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Abstract. The semantic segmentation of omnidirectional urban driving
images is a research topic that has increasingly attracted the attention
of researchers. This paper presents a thorough comparative study of dif-
ferent neural network models trained on four different representations:
perspective, equirectangular, spherical and fisheye. We use in this study
real perspective images, and synthetic perspective, fisheye and equirect-
angular images, as well as a test set of real fisheye images. We evaluate the
performance of convolution on spherical images and perspective images.
The conclusions obtained by analyzing the results of this study are mul-
tiple and help understanding how different networks learn to deal with
omnidirectional distortions. Our main finding is that models trained on
omnidirectional images are robust against modality changes and are able
to learn a universal representation, giving good results in both perspec-
tive and omnidirectional images. The relevance of all results is examined
with an analysis of quantitative measures.

Keywords: Omnidirectional, Equirectangular, Fisheye, Deep Convolu-
tional Neural Networks, Semantic Segmentation

1 Introduction

Thanks to their large field-of-view, omnidirectional images are omnipresent in
intelligent vehicles and robot navigation systems. At the same time, deep learn-
ing for computer vision tasks has never been used as much as it is currently.
However, computer vision algorithms used in these systems and vehicles for
tasks like scene understanding are mostly developed and tested for perspective
conventional images. Hence the importance of optimizing these algorithms for
omnidirectional imaging. We can notice a recent growing interest in this re-
search subject. Several works treated the adaptation of existing algorithms or
the development of new ones for tasks like object recognition and semantic seg-
mentation on omnidirectional images, such as 360o and fisheye. In these two
tasks, deep learning using convolutional neural networks (CNNs) on perspective
images is the state-of-the-art solution. This is mainly thanks to the emergence
of large-scale datasets of perspective images with ground truth annotation, such
as CamVid [3] and Cityscapes [8]. This convenience is not available for omni-
directional images. Until now, there is no available dataset of omnidirectional
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real urban driving images with ground truth. To compensate this major issue,
several contributions on semantic segmentation of fisheye images work on data
augmentation by training the state-of-the-art CNNs on perspective images that
were deformed with a distortion simulating a fisheye effect [28, 11, 10]. On the
other hand, some researchers proposed to encode directly the omnidirectional
representation in the CNN [6]. More works proposed CNNs with deformable
kernels [9, 16], or used icosahedron spherical image representation and spherical
CNNs [12, 17].

More recently, researchers are considering the generation of synthetic im-
ages with realistic textures, thanks to simulators like CARLA simulator and
Grand Theft Auto V (GTA V), which is a very high-quality video game. The re-
cently published OmniScape Dataset [29] contains synthetic perspective, fisheye,
catadioptric and 360o urban driving images with ground truth rendered from a
virtual city and comes with pixel-level semantic annotation. In this work we take
advantage of this dataset and CamVid, as well as a test set of real fisheye im-
ages that we captured and manually annotated, in order to make a study of some
state-of-the-art semantic segmentation networks. This study consists in quanti-
tative comparative analyses using semantic segmentation task to take stock of
research progress and answer the following questions:

– Is training on omnidirectional representations sufficient to have good results?
Or do we need to adapt CNNs for omnidirectional images?

– Do networks learn a universal representation when trained on omnidirec-
tional images? And what are their performances on perspective images?

– Do spherical convolutions give better results than conventional convolutions?

In order to answer these questions, we conduct several experiments using a
set of OmniScape synthetic images with perspective, fisheye and equirectangular
projection of the same scene taken from both front sides of a motorcycle, images
from CamVid dataset and our test set of real annotated fisheye images. First,
we test several semantic segmentation networks on CamVid images and choose
the four networks that give the best results. We then make a cross-modality
experiment by retraining these networks separately on CamVid images, OmniS-
cape perspective, fisheye, and equirectangular images, to test them one by one
on all these representations, as well as on our test set of real fisheye images.
We also use a convolutional network for spherical images to perform semantic
segmentation using the same equirectangular images used in the previous experi-
ments. At the end, this allows us to conclude on the efficiency of state-of-the-art
neural networks dedicated to semantic segmentation of perspective images on
equirectangular and fisheye images, as well as the performance of these networks
when trained on omnidirectional images. And finally, the relevance of spherical
CNNs is compared to these networks. Since dataset of omnidirectional urban
driving images with ground truth were not available, studies made on semantic
segmentation of real fisheye images rarely present quantitative measures, hence
the interest to make quantitative evaluations in addition to qualitative ones.

The remainder of this paper is organized as follows. The next section pro-
vides different works made on semantic segmentation of omnidirectional images.
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Section 3 introduces the experimental approach followed to achieve this work.
Section 4 presents the results obtained and discusses them. Finally, Section 5
concludes the paper.

2 Related Work

Distinct works were carried out on semantic segmentation of omnidirectional
images to compensate for the lack of algorithms dedicated to this type of data.
In this section, we succinctly present the work done on fisheye images and on
spherical images with their different representations.

2.1 Fisheye Images

Fisheye cameras have a field of view that can reach 180 degrees. Since CNNs
for semantic segmentation are not designed for these images, and due to the
unavailability of fisheye datasets with ground truth researchers worked on defor-
mation of conventional images from Cityscapes or SYNTHIA [26], by applying
a distortion to simulate the fisheye effect [27, 28, 11, 10]. The method used is
described by rp = f tan(rf/f), which represents the mapping from the fish-
eye image point Pf = (xf , yf ) to the perspective image point Pp = (xp, yp),

where r2
p = (xp − upx)

2
+ (yp − upy)

2
is the square distance between the image

point Pp and the principal point Up = (upx, upy) in the perspective image, and

r2
f = (xf − ufx)

2
+ (yf − ufy)

2
denotes the square distance between the image

point Pf and the principal point Uf = (ufx, ufy) in the fisheye image. This
only depends on a focal length; thus, several focal lengths were set to simulate
different fisheye images with their corresponding annotations. Using the images
resulting from this transformation, Deng et al. [11] proposed OPP-net based on
an Overlapping Pyramid Pooling module, Saez et al. [27] proposed an adaptation
of Efficient Residual Factorized Network (ERFNet) [25] to fisheye road images
in order to achieve real-time semantic segmentation and tested it on real fisheye
images but only qualitative results were exposed. Deng et al. [10] used the same
method to achieve road scene semantic segmentation of fisheye surround-view
cameras using restricted deformable convolution. The networks were trained on
data from Cityscapes and SYNTHIA datasets and tested in real fisheye images.

2.2 Panoramic Images

Xu et al. [34] used synthetic images captured from SYNTHIA to create a dataset
of panoramic images by stitching images taken from different directions. Using
these images, the authors show that panoramic images improve segmentation
results. Yang et al. [35] propose a panoramic annular semantic segmentation
framework (PASS), such as the cited works on fisheye images authors made
a data augmentation method by adding distortion to perspective images for
the training set. And used normal CNNs after unfolding and partitioning the
panoramic images.
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2.3 Equirectangular Images

Equirectangular representation is the most popular projection for 360o images
thanks to the simple transformation from spherical coordinates into planar co-
ordinates. Classical CNNs designed for perspective images can be used for data
under the equirectangular form. But spherical input suffers from distortion in
polar regions. Different approaches were proposed to handle this issue. Monroy
et al. [22] proposed SalNet360 where omnidirectional images were mapped to
cubemap 6 faces projection and trained using normal CNNs to predict visual at-
tention. However, artefacts are created when recombining the cubemap faces to
omnidirectional image. Lai et al. [18] used semantic segmentation of equirectan-
gular images to convert panoramic videos to normal perspective images. However
for this task, highly accurate semantic segmentation was not required, in this
work frame-based fully convolutional network FCN [21] was used. Su et al. [30]
translated a planar CNN to process 360o images directly in the equirectangular
projection for object detection. And in this publication [31] the same author
proposed the kernel transformer network (KTN) to transfer convolution kernels
from perspective images to equirectangular projection of 360o images efficiently
for the same task. Tateno et al. [32] proposed a learning approach for equirect-
angular images using a distortion-aware deformable convolution filter for depth
estimation from a single image, this approach was also demonstrated on 360o

semantic segmentation.

2.4 Spherical representations

Because of distortions resulting from the equirectangular representation most
recent work on this topic choose to work on the spherical presentation. Cohen
et al. [7] developed spherical convolutions by replacing the translations in the
plane by rotations of the sphere. Other work took advantage of the most accu-
rate discretization of the sphere; the icosahedral spherical approximation. The
discretization of the sphere presented by a spherical mesh generated by subdi-
viding each face of a regular icosahedron into four equal triangles. Lee et al. [19]
proposed an orientation-dependent kernel method regarding triangle faces, this
method was demonstrated through classification, detection, and semantic seg-
mentation. Zhang et al. [39] also addressed semantic segmentation on omnidi-
rectional images using icosahedron spheres by proposing an orientation aware
CNN framework. Jiang et al. [17] proposed UGSCNN to train spherical data
mapped to an icosahedron mesh, by replacing conventional convolution kernels
with linear combinations of learnable weighted operators. The last two contribu-
tions are the state-of-the-art of omnidirectional images semantic segmentation
using spherical convolutions.

3 The Experimental Approach

To answer the questions addressed in the introduction, we carried out different
experiments. We choose to use four CNNs developed for perspective images as
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CamVid
perspective

OmniScape
perspective

OmniScape
equirectangular

OmniScape
fisheye

Real
fisheye

Fig. 1: Modalities used and corresponding semantic segmentation ground truth

well as UGSCNN which uses spherical convolutions. In the first experiment, we
did a selection to choose the networks we will use in this study. The second
experiment consists of a cross-modality experiment by training the four selected
networks on real CamVid perspective images and fisheye, equirectangular and
perspective OmniScape synthetic images. We tested the trained networks on all
these modalities and also on our test set of fisheye images. In the last experiment,
we trained UGSCNN on the same OmniScape equirectangular images used in the
second experiment and tested it on the same modality with different resolutions.
In all the experiments we use RGB images with 14 classes.

Table 1: Results of the networks selection (%)

Mean accuracies per-class
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FC-DenseNet56 91.8 60.3 46.4 96.7 90.5 75.8 63.3 58.5 41.3 97.0 97.9 90.5 88.3 73.6 89.1 76.4 55.1

FC-DenseNet67 92.3 54.4 47.7 96.8 92.2 78.9 67.5 62.7 54.4 96.9 98.3 88.6 87.7 73.9 89.9 77.1 60.8

FC-DenseNet103 92.2 62.0 49.4 96.7 91.7 78.5 65.4 57.2 46.3 97.4 98.2 90.2 88.4 72.7 89.7 77.3 55.0

MobileUNet [13] 87.6 48.9 37.0 93.6 87.1 73.4 53.2 33.6 15.0 96.5 96.8 83.2 83.0 62.6 80.1 66.4 34.6

PSPNet [40] 89.0 54.6 38.9 95.7 89.8 74.6 60.6 55.9 34.5 95.5 97.6 84.5 83.5 67.2 86.5 71.9 50.9

GCN [23] 90.7 56.2 42.1 96.3 90.5 71.5 52.2 53.6 40.5 96.0 97.9 89.7 86.0 66.0 83.6 74.1 49.4

FRRN 91.9 61.8 46.4 96.6 92.2 78.0 66.3 64.9 49.4 97.5 98.3 89.9 86.7 72.7 89.4 77.6 57.9

DeepLabV3 [4] 86.8 47.1 33.3 94.1 89.9 70.9 51.7 32.6 17.0 94.0 96.9 80.8 80.8 62.1 76.2 62.4 33.9

DeepLabV3+ [5] 89.3 53.2 39.7 95.1 89.5 72.6 53.8 45.4 33.0 94.4 97.8 86.6 87.1 64.2 84.0 68.5 45.5

RefineNet 91.2 59.3 42.9 96.0 92.5 75.5 60.6 57.0 39.8 97.7 98.1 89.1 87.4 71.0 86.3 74.5 51.9

AdapNet [33] 87.3 47.9 38.6 96.7 89.2 71.9 52.8 26.5 18.3 96.3 96.2 78.3 80.1 61.0 76.8 65.6 34.5

DenseASPP [36] 87.9 50.6 39.5 91.4 90.5 71.4 54.9 41.3 23.9 94.8 97.6 83.1 82.2 65.2 78.1 67.7 37.4

BiSeNet [38] 90.3 55.1 40.2 95.9 90.6 74.6 53.7 47.0 24.9 96.9 97.9 88.2 87.6 65.8 85.3 70.6 50.6

SegNet 92.0 61.8 50.1 96.2 92.1 78.5 66.5 59.3 46.3 97.5 98.0 89.5 88.0 74.3 89.0 76.6 57.0
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3.1 Networks selection

The goal of this experiment is to choose four networks we will use in the cross-
modality. To choose these networks we made a selection using CamVid Dataset
among 11 networks representing the state of the art on semantic segmentation
of perspective images. We trained and tested all the networks on same sets of
512x512 CamVid images. We used 700 images, 420 in the training set, 112 in the
validation set and the remaining 168 images in the test set. CamVid dataset offers
perspective images with per-pixel semantic segmentation of over 700 images. The
images are segmented into 32 object classes. We mapped similar classes into 14
to have the same classes present in OmniScape. Fig. 1 shows a CamVid image
with ground truth. The results of this first selection are presented in Table 1.
We can notice that all networks are quite similar in general. However, the four
networks which give the best Intersection over Union (IoU) score with good
average accuracy are Fully Convolutional DenseNet, Full-Resolution Residual
Network, SegNet, and RefineNet. For Fully Convolutional DenseNet network,
we chose to use just the architecture built from 103 convolutional layers for the
next experiment. In the following we present a brief overview on each of the four
chosen networks.

Fully Convolutional DenseNet [15] This network is an adaptation of
DenseNets for semantic segmentation. It is a U-Net architecture where the convo-
lutional layers are replaced with dense blocks. Each convolution layer is then di-
rectly connected to every other layer. Full-Resolution Residual Network [24]
This network combines two distinct processing streams. One stream undergoes
a sequence of pooling operations and is responsible for understanding large-scale
relationships of the elements in the image. The second stream carries feature
maps at the full image resolution, giving a precise adherence to boundaries. The
pooling operations in the first stream act like residual units for the second, and
carry high level information over the network. SegNet [1] This network con-
sists of an encoder-decoder layer followed by a pixel-wise classification layer.
The architecture of the encoder layer is identical to the VGG16 network. Each
encoder is one or more convolutional layers. This layer contains batch normal-
ization, a ReLU non-linearity, a non-overlapping maxpooling, and sub-sampling.
RefineNet [20] This network is considered as a generic multi-path refinement
network which uses long range residual connections to enable high resolution
prediction by exploiting all the information available in the down-sampling pro-
cess. Like this by using fine-grained features from earlier convolution, the deeper
layers that capture high level semantic features can be directly refined.

3.2 Cross-modality experiment

In this experiment we used 700 captures from OmniScape, 700 images from
CamVid and 15 images of our real fisheye images test set. The OmniScape
Dataset provides synthetic omnidirectional images namely, 360o equirectangu-
lar, fisheye and catadioptric stereo RGB images from the two front sides of a
motorcycle with semantic segmentation and depth map ground truth. It provides
also the tools to generate omnidirectional images using intrinsic parameters of
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Table 2: Image sets and networks used in the cross-modality
Training Sets Testing sets Networks

- CamVid Perspective images
- OmniScape Perspective images
- OmniScape Fisheye images
- OmniScape Equirectangular images

- CamVid Perspective images
- OmniScape Perspective images
- OmniScape Fisheye images
- OmniScape Equirectangular images
- Real Fisheye images

- FC-DenseNet103
- SegNet
- FRRN
- RefineNet

an omnidirectional camera and a 360o cubemap image. We exploit this tool to
generate omnidirectional images using the same intrinsic parameters of our cal-
ibrated fisheye camera. The images in OmniScape are annotated into 14 classes
automatically since it is synthetic data. For Equirectangular representation, we
crop the images to keep just 180 degrees which represents the front side, so
all modalities can be compared to each other. Fig. 1 shows OmniScape differ-
ent modalities used with semantic segmentation ground truth. Our test set
contains real fisheye images captured using the same disposition used in the
OmniScape dataset; Stereo fisheye cameras placed in the two front sides of a
motorcycle. We annotated 15 different images into 14 classes like the OmniS-
cape dataset, using the open source tool for annotation PixelAnnotationTool [2].
Fig. 1 shows an example of an image from this set with ground truth. We split
the 700 images of each modality like a standard cross validation problem into 3
sets: a training set of 420 images, a validation set of 112 images, and a test set
of 168 images. We use the four chosen networks to train on OmniScape images
using fisheye, perspective and 180o equirectangular images and also CamVid
images. Then we test all the trained networks on the three modalities of OmniS-
cape images, CamVid images and our test set of fisheye real images annotated
manually. This leads to 16 training processes and 20 test processes for each of
the four training sets. The class Void in CamVid represents far objects that are
undefined, and in OmniScape dataset, it represents the dark space surrounding
the fisheye image. In this experiment we drop this class and we do not take it
into account in the calculation of the scores because it does not represent an
information. In Table 2 are listed the training and testing sets along with the
networks used in the cross-modality.

3.3 Comparison with spherical CNNs

In this experiment, we trained UGSCNN on the same OmniScape equirectan-
gular images used in the second experiment. This time instead of cropping the
images we replaced the pixels representing the 180 degrees of the back side by
zero and treated it like a new class Void. This class is not evaluated for perfor-
mances. We performed this experiment in three resolutions 5, 7, and 8 as shown
in Fig. 2. Since the resolution of the images used is 512x1024 we settle for these
resolutions. We used in this experiment just RGB, without depth map since the
depth map was not used by the other networks. The network is trained with a
batch size of 16 for resolutions 5 and 7 and a batch size of 8 for resolution 8. We
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Level 0 Level 5 Level 7 Level 8

12 vertices
20 faces

10242 vertices
20480 faces

163842 vertices
327680 faces

655362 vertices
1310720 faces

[2 x 4 pixels] [64 x 128 pixels] [256 x 512 pixels] [512 x 1024 pixels]

Fig. 2: Icosahedral subdivision levels, the corresponding equirectangular pixel
resolutions and number of elements.

use like in [17] the weighted cross-entropy loss for training, and zero weight for
the dropped class Void. To display qualitative results, we unwrap the sphere us-
ing the UV mapping process. The equirectangular images are regenerated using
the following for any point P on the sphere:

u = 0.5 +
arctan2 (dz, dx)

2π
v = 0.5 − arcsin (dy)

π
(1)

where ˆ(u, v) are the coordinates in the equirectangular image in the range [0, 1]

and d̂ the unit vector from P to the sphere’s origin. Fig. 6 shows examples of
unwrapped equirectangular images from a sphere with different resolutions.

UGSCNN is an orientation-aware method. In this network, the convolu-
tion kernel is replaced by linear combinations of differential operators that are
weighted by learnable parameters using standard back-propagation. The opera-
tors are estimated on unstructured grids.

4 Results and Discussions

In this section, we present the results of the cross-modality experiment and the
comparison with spherical CNNs. We discuss and give quantitative results as
well as qualitative ones. We answer the questions addressed in the introduction
by analyzing the results given by networks trained on omnidirectional images
and those trained on perspective images. And finally, we make a comparison
between the combination network/training-set which gives the best results on
equirectangular images in the first experiment and UGSCC trained and tested
on the same data with different resolutions. Fig. 3 represents an overview of
results obtained in the cross-modality experiment using clustered column. It
resumes all the results obtained by 80 testing processes. As a first remark, we
can see that always best results are obtained when the modality does not change
between training and testing processes. And the four networks are very sensitive
to texture changes. We see that when the environment changes the performance
deteriorates drastically.
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FC-DenseNet103 SegNet FRRN RefineNet

(a) Acc. Trained on CamVid perspective (b) Acc. Trained on OmniScape perspective

(c) Acc. Trained on OmniScape equirectangular (d) Acc. Trained on OmniScape fisheye

(e) IoU Trained on CamVid perspective (f) IoU Trained on OmniScape perspective

(g) IoU Trained on OmniScape equirectangular (h) IoU Trained on OmniScape fisheye

(1) Camvid perspective, (2) OmniScape perspective, (3) OmniScape Equirectangular,
(4) OmniScape fisheye, (5) Real fisheye

Fig. 3: Per test set mean accuracies and IoU (%)
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RGB Ground
truth

FRRN Trained
on OmniScape
perspective

FRRN Trained
on OmniScape
equirectangular

FRRN Trained
on OmniScape

fisheye

FC-
DenseNet103
Trained on

CamVid
perspective

Fig. 4: Qualitative results on a real fisheye image using networks given best IoU
for each modality

4.1 Omnidirectional images

The four networks when trained on fisheye images or equirectangular images and
tested on the same modalities give a mean accuracy not less than 97.80% and a
mean IoU higher than 75.56% without exception. It shows clearly that networks
designed for perspective images when trained on omnidirectional images give
good results. This answers the first question in the introduction, we don’t need
to adapt networks for omnidirectional images. Just training them on omnidi-
rectional images is good enough to achieve results similar to those obtained by
training and testing on perspective images.

4.2 Real fisheye images

Results obtained for real fisheye images are unexpectedly very poor, the highest
obtained IoU being 17.77%. However, best results are reached when OmniScape
fisheye images were used in training. This can be explained by the fact that
in CamVid, textures match with the real fisheye images but the geometry does
not. And in OmniScape fisheye images it is the opposite, the geometry is similar,
since we use the same intrinsic parameters of our real fisheye camera, but tex-
tures are very different between OmniScape and real images. On the other hand,
results obtained when training and testing on OmniScape images all modalities
combined are better. We can conclude that both texture and geometry are im-
portant. But the geometry slightly outweighs the texture in this case. If real
fisheye images or more realistic synthetic fisheye images were used in training,
results could be much better. Fig. 4 shows qualitative results obtained by each
time the best network in each modality. It is worth noting that Accuracy and IoU
are computed without taking in account the surrounding black area in fisheye
images. We consider just the part which contains the information. FRRN with
OmniScape fisheye images gives the best results when testing on real fisheye
images. However, it is not the fastest in terms of computation time as shown in
Table 3. FC-DenseNet103 and FRRN when using CamVid perspective images
are fairly close to each other but FRRN is faster. In a real-time application,
FRRN is to be preferred in this case.
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Table 3: Average runtime of the
selected networks using NVIDIA
Quadro P3200

Network Runtime (ms)

SegNet 263.4

RefineNet 271.6

FRRN 349.6

FC-DenseNet103 795.2

Table 4: Average runtime of
UGSCNN and FC-DenseNet103
using NVIDIA Tesla V100 SXM2

Network Runtime (ms)

UGSCNN level 5 58.1

FC-DenseNet103 155.1

UGSCNN level 7 879.3

UGSCNN level 9 3565.1

Table 5: Networks with best mean IoU (%) in the cross-modality experiment
Testing

Perspective Equirectangular Fisheye

Training

Perspective FC-DenseNet103 82.08 FRRN 53.52 FRRN 43.85

Equirectangular FC-DenseNet103 61.20 FC-DenseNet103 83.11 RefineNet 61.76

Fisheye RefineNet 56.10 RefineNet 69.60 FC-DenseNet103 82.54

4.3 OmniScape images

In these images the only difference is the camera itself, the same scene is cap-
tured by three cameras respectively perspective, fisheye, and 360o equirectan-
gular. This configuration allows us to make a fair comparison between all these
modalities. When trained on perspective images all the four networks achieve
the best scores for perspective images, but when tested on omnidirectional im-
ages we lose 29.59% for equirectangular images and 38.69% for fisheye images
in mean IoU when we consider the best network each time. On the other hand,
we notice that networks trained on equirectangular images are quite robust for
both fisheye and perspective because we lose just 20.78% for fisheye and 20.88%
for perspective. Otherwise, networks trained on fisheye loose just 13.51% when
tested on equirectangular. This shows that networks, when trained on omnidi-
rectional images, are more robust and can learn a universal representation more
than when trained on perspective images. We can notice that when the testing
and training modalities are similar FC-DenseNet103 is slightly better than the
others. When the modalities change FRRN is better when training on perspec-
tive images and RefineNet is better when training on fisheye images. Due to space
limitation, we present just one case of qualitative results comparison, in Fig. 5
predicted equirectangular and perspective images when using RefineNet trained
on fisheye images and FC-DenseNet103 trained on perspective and equirectan-
gular are shown. Table 5 shows the best results for all the nine combinations.
We can see that RefineNet trained on fisheye images is quite robust when tested
on other modalities. There are small differences almost invisible especially for
classes with a low-class weight across the sets.
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RGB perspective Ground truth FC-DenseNet103
trained on perspective

RefineNet trained on
fisheye

RGB equirectangular Ground truth FC-DenseNet103
trained on

equirectangular

RefineNet trained on
fisheye

Fig. 5: Qualitative results of RefineNet trained on fisheye and tested on perspec-
tive and equirectangular

4.4 Spherical images

The motivation behind this experiment is to know if spherical convolution gives
better results than networks used in the second experiment when tested on
equirectangular images. We saw in the previous experiment that FC-DenseNet103
gives the best results when trained and tested on equirectangular. This is our
baseline. As explained before we used three resolutions. But the resolution which
is comparable to images we used in the previous experiment is level 8 because we
use 512x512 images, as shown in Fig. 2. We will focus especially on level 7 and
level 8 since results obtained using level 5 are not usable, this can be verified by
visualizing the images in Fig. 6. When mapping the equirectangular 512x1024
images in a sphere level 5, we lose a lot of data and we can see that the structure
of objects in the images is not conserved even if the scene looks similar. In Ta-
ble 6 mean accuracies are listed and in Table 7 mean IoU. FC-denseNet103 gives
better results in terms of mean accuracy and IoU, a big gap can be observed
between the two networks. This is due to the fact that UGSCNN predicts a lot
of false negatives. For example, the class Four-wheeled has the highest accuracy
but a very low IoU. This is because UGSCNN predicts four wheeled pixels quite
good in the images but it also predicts a lot of other classes like four wheeled. In
Fig. 6 qualitative results are presented, we can notice the presence of blue stains
(the blue color which represents four wheeled in the semantic segmentation) in
the UGSCNN level 8 predicted image which explains this difference between
accuracy and IoU, the same problem is present also for level 5. UGSCNN is
considered as one of state-of-the-art network for spherical CNNs but it is still
far behind networks that use normal convolution and is extremely slow in terms
of runtime. Table 4 shows the average runtime comparison. FC-DenseNet103 is
23 times faster than UGSCNN level 8.
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Fig. 6: Qualitative results for UGSCNN and FC-DenseNet103

4.5 Summary

To summarize all the experiments conducted in this work, we can say that se-
mantic segmentation networks made for perspective images give good results
and are more robust when trained on omnidirectional images. They are able
to learn a universal representation and achieve better results on all modalities
than if trained on perspective images. Finally, we made a comparison between
a network that uses spherical CNNs and a network with normal convolutions
using equirectangular images. Working on the sphere is very greedy in terms of
computation time and memory but does not necessarily give better results. Even
if we can consider that it is two different modalities but the input remains the
same; an equirectangular image.

5 Conclusion and Future Work

This paper takes stock of progress made on semantic segmentation of omnidi-
rectional images. We presented a comparative study of semantic segmentation
using equirectangular, fisheye, and perspective images, from real and synthetic
datasets. By comparing different networks of semantic segmentation, we proved
that networks developed for perspective images when trained on omnidirectional
images give good results and they become more robust against modality changes.
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Table 6: Mean accuracies of UGSCNN and FC-DenseNet103 (%)

Mean accuracies per-class
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FC-DenseNet103 98.9 99.4 96.2 39.1 50.4 31.7 42.1 90.8 99.8 95.7 86.7 99.6 74.4 81.4 29.5

UGSCNN level 5 72.0 96.9 87.4 49.7 40.1 11.7 38.3 90.6 97.0 90.9 88.7 98.5 87.7 84.1 46.9

UGSCNN level 7 78.4 96.8 92.7 51.9 54.1 22.6 52.7 95.2 98.0 92.5 91.7 98.4 91.6 91.5 67.3

UGSCNN level 8 79.5 97.1 94.7 57.0 50.7 26.2 56.4 96.2 98.0 95.7 92.2 98.5 93.0 90.7 67.1

Table 7: Mean IoU of UGSCNN and FC-DenseNet103 (%)

Mean IoU per-class
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FC-DenseNet103 72.3 98.9 91.6 32.6 44.1 27.0 38.4 87.9 99.5 90.9 76.6 99.3 67.5 72.8 27.4

UGSCNN level 5 41.3 96.4 20.1 31.4 1.6 7.6 22.8 73.6 95.3 67.1 15.1 61.0 2.7 63.0 20.5

UGSCNN level 7 43.7 94.5 16.6 37.6 0.6 0.3 7.3 77.9 97.5 79.0 36.6 15.0 57.7 82.3 9.3

UGSCNN level 8 42.9 96.6 45.7 35.3 0.7 7.1 15.2 78.6 97.7 80.0 10.6 17.5 6.1 86.0 23.4

We also made a comparison using equirectangular images with both normal
convolution and spherical. The experiment shows that normal convolution is
better. As we noticed that networks used are sensitive to textures and environ-
ment changes, one solution can be to use networks performing image to image
translation like pix2pix [14] to generate more realistic images using OmniScape
dataset since we lack datasets of real omnidirectional images with ground truth.
Recently, WoodScape dataset [37] of real fisheye images with pixel-wise ground
truth was published but not yet available. We can also explore data fusion meth-
ods in order to learn a better universal representation that can be robust against
modality and environment changes. Ideally, a network able to learn shapes and
geometry of objects regardless of texture and position on the omnidirectional
image would be more adequate for omnidirectional images.
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