this type of constrained loss [3], [4].

The CoordConv layers, recently introduced in [5], are
extensions of convolutions that allow convolution filter to take
into account the spatial coordinates of the pixels. The goal of
CoordConv is to learn a mapping between coordinates in the
Cartesian space and coordinates in the one-hot pixel space.
CoordConv has shown its potential for object localization [5],
[6], and has rightfully raised interest for image segmentation
[71, [8]; however, the CoordConv solution’s added value has
not been yet assessed in image segmentation.

This paper investigates CoordConv as a proficient substitute
to convolutional layers in FCN segmentation models dedi-
cated to organ contouring in anatomical images. We explore
the effect of CoordConv on model performance and rate
of convergence when integrated into different layers of the
network, replacing standard convolution in both convolutional
and deconvolutional layers.
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Fig. 1. (left) Ground truth of heart segmentation overlaid on a CT image from
SegTHOR, and (right) an example of weak label: randomly located circle of
diameter 4 pixels.

II. RELATED WORKS

In the literature, there are several ways to inject spatial,
geometrical or anatomical high-level information into seg-
mentation networks. One way is at the level of the loss
function. This consists in designing specific prior-based loss
functions to enforce high-level label dependencies. Prior losses
are usually designed based on features extracted from ground
truth during training or estimated priori. Such prior losses may
integrate adjacency relations between organs [9], organ volume
size [3] or Betti values expressing the number of connected
components [10], [11] to name a few. They can also stem from
transformations [12] or (often non-linear) representations of
the ground truth, such as distance map [13], VAE encoding
[14], or parametric functions [15]. Despite the versatility
of such loss based methods, however, designing novel loss
functions often face considerable challenges including differ-
entiability of the losses and their optimization strategies.

Another way to inject anatomical prior is via network
architecture and layer design [16]-[21]. For example, in [17]
collaborative architectures are implemented to iteratively refine
the posterior probability given the previous probabilities of a
large number of context locations, thus providing information
about neighboring organs. In [20], authors integrated location
and shape prior onto the learning process through introducing
Bounding filters at the level of the skip-connections in a
U-Net base model. In [21] the spatial location of patches
extracted from the image into a CNN model structure is
injected posterior to the convolutional layers. Another example
is in [16] where the authors modified the decoder layers of a
U-Net-like structure in order to incorporate prior via super
resolution ground-truth maps.

Different from works that enforce some constraints through
the loss, thereby requiring loss differentiability or costly
optimization tool, the CoordConv layer idea of Liu et al. in [5]
consists in modifying the input to the network. The goal is to
establish mappings between the Cartesian space and the pixel
space, by enabling the filters to know where pixels are located.
The implementation of CoordConv is done by concatenating
two additional X and Y channels to the input channel as shown
in Fig. 2. In doing so, CoordConv ensures the best of both
convolutional and spatial features.

oordConv
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Fig. 2. CoordConv main principle: x-layer and y-layer are concatenated to
the input image (here, a CT image from the SegTHOR dataset).

III. METHODOLOGY: SEGMENTATION MODEL U-NET AND
COORDCONV

Our model builds upon the segmentation model proposed
by [22], which is a typical residual U-Net, and the Coord-
Conv layers. Similar to U-Net, the network is composed of
encoder/decoder layers of convolutional and deconvolutional
blocks with skip connections. However, instead of consecu-
tively feeding the output of each convolution within the layer
to the convolution that proceeds it, the outputs from different
convolutions per layer are rather combined and convolved
for more fine-grained feature extraction. For fully supervised
experiments, cross entropy was adopted as loss functions.
In the following, we describe in more details the weakly
supervised setting.

Weakly supervised setting: For weakly supervised seg-
mentation, the labels are not the full ground truth, but are
constituted by random seeds (see an example in Fig. 1). In this
case, the loss is enriched with a size constraint as described
in [3].

Let us denote by S the softmax output (or probability
map) of the network. One can write the loss function as a
combination of two terms:

L=H(S)+C(Vy), (1)

where #(S) is the cross-entropy between prediction and true
pixel labels and C(V;) is a size-constraint regularization as
proposed by [3], where V, = Zp Sp can be interpreted as
the area of the segmented region. The size constraint C(V)
in the loss function (1) consists in enforcing the size of the
segmented area to be in a specific (empirically defined) range,
denoted by [a, ]:

(Vs — a)2, if Vs <a
C(Vs) = (Vs —b)*, if Vy>b )
0 else.

Following [3], the value of the parameter A was set to 0.01 in
our experiments. We refer the reader to [3] for more details.

Regarding CoordConv, we implement it by adding two
extra X and Y coordinate channels to the input channel, as
shown in Fig. 2.



TABLE I
AVERAGE DICE INDEX (& STANDARD DEVIATION) AND AVERAGE HAUSDORF DISTANCE FOR FULLY AND WEAKLY SUPERVISED SEGMENTATION ON
SEGTHOR. COORDCONV-1ST (RESP. -ENC AND -ALL) MEANS THE FIRST (RESP. THE ENCODER AND ALL) CONVOLUTIONAL LAYERS OF THE NETWORK
HAVE BEEN REPLACED BY COORDCONV.

Fully superv.

SegTHOR Dataset
Weakly superv.

Dice Hausdorff Dice Hausdorff

U-Net (no CoordConv) 0.86 £0.24 3.50 +1.19 0.82 £ 0.20 491 £1.49

U-Net+CoordConv-1st 0.89 £0.18 344 £0.87 0.82 + 021 4.28 £1.35

U-Net+CoordConv-EnC ~ 0.89 £0.18  3.36 £0.87 0.83 £ 0.20 4.79 £1.07

U-Net+CoordConv-All 0.89 £ 0.17 3.54 £0.86 0.83 £0.20 4.59 +1.25
TABLE 1T

AVERAGE DICE INDEX (& STANDARD DEVIATION) AND AVERAGE HAUSDORF DISTANCE FOR FULLY AND WEAKLY SUPERVISED SEGMENTATION ON
ACDC. COORDCONV-1ST (RESP. -ENC AND -ALL) MEANS THE FIRST (RESP. THE ENCODER AND ALL) CONVOLUTIONAL LAYERS OF THE NETWORK
HAVE BEEN REPLACED BY COORDCONV.

Fully superv.

ACDC Dataset
Weakly superv.

Dice Hausdorff Dice Hausdorff
U-Net (no CoordConv)  0.85 + 0.27 2.14 £ 096 0.73 £ 0.26  3.51 £+3.00
U-Net+CoordConv-1st 0.85 £0.26 2.28 +0.92 - -
U-Net+CoordConv-EnC ~ 0.86 + 022  2.26 + 1.11 - -
U-Net+CoordConv-All 088 +£0.22 206+ 083 072+024 3.16+1.63

IV. EXPERIMENTS

A. Datasets and protocol

Experiments are conducted on two public datasets: the
SegTHOR dataset!, where the goal is to segment thoracic
organs at risk in computed tomography (CT) images [23],
and the ACDC dataset?, which addresses segmentation of the
cardiac ventricular endocardium in MR (magnetic resonance)
images [24].

Regarding SegTHOR, we will only focus on the segmenta-
tion of the heart. The proposed model is trained on 219 slices
(6 patients) from SegTHOR which were augmented to 1096
through rotation, random mirroring and flipping. Validation is
conducted on a set of 155 slices (4 patients). With regards
to the ACDC dataset, training and validation are performed
on 1675 and 229 image slices corresponding to 75 and 25
patients respectively. Images from both datasets were resized
to 256 x 256 pixels and normalized to value between 0 and 1.

Models were evaluated using the Dice index and Hausdorff
distance. For the fully residual U-Net, we use the implemen-
tation from [25] and modify it accordingly with CoordConv.
Thus, we have conducted training using the Adam optimizer
with a batch size of 4 over 200 epochs. Adopting the same
framework as [3], the learning rate was set to 5 x 10~% and
halved each 20 epochs if the validation performance did not
improve.

Regarding the weakly supervised segmentation, the weak
labels are random seeds, which are circles of diameter 4 pixels

Thttps://competitions.codalab.org/competitions/21145
Zhttps://www.creatis.insa-lyon.fr/Challenge/acdc/

and less, generated from the manual ground truth. Bounds for
training under the size constraint loss were also extracted from
the ground-truth segmentation maps and were set to (a = 97.9,
b =1722) and (a = 210, b = 7800) for ACDC and SegTHOR
respectively.

B. Results and analysis

In our experiments, we replace the standard convolution by
the CoordConv component with respect to both the encoding
and the decoding path of the network. We investigate three
different settings in order to assess the CoordConv-based
networks: in Experiment 1, we replace only the input, which
is a regular mono-channel image, with a concatenation of the
image and the X and Y coordinate channels. We call this
model CoordConv-1st. Experiment 2, which is denoted by
CoordConv-EnC, involves replacing all convolutional layers
within the network with CoordConv layers. Experiment 3
consists in concatenating Cartesian coordinates at the level of
both convolutional and deconvolutional layers and is labeled
by CoordConv-All

Interestingly, results from TABLE I for SegTHOR and
TABLE II for ACDC show that adding CoordConv does not
significantly improve the segmentation accuracy with respect
to the baseline (“U-Net (no CoordConv)” row in the tables), as
confirmed by the p-value (>0.05) from a paired Student t-test
between each model’s (row denoted by “U-Net+CoordConv-
XXX”) and the baseline’s Dice and Hausdorff values. How-
ever, what is remarkable is rather the rate and trend of
convergence of CoordConv models relative to the baseline
model. Observing the corresponding validation curves in Fig. 3
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Fig. 3. Evolution of the Dice loss in validation, for the SegTHOR dataset,
in fully supervised setting, using different configuration, from no CoordConv
layer to all convolutional layers replaced by CoordConv.

and Fig. 4, we gather that CoordConv model helps regularizing
the network training (for the SegTHOR dataset) and learns
faster (for the ACDC dataset). CoordConv layers allow more
stable as well as faster convergence evading performance
dropout realized by the “no CoordConv”” model.

Computational complexity: Regarding the computational
overhead induced by using CoordConv, it can be quantified as
follows. Let us denote by c;,, the number of input channels and
by ¢yt the number of output channels of a standard convolu-
tional layer, and by k the square kernel size. A convolutional
layer has CinCoutk? weights. If we denote by d the number
of dimensions taken into account into the CoordConv layer
(in our case d = 2), a convolutional CoordConv layer has
(Cin + d)courk? weights, the additional computational cost is
thus reduced. Note that we did not count the bias weights since
their number are unchanged by CoordConv.

V. CONCLUSION AND PERSPECTIVES

In this paper, we investigated the role of CoordConv on
model performance and convergence for organ segmentation
in anatomical image. Our results show that CoordConv layers
may have an effect on model convergence at almost no
additional computational cost, consistently as in [5]. Future
investigations include exploring the network weights with
sensitivity maps, so as to gain some insight into what is learnt
at the coordinates level and adding other layers in CoordConv,
such as the “r” layer based on polar coordinates as advocated
in [5].
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