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Abstract
This paper aims at revisiting Convolutional Graph
Neural Networks (ConvGNNs) by designing new
graph convolutions in spectral domain with a cus-
tom frequency profile while applying them in the
spatial domain. Within the proposed framework,
we propose two ConvGNNs methods: one using
a simple single-convolution kernel that operates
as a low-pass filter, and one operating multiple
convolution kernels called Depthwise Separable
Graph Convolution Network (DSGCN). The latter
is a generalization of the depthwise separable con-
volution framework for graph convolutional net-
works, which allows to decrease the total number
of trainable parameters while keeping the capacity
of the model unchanged. Our proposals are eval-
uated on both transductive and inductive graph
learning problems, demonstrating that DSGCN
outperforms the state-of-the-art methods.

1. Introduction
Convolutional Neural Networks (CNNs) had a significant
impact in machine learning for signal and image processing.
Most successes have been realized on data defined on grid
Euclidean spaces. However, there are many domains where
data cannot be encoded into an Euclidean space, but are
naturally represented as graphs, such as with molecules
and social networks. For this end, Graph Neural Networks
(GNNs) have been recently investigated (Gilmer et al., 2017;
Bronstein et al., 2017; Wu et al., 2019).

Convolutional GNNs (ConvGNNs) seek to extract features
through a weight-sharing strategy, in the same spirit as
CNNs. In a nutshell, the graph convolution process cor-
responds to the multiplication of a convolution kernel with
the corresponding node feature vectors, followed by a sum
or a mean rule. Two strategies have been proposed to design
filter kernels, either in the spectral or in the spatial domains.
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Spectral-based convolution relies on the spectral graph the-
ory. Despite the solid mathematical foundations borrowed
from the signal processing literature, such approaches suffer
from (i) the computational burden of the forward/inverse
graph Fourier transform, (ii) being spatially non-localized
and (iii) the transferability problem, i.e., filters designed us-
ing a given graph cannot be applied on other graphs. To alle-
viate these issues, several reparameterizations have been in-
troduced, such as with B-spline (Bruna et al., 2013), Cheby-
shev polynomials (Defferrard et al., 2016) and Cayley poly-
nomials (Levie et al., 2019). However, these parametriza-
tions cannot extract band specific information.

Spatial-based convolutions aggregate nodes neighborhood
information, in the same spirit as the conventional Euclidean
convolution (e.g. 2D convolution in CNNs). Such convo-
lutions are very attractive due to their low computational
complexity, their localized property and their transferability.
However, their spectral behavior is not the same for different
graphs and there is no guaranty to extract useful information
on different frequency bands.

In this paper, we propose to design graph convolution in
spectral domain with a custom frequency profile. We as-
sume the number of the convolutions and their frequency
profiles are hyperparameter of the model and are to be tuned
during validation process. Within the considered frame-
work, we propose two ConvGNN methods: A method with
a single convolution kernel that operates as a low-pass filter
(denoted LowPassConv), and a method based on multiple
convolution kernels called Depthwise Separable Graph Con-
volution Network (DSGCN). The latter allows to decrease
the total number of trainable parameters while keeping the
variability capacity of the model at a maximum level. The
concept of depthwise separable convolution was recently in-
troduced in computer vision problems to reduce the model’s
complexity (Chollet, 2017; Sandler et al., 2018), but has
not been investigated for ConvGNN so far. The proposed
methods LowPassConv and DSGCN are assessed on both
transductive and inductive learning problems (Yang et al.,
2016). In both settings, we show the relevance of the pro-
posed methods on well-known public benchmark datasets.
Especially, the success of the proposed methods on inductive
problems provides one of the first experimental evidence of
transferability of spectral filter coefficients from one graph
to another.
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2. A Primal on ConvGNNs
Spectral ConvGNNs are defined using a graph signal pro-
cessing. For a given graph, let U be the eigenvectors matrix
of its graph Laplacian L, and λ the vector of its eigenval-
ues. A graph convolution layer in spectral domain can be
written as a sum of filtered signals followed by an activation
function σ (e.g. RELU) as in (Bruna et al., 2013), namely

H
(l+1)
j = σ

( fl∑
i=1

U diag(Fi,j,l)U
>H

(l)
i

)
, (1)

for all j ∈ {1, . . . , fl+1}, where H(l)
j is the j-th feature

vector of the l-th layer, and Fi,j,l is the trainable weight
vector. This formulation is intractable since it requires com-
puting the graph Fourier transform and its inverse, by matrix
multiplication of U and UT . Another drawback is the filter
non-transferability in multi-graph learning problems. To
overcome these issues, it is often re-parameterized as

Fi,j,l = B
[
W

(l,1)
i,j , . . . ,W

(l,S)
i,j

]>
, (2)

where B ∈ Rn×S is the parameterization matrix, n is num-
ber of nodes in the given graph, S is the desired number of
convolution kernels and W (l,s) is the trainable matrix with
index s = 1..S. Each column in B is designed as a function
of eigenvalues, i.e., Bi,j = zj(λi), such as with B-spline
(Bruna et al., 2013), Chebyshev polynomials (Defferrard
et al., 2016) and Cayley polynomials (Levie et al., 2019).

Recent research (Balcilar et al., 2020) shows that spectral
ConvGNN in (1) parametrized by (2) can be written in
spatial ConvGNN as follows:

H(l+1) = σ
(∑

s

C(s)H(l)W (l,s)
)
, (3)

with the convolution kernel set to

C(s) = U diag(zs(λ))U>, (4)

where diag creates a diagonal matrix by vector.

3. Proposed Methods
Instead of designing the spatial convolution kernels C(s) of
(3) by functions of structural properties of graph (spatial
approach) or some predefined functions (B-spline, Polyno-
mial, Chebyshev, Cayley) of eigenvalues (existing spectral
approach), we propose to use S convolution kernels that
have custom-designed standard frequency profiles. These
designed frequency profiles are a function of eigenvalues,
such as [z1(λ), . . . ,zS(λ)]. In this proposal, the number
of kernels and their frequency profiles are hyperparame-
ters. Then, we can back-compute the corresponding spatial
convolution matrices using (4).

Figure 1. Detailed schematic of Depthwise Separable Graph Con-
volution Layer. Each node has a 2-length feature vector, indicated
as H(l)

1 and H
(l)
2 with values represented by colors. The following

layer has a 3-length feature vector, denoted H
(l+1)
1 , H(l+1)

2 and
H

(l+1)
3 . Here, two convolution kernels are used, denoted by C(1)

and C(2). Convoluted signals are multiplied by trainable weight
w and are summed to obtain interlayer signals. To obtain the 3
next layer features, a weighted sum is computed using the other
trainable parameter W .

3.1. LowPassConv

To evaluate the performance of convolutions designed in the
spectral domain independently from the architecture design,
a single hidden layer is used for all models, as in (Kipf &
Welling, 2017) for GCN. This choice, even sub-optimal,
enables a deep understanding of the convolution kernels.

For this purpose, we propose a single convolution kernel
that operates as a low-pass filter (denoted LowPassConv),
with a profile defined by

z1(λ) = (1− λ/λmax)
η, (5)

where η is a tunable parameter influencing the cut-off fre-
quency. The choice of using a low-pass filter comes from
the fact that state-of-the-art GNNs are sort of low-pass filters
and perform well on the well-known datasets. Therefore,
this model can be seen as similar to those from (Defferrard
et al., 2016; Kipf & Welling, 2017) but using a different
convolution kernel.

3.2. DSGCN

In order to figure out arbitrary relations of input-output pairs,
multiple convolution kernels have to be efficiently designed.
Indeed, to obtain problem-agnostic graph convolutions, the
sum of all designed convolutions’ frequency profiles has
to cover most of the possible spectrum and each kernel’s
frequency profile must focus on some certain ranges of fre-
quencies. However, increasing the number S of convolution
kernels increases the number of trainable parameters lin-
early. Hence, the total number of multi-support ConvGNN
is given by S

∑L
i=0 fifi+1 where L is the number of layers

and fi is the feature length of the i-th layer.
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To overcome this issue, we propose to use Depthwise Sep-
arable Graph Convolution Network (DSGCN). The Depth-
wise Separable Convolution framework was recently pro-
posed in computer vision problems to reduce the model
size and its complexity (Chollet, 2017; Sandler et al., 2018).
To the best of our knowledge, depthwise separable graph
convolution has never been proposed in the literature.

Instead of filtering all input features for each output feature,
DSGCN filters each input feature once. Then, filtered sig-
nals are merged into the desired number of output features
through 1×1 convolutions with different contribution coef-
ficients. Illustration of the proposed depthwise separable
graph convolution process is presented in Figure 1.

Mathematically, forward calculation of each layer of DS-
GCN is defined by:

H(l+1) = σ

(( S∑
s=1

w(s,l) � (C(s)H(l))
)
W (l)

)
, (6)

where � denotes the element-wise multiplication operator.
Note that there is only one trainable matrix W in each layer.
Other trainable variablesw(s,l) ∈ R1×fl encode feature con-
tributions for each convolution kernel and layer. The number
of trainable parameters for this case is

∑L
i=0 Sfi + fifi+1.

Previously, adding a new kernel increases the number of
parameters by

∑L
i=0 fifi+1. Using separable convolutions,

this number is only increased by
∑L
i=0 fi. This modifica-

tion is particularly interesting when the number of features
is high. On the other hand, the variability of the model
also decreases. If the data has a smaller number of features,
using this approach might not be optimal.

4. Experimental Evaluation
In this section, we describe the experiments carried out to
evaluate the proposed approach on both transductive and
inductive problems.

4.1. Transductive Learning Problem

Experiments on transductive problems were led on three
well-known datasets: Cora, Citeseer and PubMed (summary
in Table A1 in Appendix). These datasets are well-known
paper citation graphs. Each node corresponds to a paper.
If one paper cites another one, there is an unlabeled and
undirected edge between the corresponding nodes. Binary
features on the nodes indicate the presence of specific key-
words in the corresponding paper. The task is to attribute a
class to each node (i.e., paper) of the graph using for train-
ing the graph itself and a very limited number of labeled
nodes. We use predefined train, validation and test sets as
defined in (Yang et al., 2016) and follow the test procedure
of (Kipf & Welling, 2017; Veličković et al., 2018) for fair
comparisons.

Obtained results are given in Table 1 in terms of accuracy.
We compare the performance of the proposed LowPassConv
and DSGCN to state-of-the-art methods. We first can see
that our low-pass convolution kernel (LowPassConv) ob-
tains comparative performance with existing methods. It
is worth noting that the good results obtained by low-pass
approaches show that these three classification tasks are
mainly low-pass specific problems. Differences in accura-
cies may be significantly bigger for band-pass or high-pass
based problems. Moreover, SGCN outperforms state-of-
the-art methods thanks to the flexibility provided by the
different filters.

4.2. Inductive Learning Problem

Inductive Learning problems are common in chemoinfor-
matics and bioinformatics. In an inductive setting, a given
instance is represented by a single graph. Thus, models
are trained and tested on different graph sets. These experi-
ments are led on 3 datasets (see Table A4 in Appendix for a
summary): a multi-graph node classification dataset called
Protein-to-Protein Interaction (PPI) (Zitnik & Leskovec,
2017) and two graph classification datasets called PRO-
TEINS and ENZYMES (Kersting et al., 2016). The proto-
cols used for the evaluations are those defined in (Veličković
et al., 2018) for PPI and (Ying et al., 2018; Cangea et al.,
2018; Ting Chen, 2019; Xu et al., 2019) for PROTEINS and
ENZYMES datasets.

The PPI dataset is a multi-label node classification prob-
lem on multi-graphs. Each node has to be classified either
True or False for 121 different criteria. All the nodes are
described by a 50-length continuous feature vector. The
PPI dataset includes 24 graphs, with a train/validation/test
standard splitting.

The PROTEINS and ENZYMES datasets are graph clas-
sification datasets. There are 2 classes in PROTEINS and
6 classes in ENZYMES. In PROTEINS dataset, there are
three different types of nodes and one continuous feature.
But we do not use this continuous feature on nodes. In EN-
ZYMES dataset, there are 18 continuous node features and
three different kinds of node types. In the literature, some
methods use all provided continuous node features while
others use only node label. This is why ENZYMES results
are given using either all features (denoted by ENZYMES-
allfeat) or only node labels (denoted by ENZYMES-label).
Since there is no standard train, validation and test sets split
for PROTEINS and ENZYMES, the results are given us-
ing a 10-fold cross-validation (CV) strategy under a fixed
predefined epoch number. The CV only uses training and
validation set. Specifically, after obtaining 10 validation
curves corresponding to 10 folds, we first take average of
validation curves across the 10 folds and then select the sin-
gle epoch that achieved the maximum averaged validation
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Table 1. Comparison of methods. All results are accuracy percentage, while PPI results are micro-F1 metric percentage.

Cora Citeseer Pubmed PPI PROTEINS ENZYMES-label ENZYMES-allfeat

MLP (C(1) = I) 55.1 46.5 71.4 46.2± 0.56 74.03± 0.92 27.83± 2.51 76.11± 0.87

GraphSAGE (Hamilton et al., 2017) - - - 76.8 - - -

GCN (Kipf & Welling, 2017) 81.9± 0.5 70.7± 0.4 78.9± 0.3 59.2± 0.52 75.12± 0.82 51.33± 1.23 75.16± 0.65

GAT (Veličković et al., 2018) 83.0± 0.7 72.5± 0.7 79.0± 0.7 97.3± 0.20 - - -

ChebNet (Defferrard et al., 2016) 81.2 69.8 74.4 - 75.50± 0.40 58.00± 1.40 -

CayleyNet (Levie et al., 2019) 81.9± 0.7 - - - - -

DPGCNN (Monti et al., 2018) 83.3± 0.5 72.6± 0.8 - - - -

MoNet (Monti et al., 2017) 81.7± 0.5 - 78.8± 0.3 - - -

GaAN (Zhang et al., 2018) - - - 98.7± 0.20 - - -

Hierarchical (Cangea et al., 2018) - - - - 75.46 64.17 -

Diffpool (Ying et al., 2018) - - - - 76.30 62.50 66.66

Multigraph (Knyazev et al., 2018) - - - - 76.50± 0.40 61.70± 1.30 68.00± 0.83

GIN (Xu et al., 2019) - - - - 76.20± 0.86 - -

GFN (Ting Chen, 2019) - - - - 76.56± 0.30 60.23± 0.92 70.17± 0.86

LowPassConv (this paper) 0.827± 0.006 0.717± 0.005 0.794± 0.005 58.6± 0.47 74.81± 0.78 52.21± 1.06 74.84± 0.71

DSGCN (this paper) 84.2± 0.5 73.3± 0.8 81.9± 0.3 99.09± 0.03 77.28± 0.38 65.13± 0.65 78.39± 0.63

accuracy. This procedure is repeated 20 times with random
seeds and random division of dataset. Mean accuracy and
standard deviation are reported. This is the same protocol
than (Ying et al., 2018; Ting Chen, 2019; Xu et al., 2019;
Cangea et al., 2018).

Table 1 compares the results obtained by the models de-
scribed above and state-of-the-art methods. A compar-
ison with the same models but without graph informa-
tion, a Multi-Layer Perceptron (MLP) that corresponds to
C(1) = I is also provided to discuss if structural data in-
clude information or not. To the best of our knowledge,
such analysis is not provided in the literature for transduc-
tive setting problems. Finally, results obtained by the same
architecture with GCN kernel is also provided.

As one can see in Table 1, the proposed method DSGCN
obtains competitive results on inductive datasets. For PPI,
DSGCN clearly outperforms state-of-the-art methods with
the same protocol, reaching a micro-F1 percentage of 99.09
and an accuracy of 99.45%. For this dataset, MLP accuracy
is low since the percentage of micro-F1 is 46.2 (random
classifier’s micro-F1 being 39.6%). This means that the
problem includes significant structural information. Using
the GCN kernel, the accuracy increases to 0.592, but again
not comparable with state-of-the-art accuracy.

For the PROTEINS dataset, MLP (namely C(1) = I)
reaches an accuracy that is quite comparable with state-
of-the-art GNN methods, with 74.03% validation accuracy,
while the proposed DSGCN reaches 77.28%, which is the
best performance among GNNs. This means that PRO-
TEINS problem includes very few structural information to
be exploited by GNNs.

The ENZYMES dataset results allows to understand the im-
portance of continuous features and their processing through
different convolutions. As one can see in Table 1, there are
important differences of performance between the results
on ENZYMES-label and ENZYMES-allfeat. When node
labels are used alone, without features, MLP accuracy is
very poor and nearly acts as a random classifier. When
using all features, MLP outperforms GCN and even some
state-of-the-art methods. A first explanation is that methods
are generally optimized for just node label but not for con-
tinuous features. Another one is that the continuous features
already include information related to the graph structure
since they are experimentally measured. Hence, their values
are characteristic of the node when it is included in the given
graph. Since GCN is just a low-pass filter, it removes some
important information on higher frequency and decreases
the accuracy. Thanks to the multiple convolutions proposed
in this paper, DSGCN clearly outperforms other methods
on the ENZYMES dataset.

5. Conclusion
In this paper, we investigated a framework for designing
new graph convolutions in spectral domain with a custom
frequency profile, while applying them in the spatial domain.
Two ConvGNNs were proposed, LowPassConv as a single-
convolution low-pass kernel, and multiple-convolution DS-
GCN that decreases the number of trainable parameters
while keeping the model’s capacity unchanged. Extensive
experiments carried out on well-known datasets showed the
relevance of the proposed methods, with DSGCN outper-
forming the state-of-the-art methods.
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Supplementary Material

Spectral Designed Depthwise Separable Graph Neural Networks

Muhammet Balcilar, et al.

A. Application Details
TRANSDUCTIVE LEARNING PROBLEM

Dataset: Experiments on transductive problems were led
on the three datasets summarized in Table A1 where each
dataset consists of one single graph.

Models: To evaluate the performance of convolutions de-
signed in the spectral domain independently from the archi-
tecture design, a single hidden layer is used for all models,
as in (Kipf & Welling, 2017) for GCN. This choice, even
sub-optimal, enables a deep understanding of the convo-
lution kernels. For these evaluations, a set of convolution
kernels is experimented by

• A low-pass filter defined by z1(λ) = (1− λ/λmax)
η

where η impacts the cut-off frequency

• A high-pass filter defined by z2(λ) = λ/λmax

• Three band-pass filters defined by:

– z3(λ) = exp(−γ(0.25λmax − λ)2)

– z4(λ) = exp(−γ(0.5λmax − λ)2)

– z5(λ) = exp(−γ(0.75λmax − λ)2)

• An all-pass filter defined by z6(λ) = 1

We firstly consider a model composed of only z1. This
choice comes from the fact that state-of-the-art GNNs are
sort of low-pass filters and perform well on the datasets of
Table A1. Hence, it is interesting to evaluate our frame-
work with z1. For the experiments, the value of η are tuned
for each dataset, using the validation loss value and accu-
racy, yielding η = 5 for Cora and Citeseer, and η = 3 for
PubMed. Details concerning this tuning can be found in
Table A2. Since there is only one convolution kernel, depth-
wise separable convolutions are not necessary for this model.
Therefore, this model can be seen as similar to those from
(Defferrard et al., 2016; Kipf & Welling, 2017) but using a
different convolution kernel. This approach is denoted as
LowPassConv in Table 1.

Beyond this low-pass model, we also evaluate different
combinations of the zi(λ) through the depthwise separable
schema defined in Section 3. For experiments involving

Table A1. Summary of the transductive datasets used in our exper-
iments.

Cora Citeseer PubMed

# Nodes 2708 3327 19717
# Edges 5429 4732 44338
# Features 1433 3703 500
# Classes 7 6 3
# Training Nodes 140 120 60
# Validation Nodes 500 500 500
# Test Nodes 1000 1000 1000

Figure 2. Designed convolution’s frequency profiles for Cora
dataset.

{z3(λ),z4(λ),z5(λ)}, the bandwidth parameter γ was
tuned using train and validation sets. Table A3 details the
best models found on the validation set. As an example,
for Cora dataset, 4 kernels are used by a DSGCN with 160
neurons: z1(λ), z3(λ), z4(λ), z5(λ). As an illustration,
Figure 2 provides the standard frequency profiles of this de-
signed convolution on Cora dataset. The models of Table A3
are denoted as DSGCN in the following.

The training hyperparameters were tuned over a grid search
using a cross-validation procedure. Hyperparameter values
can be found in Table A6.

INDUCTIVE LEARNING PROBLEM

Dataset: Experiments on inductive problems were led
on the three datasets summarized in Table A4 where each
dataset consists of different number of graphs.
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Table A2. Minimum validation set loss value and maximum vali-
dation set accuracy over different low-pass filters.

Convolution Cora Citeseer PubMed
z1(λ) Loss Acc Loss Acc Loss Acc

(1− λ/λmax)
1 1.116 80.4 1.12 73.0 0.654 77.1

(1− λ/λmax)
3 0.745 81.8 1.02 72.6 0.572 81.1

(1− λ/λmax)
5 0.705 81.8 1.02 73.8 0.592 80.5

(1− λ/λmax)
10 0.752 81.2 1.01 72.2 - -

(1− λ/λmax)
20 0.792 80.8 1.01 71.2 - -

Table A3. Used kernels frequency profiles and architecture of mod-
els for each transductive dataset. DSG refers to Depthwise Separa-
ble Graph convolution layer, G to Graph convolution layer, D to
Dense layer

Dataset Architecture

z1(λ) = (1− λ/λmax)
5

z3(λ) = exp(−0.25(0.25λmax − λ)2)

Cora z4(λ) = exp(−0.25(0.5λmax − λ)2)

z5(λ) = exp(−0.25(0.75λmax − λ)2)

DSG160-DSG7

Citeseer z1(λ) = (1− λ/λmax)
5, z6(λ) = 1

DSG160-DSG6

Pubmed z1(λ) = (1− λ/λmax)
3, z2(λ) = λ/λmax

DSG16-DSG3

Models: For PPI, 7 depthwise graph convolution layers
compose the model. Each layer has 800 neurons, except the
output layer which has 121 neurons, each one classifying the
node either True or False. All layers use a ReLU activation
except the output layer, which is linear. No dropout or
regularization of the binary cross-entropy loss function is
used. All graph convolutions use three spectral designed
convolutions: a low-pass convolution given by z1(λ) =
exp(−λ/10), a high-pass one given by z2(λ) = λ/λmax

and an all-pass filter given by z3(λ) = 1.

For graph classification problems (PROTEINS and EN-
ZYMES), depthwise graph convolution layers are not
needed since these datasets have a reduced number of fea-
tures. Thus, it is tractable to use all multi-support graph
convolution layers instead of the depthwise schema. In these
cases, our models firstly consist of a series of graph convo-
lution layers. Then, a global pooling (i.e., graph readout)
is applied in order to aggregate extracted features at graph
level. For this pooling, we use a concatenation of mean
and max global pooling operator, as used in (Cangea et al.,
2018). Finally, a dense layer (except for ENZYMES-label)
is applied, before the output layer as in (Xu et al., 2019).

All details about the architecture and designed convolutions
can be found in Table A5. The hyperparameters used in best
models can be found on Table A6.

Table A4. Summary of inductive learning datasets used in this
paper.

PPI PROTEINS ENZYMES

Type Node Class. Graph Class. Graph Class.
# Graph 24 1113 600
# Avg.Nodes 2360.8 39.06 32.63
# Avg.Edges 33584.4 72.82 62.14
# Features 50 3 label 3 label + 18 cont.
# Classes 2 (121 criterias) 2 6
# Training 20 graphs 9-fold 9-fold
# Validation 2 graphs 1-fold 1-fold
# Test 2 graphs None None

Table A5. Kernels frequency profiles and model architecture for
each inductive dataset. meanmax refers to global mean and max
pooling layer.
Same legend as Table A3.

Dataset Architecture

z1(λ) = exp(−λ/10)
PPI z2(λ) = λ/λmax, z3(λ) = 1

DSG800-DSG800-DSG800-DSG800-
DSG800-DSG800-DSG121

PROTEINS z1(λ) = 1− λ/λmax, z2(λ) = λ/λmax

G200-G200-meanmax-D100-D2

z1(λ) = 1, z2(λ) = λs − 1

ENZYMES-label z3(λ) = 2λ2
s − 4λs + 1, λs = 2λ/λmax

G200-G200-G200-G200-meanmax-D6

z1(λ) = 1, z2(λ) = exp(−λ2)

ENZYMES-allfeat z3(λ) = exp(−(λ− 0.5λmax)
2)

z4(λ) = exp(−(λ− λmax)
2)

G200-G200-meanmax-D100-D6

HYPERPARAMETERS

In depthwise separable graph convolution layer, the initial-
ization of the trainable parameters w(s,l) affects the perfor-
mance. If designed convolutions are supposed to have equal
effect on the model, these parameters can be initialized ran-
domly. But, if one is supposed to have more effect on the
model, the important convolution kernel’s correspondence
weights can be initialized by 1, the rest of them initialized
by 0. In our model, we assumed the first kernel is always the
most important kernel. Thus, we initialized the first kernel’s
depthwise separable weights as w(1,l) = 1, and the rest of
the kernel’s depthwise separable weights w(s,l) = 0 when
s > 1. In this way, the model starts training as there is only
kernel, which is supposed to be the most important one.

The used hyperparameters in our experiments are presented
in Table A6. We applied softmax to the output of the
models and calculate cross entropy loss function for all
problems expect PPI dataset. Since PPI is two class classi-
fication problem and we coded output by one neuron, we
applied tansig to the output of the PPI model and used
binary cross entropy as loss function. In our models we
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Table A6. Used hyperparameters.
Hyperparameters Cora Citeseer PubMed PPI PROTEINS ENZYMES-label ENZYMES-allfeat

Hidden Activations ReLU ReLU ReLU ReLU ReLU ReLU ReLU
Output Activation Linear Linear ReLU Linear Linear Linear Linear
Hidden Biases False False False True False False False
Output Bias True True False True True True True
Input Dropout 0.75 0.75 0.25 0 0 0.1 0.1
Kernel Dropout 0.75 0.75 0 0 0 0.1 0.1
Weight Decay 3e-4 3e-4 5e-4 0 0 1e-4 1e-4
Weight Decay on DSG 3e-3 3e-3 5e-3 0 - - -
Learning Coeff 0.01 0.01 0.01 0.01 0.0005 0.001 0.001
Batch Size 1 1 1 1 333 180 180
Epoch 400 100 250 500 100 500 500

did not consider any regularization on the bias parameter,
but we applied the L2-loss to the trainable weights. In the
depthwise separable layer, there are two different kinds of
weights where additional one is depthwise weights. That is
why in Table A6, there is two different weight decays. We
always used ReLU activation on the hidden layers and the
Linear for output layers. The table also provides if bias val-
ues are used in the hidden and output layers. In our model,
we used two different types of dropout: the dropout applied
on the inputs of the layer as usually used in the literature,
and the dropout applied on the convolution kernel, which
was first used in (Veličković et al., 2018) according to the
best of our knowledge. Since Cora, Citeseer and PubMed
datasets consist of one single graph, batch size is 1 for these
problems. For the PPI dataset of only 24 graphs, we still
prefer to update the model for each training graph. But for
PROTEINS and ENZYMES datasets, we update the model
3 times in each epoch. Since in PROTEINS there are 1113
graphs and in each fold there are 1000 graphs in the train
set, we used a 333 batch size. As the same in ENZYMES
there is 540 graphs in each train fold, we used a 180 batch
size to update the model 3 times in a single epoch. We used
the Adam optimization and a fixed learning-coefficient in
all models. The used learning coefficient and the maximum
epoch number can be found in the Table A6.


