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When Spectral Domain Meets Spatial Domain in Graph Neural Networks

Convolutional Graph Neural Networks (Con-vGNNs) are designed either in the spectral domain or in the spatial domain. In this paper, we provide a theoretical framework to analyze these neural networks, by deriving some equivalence of the graph convolution processes, regardless if they are designed in the spatial or the spectral domain. We demonstrate the relevance of the proposed framework by providing a spectral analysis of the most popular ConvGNNs (ChebNet, CayleyNet, GCN and Graph Attention Networks), which allows to explain their performance and shows their limits.

Introduction

Deep Learning with Convolutional Neural Networks (CNNs) and Recurrent Neural Networks has been having a significant impact in many machine learning applications for signal and image processing, such as image recognition [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and speech analysis [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF]. These successes have mostly been achieved on sequences or images, i.e., on data defined on grid structures that allow to carry out linear algebra operations in Euclidean spaces. However, there are many domains where data cannot be trivially encoded into an Euclidean domain, but can be naturally represented as graphs, such as with social networks, molecules, knowledge graph. For this purpose, Graph Neural Networks (GNNs) have been recently proposed in the literature [START_REF] Scarselli | The graph neural network model[END_REF][START_REF] Gilmer | Neural message passing from quantum chemistry[END_REF][START_REF] Bronstein | Geometric deep learning: Going beyond euclidean data[END_REF]Wu et al., 2019b). GNNs are Neural Networks that rely on the computation of hidden representations of nodes using information carried by the whole graph.

Convolutional GNNs (ConvGNNs) aim to mimic the simple and efficient solution provided by CNNs to extract features through a weight-sharing strategy along the presented data.
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In the literature, two strategies have been investigated to design filter kernels, either in the spectral or in the spatial domains.

Spectral-based convolution filters are defined using a graph signal processing point of view. However, despite the solid mathematical foundations borrowed from the signal processing literature, such approaches suffer from (i) the large computational burden induced by the forward/inverse graph Fourier transform, (ii) being spatially non-localized and (iii) the transferability problem, i.e., filters designed using a given graph cannot be applied on other graphs. To alleviate these issues, some approaches based on parameterization have been proposed, using B-spline [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF], Chebyshev polynomials [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF] and Cayley polynomials [START_REF] Levie | Graph convolutional neural networks with complex rational spectral filters[END_REF]. The second strategy is the spatial-based convolution, which aggregates nodes neighborhood information, in the same spirit as the conventional Euclidean convolution (e.g. 2D convolution in CNNs). Such convolutions have been very attractive due to their less computational complexity, their localized property and their transferability. However, their spectral behavior is not taken into account and they are generally poor on creating various frequency component signal on the output profile.

Spectral and spatial approaches are generally studied separately (Wu et al., 2019b;[START_REF] Chami | Machine learning on graphs: A model and comprehensive taxonomy[END_REF]. However, Message Passing Neural Networks is the first and, to the best of our knowledge, unique attempt to merge both in the same framework [START_REF] Gilmer | Neural message passing from quantum chemistry[END_REF]. They fitted some spectral approaches into their framework as a Laplacian based message passing schema. However their model was not able to generalize custom designed spectral filters as well as the effect of each convolution support in multi convolution case. The spatial-spectral connection is also mentioned in cornerstone researches in [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF][START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF][START_REF] Levie | Graph convolutional neural networks with complex rational spectral filters[END_REF] indirectly. Although their graph convolutions are spectral designed, thank to the Chebyshev and Cayley polynomials, they managed to write convolutions in spatial domain. Since the two way interchangeability (spectral-spatial) is missing in all these mentioned researches, they did not propose a spectral analysis of any graph convolutions. Researches attempted to show that a very limited number of the spatial convGNNs work as lowpass filtering [START_REF] Nt | Revisiting graph neural networks: All we have is low-pass filters[END_REF]Wu et al., 2019a). [START_REF] Nt | Revisiting graph neural networks: All we have is low-pass filters[END_REF] concluded that using adjacency induces a low-pass filtering. These researches proposed a spectral analysis on single spatial approach and did not generalize it for any graph convolution.

In this paper, we provide connections between spectral and spatial domains for ConvGNNs. The main contribution of this paper is a theoretical framework that demonstrates the equivalence of convolution processes, regardless if they are designed in the spatial or the spectral domain. By investigating this proposed framework, we demonstrate its relevance by providing a spectral analysis of existing graph convolutions for four well-known ConvGNNs, known as GCN [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF], ChebNet [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF], CayleyNet [START_REF] Levie | Graph convolutional neural networks with complex rational spectral filters[END_REF] and Graph Attention Networks (GAT) [START_REF] Veličković | Graph attention networks[END_REF].

Connecting Spatial and Spectral Domains

Spectral ConvGNNs rely on the spectral graph theory. For a given graph, let U be the eigenvectors matrix of its graph Laplacian L, and λ the vector of its eigenvalues. A graph convolution layer in spectral domain can be written as a sum of filtered signals followed by an activation function σ (e.g. RELU) as in [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF], namely

H (l+1) j = σ f l i=1 U diag(F i,j,l )U H (l) i , (1) 
for all j ∈ {1, . . . , f l+1 }, where H (l) j is the j-th feature vector of the l-th layer, and F i,j,l is the trainable weight vector. This formulation is intractable since it requires computing the graph Fourier transform and its inverse, by matrix multiplication of U and U T . Another drawback is the filter non-transferability in multi-graph learning problems. To overcome these issues, it is often re-parameterized as

F i,j,l = B W (l,1) i,j , . . . , W (l,S) i,j , (2) 
where B ∈ R n×S is the parameterization matrix, n is number of nodes in the given graph, S is the desired number of convolution kernels and W (l,s) is the trainable matrix with index s = 1..S. Each column in B is designed as a function of eigenvalues, i.e., B i,j = F j (λ i ), such as with B-spline [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF] or polynomial [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF].

The following theorem is the main theoretical contribution of the paper.

Theorem 1. Spectral ConvGNN parameterized with fixed frequency profiles matrix B of entries B i,j = F j (λ i ), defined as

H (l+1) j = σ f l i=1 U diag B W (l,1) i,j , . . . , W (l,S) i,j U H (l) i , (3) 
is a particular case of spatial ConvGNN, defined as

H (l+1) = σ s C (s) H (l) W (l,s) , (4) 
with the convolution kernel set to

C (s) = U diag(F s (λ))U . (5) 
Proof. First, let us expand the matrix B and rewrite it as the sum of its columns, denoted F 1 (λ), . . . , F S (λ) ∈ R n :

H (l+1) j = σ f l i=1 U diag S s=1 W (l,s) i,j F s (λ) U H (l) i
.

(6) We distribute U and U over the inner summation, and then take out the scalars W (l,s) i,j of the diag operator:

H (l+1) j = σ S s=1 f l i=1 W (l,s) i,j U diag(F s (λ))U H (l) i . (7)
Let us define a convolution operator C (s) ∈ R n×n as:

C (s) = U diag(F s (λ))U . (8) 
Using ( 7) and ( 8), we have thus:

H (l+1) j = σ f l i=1 S s=1 W (l,s) i,j C (s) H (l) i . (9) 
Then, each term of the sum over s corresponds to a matrix H (l+1) ∈ R n×f l+1 , with

H (l+1) = σ S s=1 C (s) H (l) W (l,s) , (10) 
where

H (l) = [H (l) 1 , . . . , H (l) 
f l ]. Therefore, (3) corresponds to (4) with C (s) defined as (5).

Corollary 1.1. The frequency profile of any given graph convolution kernel C (s) can be defined in spectral domain by the vector where diag -1 returns the diagonal of given matrix as a vector.

F s (λ) = diag -1 (U C (s) U ). (11) 
Proof. By using (5) from Theorem 1, we can obtain a spatial convolution kernel C (s) whose frequency profile is F s (λ).

Since the eigenvector matrix is orthonormal (i.e., U -1 = U ), we can extract F s (λ), which yields (11).

We denote the matrix F s = U C (s) U as the full frequency profile of the convolution kernel C (s) , and F s (λ) = diag(F s ) as the standard frequency profile of the convolution kernel. The full frequency profile includes all eigenvector-to-eigenvector pairs contributions. Standard frequency profile just includes each eigenvector's selfcontribution. 

Spectral Analysis of Graph Convolutions

To show the frequency profiles of some well-known graph convolutions, we used a 1D signal encoded as a regular circular line graph with 1001 nodes and the Cora and Citeseer reference datasets, which consist of one single graph with respectively 2708 and 3327 nodes [START_REF] Yang | Revisiting semi-supervised learning with graph embeddings[END_REF].

Basically, each node of these graphs is labeled by a vector, and edges are unlabeled and undirected.

ChebNet: The first two Chebyshev kernels are C (1) = I and C (2) = 2L/λ max -I and the remaining ones are defined by [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF], where I refers identity matrix. Corollary 1.1 gives their frequency profiles. As shown in Appendix A, the first two kernel frequency profiles of ChebNet are F 1 (λ) = 1 and F 2 (λ) = 2λ/λ max -1, where 1 is the vector of ones. Since λ max = 2 for all three graphs, we get F 2 (λ) = λ-1. The third one and following kernel frequency profiles can also be computed using

C (k) = 2C (2) C (k-1) -C (k-2) (
F k (λ) = 2F 2 (λ)F k-1 (λ) - F k-2 (λ), leading to F 3 (λ) = 2λ 2 -4λ + 1
for the third kernel. The resulting 5 frequency profiles are shown in Figure 1 (in absolute value). Since the full frequency profiles consist of zeros outside the diagonal, they are not illustrated.

Analyzing these frequency profiles, one can argue that the convolutions mostly cover the spectrum. However, none of the kernels focuses on some certain parts of the spectrum.

As an example, the second kernel is roughly a band-stop filter, while the third one passes very high, very low and middle bands, but stops almost first and third quarter of the spectrum. Therefore, if the relation between input-output pairs can be figured out by just a low-pass, high-pass or some specific band-pass filter, a high number of convolution kernels is needed. However, only 2 or 3 kernels are generally used in the literature [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF].

CayleyNet: In [START_REF] Levie | Graph convolutional neural networks with complex rational spectral filters[END_REF], CayleyNet is parameterized with F i,j,l = [g i,j,l (λ 1 , h), ..., g i,j,l (λ n , h)] , where h is a scale parameter to be learned, λ n is the n-th eigenvalue, and g is a spectral filter function defined as

g(λ, h) = c 0 + 2Re r k=1 c k hλ -i hλ + i k , ( 12 
)
where i 2 = -1, Re(•) is the real part, c 0 is a real trainable coefficient, and c k are the complex trainable coefficients. As proven in Appendix B, CayleyNet can be defined through the frequency profile matrix B to be used in (3). Using this representation, CayletNet can be seen as multi-kernel convolutions with real-valued trainable coefficients. According to this analysis, CayleyNet uses 2r + 1 graph convolution kernels, with r being the number of complex coefficients [START_REF] Levie | Graph convolutional neural networks with complex rational spectral filters[END_REF]. The first 7 kernel's frequency profiles are illustrated in Figure 2. The scale parameter h affects the x-axis scaling but does not change the global shape. Learning the scaling of eigenvalues may seem advantageous. However, it induces extra computational cost. In addition, similarly to 

C = D -1/2 A D -1/2 , ( 13 
)
where D i,i = j A i,j and A = (A + I) with A being the the adjacency matrix. The theoretical analysis of frequency profiles of GCN convolution is carried out in Appendix C. It shows that GCN frequency profile can be approximated according to F (λ) ≈ 1 -λd/(d + 1), where d is the average node degree. Theoretically, if all nodes degree are different, standard frequency profile will not be smooth and will include some perturbations. In addition, full frequency profile will be composed of non-zero components.

The spectral representation of GCN's convolution matrix can be back-calculated using Corollary 1.1. This result leads to the frequency profiles illustrated in Figure 3 for the three different graphs. The three standard frequency profiles have almost the same low-pass filter shape corresponding to a function composed of a decreasing part on the three first quarters of the eigenvalues range, followed by an increasing part on the remaining range. This observation is coherent with the theoretical analysis in Appendix C.

Since GCN frequency profile does not cover the whole spectrum, such an approach is not able to learn relations that can be represented by high-pass or band-pass filtering.

Hence, even though it gives very good results on a single graph node classification problem in [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF], it may fail for problems where discriminant information lies in particular frequency bands.

GAT: GAT [START_REF] Veličković | Graph attention networks[END_REF] uses multi-attention weights (denoted as trainable convolution kernels), with

C (l,s) i,j = softmax j σ(a[WH (l) i , WH (l) j ]) , (14) 
where two linear transformations are considered by elements of general trainable parameter set W (l,s) = {a, W} in (4), with a being a weight vector, and softmax j is the normalized exponential function that uses all neighbors of i-th node to normalize edge of i-th to j-th node.

Since GAT relies on trainable convolutions kernels and differs for each layer, frequency profiles cannot be directly computed similarly to GCN or ChebNet. Thus, we perform simulations and evaluate the potential kernels of attention mechanism for given graphs in first layer. Hence, we show the frequency profiles of those simulated potential kernels.

To show the potential output of GATs on the Cora graph (1433 features for each node), we produce 250 random pairs of W ∈ R 1433×8 and a ∈ R 16×1 , corresponding to the first layer trained by GATs. The σ function in ( 14) is a LeakyReLU activation with a 0.2 negative slope as in [START_REF] Veličković | Graph attention networks[END_REF]. The mean and standard deviation of the frequency profiles for these simulated GAT kernels are shown in Figure 4. As one can see, the mean standard frequency profile has a similar shape as those of GCN (Figure 3). However, variations on the frequency profile induce more variations on output signal when compared to GCN. The full frequency profile is not symmetric, because these convolution kernels are not symmetric. However, the variation on frequency profile might not be sufficient in problems that need some specific band-pass filters.

Conclusion

The spectral analysis showed that most influential graph convolutions GAT and GCN operate as low-pass filters. Interestingly, while being restricted to low-pass filters, they still obtain state-of-the-art performance on particular node classification problems such as Cora and Citeseer [START_REF] Yang | Revisiting semi-supervised learning with graph embeddings[END_REF]. These results on these particular problems are induced by the nature of the graphs to be processed. Indeed, citation network problems are inherently low-pass filtering problems, similarly to image segmentation problems, which are efficiently tackled by low-pass filtering. It is worth noting that, if we use enough convolution kernels, the frequency responses of ChebNet and CayleyNet cover nearly all frequency profiles. However, these frequency responses are not specific to special bands of frequency. It means that they can act as high-pass filters, but not as Gabor-like special band-pass filters.

In this appendix, we provide the expressions of the full and standard frequency profiles of the Chebyshev convolution kernels.

Theorem A.1. The frequency profile of the first Chebyshev convolution kernel for any undirected arbitrary graph defined by C (1) = I can be defined by

F 1 (λ) = 1, ( 15 
)
where 1 denotes the vector of ones of appropriate size.

Proof. When the identity matrix is used as convolution kernel, it just directly transmits the inputs to the outputs without any modification. This process is called all-pass filter. Mathematically, we can calculate the full frequency profile for kernel I by using Corollary 1.1, namely

F 1 = U IU = U U = I, (16) 
since the eigenvectors are orthonormal. Therefore, we can parameterize the diagonal of the full frequency profile by λ and reach the standard frequency profile as follows:

F 1 (λ) = diag(I) = 1. ( 17 
)
Theorem A.2. The frequency profile of the second Chebyshev convolution kernel for any undirected arbitrary graph given by C (2) = 2L/λ max -I can be defined by

F 2 (λ) = 2λ λ max -1. ( 18 
)
Proof. We can compute the C (2) kernel full frequency profile using Corollary 1.1:

F 2 = U 2 λ max L -I U. ( 19 
)
Since U IU = I, (19) can be rearranged as

F 2 = 2 λ max U LU -I. ( 20 
)
Since λ = [λ 1 , . . . , λ n ] are the eigenvalues of the graph Laplacian L, those must conform to the following condition:

LU = U diag(λ); (21) U LU = diag(λ). ( 22 
)
Replacing ( 22) into (20), we get

F 2 = 2 λ max diag(λ) -I. ( 23 
)
This full frequency profile consists of two parts, a diagonal matrix and the negative identity matrix. Therefore, we can parameterize the full frequency matrix diagonal to show the standard frequency profile as follows:

F 2 (λ) = diag(F 2 ) = 2λ λ max -1. (24) 
Theorem A.3. The frequency profile of third and followings Chebyshev convolution kernels for any undirected arbitrary graph can be defined by

F k = 2F 2 F k-1 -F k-2 , (25) 
and their standard frequency profiles by

F k (λ) = 2F 2 (λ)F k-1 (λ) -F k-2 (λ). (26) 
Proof. Given the third and following Chebyshev kernels defined by

C (k) = 2C (2) C (k-1) -C (k-2
) and using Corollary 1.1, the corresponding frequency profile is

F k = U 2C (2) C (k-1) -C (k-2) U. (27) 
By expanding (27), we get

F k = 2U C (2) C (k-1) U -U C (k-2) U. (28) 
Since U U = I, we can insert the product U U into (28). Thus, we have

F k = 2U C (2) U U C (k-1) U -U C (k-2) U (29) 
F k = 2 U C (2) U U C (k-1) U -U C (k-2) U. (30) 
Since F k = U C (k ) U for any k , it follows that (30) and ( 25) are identical.

Hence F 1 and F 2 are diagonal matrices, and the rest of the kernels frequency profiles become diagonal matrices in (25). Therefore, we can write the corresponding standard frequency profiles of third and followings Chebyshev convolution kernels as follows:

F k (λ) = 2F 2 (λ)F k-1 (λ) -F k-2 (λ). (31) 

B. Theoretical Analysis of CayleyNet Frequency Profile

CayleyNet uses the weight vector parametrization by F i,j,l = [g i,j,l (λ 1 , h), ..., g i,j,l (λ n , h)] , where the function g(•, •) is defined in [START_REF] Levie | Graph convolutional neural networks with complex rational spectral filters[END_REF] by

g(λ, h) = c 0 + 2Re r k=1 c k hλ -i hλ + i k , (32) 
where i 2 = -1, Re(•) is the function that returns the real part of a given complex number, c 0 is a trainable real coefficient, and c 1 , . . . , c r are complex trainable coefficients. We can write hλ-i in Euler form by √ h 2 λ 2 + 1.e i atan2(-1,hλ) and for hλ + i by 1,hλ) . By this substitution, (32) becomes g(λ, h) = c 0 +2Re r k=1 c k e ik(atan2(-1,hλ)-atan2(1,hλ)) .

√ h 2 λ 2 + 1.e i atan2(
(33) where atan2(y, x) is the inverse tangent function, which finds the angle (in range of [-π, π]) of a point given its y and x coordinates. For further simplification, let us introduce the θ(•) function defined by

θ(x) = atan2(-1, x) -atan2(1, x). (34) 
Since the c k s are complex numbers, we can write them as a sum of real and imaginary parts, c k = a k /2 + ib k /2 (the scale factor 2 is added for convenience). Thus, (33) can be rewritten as follows:

g(λ, h) = c 0 + Re r k=1 (a k + ib k )e ikθ(hλ) . ( 35 
)
We can replace e ikθ(hλ) with its polar coordinate equivalence form cos(kθ(hλ)) + i sin(kθ(hλ)). (37) The s-th column vector of matrix B, denotes B s , must fulfill the following conditions:

B s = F s (λ) =    1 if s = 1 cos( s 2 θ(hλ)) if s ∈ {2, 4, . . . , 2r} -sin( s-1 2 θ(hλ)) if s ∈ {3, 5, . . . , 2r + 1} (38)
We can see CayleyNet as a spectral graph convolution that uses 2r + 1 convolution kernels. The first kernel is an all-pass filter, and the frequency profiles of remaining 2r kernels (F s (λ)) are created using sine and cosine functions, with a parameter h used to scale the eigenvalues in (38). Considering (5) in Theorem 1, we can write CayleyNet's convolutions (C (s) ) in spatial domain. CayleyNet includes the tuning of this scaling parameter in the training pipeline. Note that because of the function definition in (34), θ(hλ) is not linear in λ. Therefore, F s cannot be a perfect sinusoidal in λs.

C. Theoretical Analysis of GCN Frequency Profile

In this appendix, we study the GCN and its convolution kernel. We start by deriving the expression of its frequency profile.

Theorem C.1. The frequency profile of GCN convolution kernel is defined by

C GCN = D -1/2 A D -1/2 , ( 39 
)
and can be written as

F GCN (λ) = 1 - p p + 1 λ, ( 40 
)
where λ is the eigenvalues of the normalized graph Laplacian and the given graph is an undirected regular graph whose node degrees are all equal to p.

Proof. Since D i,i = j A i,j and A = (A + I), we can rewrite (39) as:

C GCN = (D + I) -1/2 (A + I)(D + I) -1/2 . ( 41 
)
Under the assumption that all node degrees are equal to p, we can write the diagonal degree matrix by D = pI. Then, (41) can be rewritten as

C GCN = ((p + 1)I) -1/2 (A + I)((p + 1)I) -1/2 , ( 42 
)
which is equivalent to

C GCN = A + I p + 1 . (43) 
Using Corollary 1.1, we can express the frequency profile of C GCN in matrix form by

F GCN = 1 p + 1 U AU + 1 p + 1 I. (44) 
Since λ = [λ 1 , . . . , λ n ] are the eigenvalues of the normalized graph Laplacian L = I -D -1/2 AD -1/2 , they must conform to the following condition:

I -D -1/2 AD -1/2 U = U diag(λ). (45) 
According to D = pI, it conforms to D -1/2 AD -1/2 = A/p. Thus, (45) can be written as

U - AU p = U diag(λ). ( 46 
)
Then AU is expressed as

AU = pU -pU diag(λ) (47) 
Replacing AU in (44), we obtain

F GCN = 1 p + 1 U (pU -pU diag(λ)) + 1 p + 1 I. (48) 
Since U U = I, then we have

F GCN = pI -p diag(λ) + I p + 1 . ( 49 
)
This expression can be simplified to

F GCN = I - p p + 1 diag(λ), (50) 
which is equal to the matrix form defined in (40) since

F GCN (λ) = diag(F GCN ).
This demonstration shows that the GCN frequency profile acts as a low-pass filter. When the given graph is a circular undirected graph, all node degrees are equal to p = 2, leading to a frequency profile defined by 1 -2λ/3. Since the normalized graph Laplacian eigenvalues are in the range [0, 2], the filter magnitude linearly decreases until the third quarter of the spectrum (cut-off frequency) where it reaches zero. Then it linearly increases until the end of the spectrum. This explains the shape of the frequency profile of GCN convolutions for 1D regular graph observed in Figure 3.

However, this conclusion cannot explain the perturbations on the GCN frequency profile. To analyse this point, we relax the assumption D = pI and rewrite (41) as

C GCN = (D + I) -1 + (D + I) -1/2 A(D + I) -1/2 . ( 51 
)
We can see that the GCN kernel consists of two parts, C GCN = c 1 + c 2 , where first part is given by c 1 = (D + I) -1 and the second one is c 2 = (D+I) -1/2 A(D+I) -1/2 .

For the second part (c 2 ), we can write it using the elementwise multiplication operator (Hadamard multiplication)

c 2 = A 1/(d + 1) • 1/(d + 1) , ( 52 
)
where d is the column degree vector d = diag(D) and the division and square-root are also element-wise (Hadamard) operations. With the same notation, we can rewrite the Chebyshev second kernel, assuming that λ max = 2,

C (2) = -A 1/d • 1/d . ( 53 
)
The two expressions ( 52) and ( 53) show that negative c 2 is an approximation of the second Chebyshev kernel if vector d consists of same values, as it was assumed in Theorem C.1. When the vector d is composed of different values, the two matrices 1/d. 1/d and 1/(d + 1). 1/(d + 1) are not proportional for each coordinate (i.e., entry). To obtain c 2 from C (2) , we need to use different coefficients for each coordinate of the kernel. If the difference between node degrees is important, these coefficients have the strong influence, and c 2 may be very different from C (2) . Conversely, if the node degrees are quite uniform, these coefficients may be neglected. This phenomenon is the first cause of perturbation on GCN frequency profile.

The first part (c 1 ) of the GCN kernel in ( 51) is more interesting. Actually, it is a diagonal matrix that shows the contribution of each node in the convolution process. Instead of looking for some approximations of known frequency profiles such as those of Chebyshev kernels, we can write its frequency profile directly. Using Corollary 1.1, we can express the frequency profile of c 1 in matrix form by

F c1 = (U c 1 U ), ( 54 
)
where U is the eigenvectors matrix. By taking advantage of having a diagonal kernel c 1 , we can express each component of full frequency profile as

F c1 (i, j) = n k=1 1 1 + d k U i,k U j,k , ( 55 
)
where n is the number of nodes in the graph, d k is degree of the k-th node, U i,k is the k-th element of i-th eigenvector.

As eigenvectors U i and U j are orthogonal for i = j, their scalar product is null. However, in (55), the weighting coefficient 1 1+d k is not constant over all the dimensions of the eigenvectors. Therefore, there is no guarantee that F c1 (i, j) is null. This is another reason that explains that the GCN frequency profile has many non-zero elements outside of the diagonal.

Figure 1 .

 1 Figure 1. Standard frequency profiles of the first 5 Chebyshev convolution kernels.

Figure 2 .

 2 Figure 2. Standard frequency profiles of the first 7 CayleyNet convolution kernels.

Figure 4 .

 4 Figure 4. Frequency profiles of randomly generated 250 GAT convolutions using Cora graph. ChebNet, CayleyNet does not have any band specific convolutions, even when considering different scaling factors. GCN: GCN (Kipf & Welling, 2017) uses the single kernel

  When we remove the imaginary components because of Re(•) function, (35) becomes g(λ, h) = c 0 + r k=1 a k cos(kθ(hλ)) -b k sin(kθ(hλ)).(36)In this definition, there is no complex coefficient, but only real coefficients (c 0 , a k and b k for k = 1, . . . , r) to be tuned by training. By using the form in (36), we can parametrize CayleyNet by the parametrization matrix B ∈ R n×2r+1 by [g(λ 0 , h), . . . , g(λ n , h)] = B[c 0 , a 1 , b 1 , . . . , a r , b r ] .
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A. Theoretical Analysis of Chebyshev Kernels

Frequency Profile

In addition, it is also clear that the standard frequency profile of c 1 (diagonal of F c1 , i.e., F c1 (i, i) in (55)) is not smooth. Indeed, the diagonal elements of F c1 can be written as a weighted sum of squared eigenvalues elements, which again is weighted by 1/(1 + d k ). If the latter is constant for all k, the sum of squared eigenvectors elements has to be 1 since the eigenvectors have unit L2-norm. But in the general case where 1/(1 + d k ) are not necessarily constant over all the dimensions of eigenvectors, the diagonal of the matrix may have some perturbations. This point constitutes another explanation on the fact that the GCN standard frequency profile is not smooth.

On the other hand, under the assumption that the node degrees distribution is uniform, we can derive the following approximation:

We can then write an approximation of the GCN frequency profile as a function of the average node degree by replacing p with d in ( 47) and obtain the final approximation:

We can theoretically show the cut-off frequency where GCN kernel's frequency profile reach 0 by