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The OmniScape Dataset

Ahmed Rida Sekkat1, Yohan Dupuis2, Pascal Vasseur1 and Paul Honeine1.

Abstract— Despite the utility and benefits of omnidirectional
images in robotics and automotive applications, there are no
datasets of omnidirectional images available with semantic
segmentation, depth map, and dynamic properties. This is due
to the time cost and human effort required to annotate ground
truth images. This paper presents a framework for generating
omnidirectional images using images that are acquired from
a virtual environment. For this purpose, we demonstrate the
relevance of the proposed framework on two well-known sim-
ulators: CARLA Simulator, which is an open-source simulator
for autonomous driving research, and Grand Theft Auto V
(GTA V), which is a very high quality video game. We explain in
details the generated OmniScape dataset, which includes stereo
fisheye and catadioptric images acquired from the two front
sides of a motorcycle, including semantic segmentation, depth
map, intrinsic parameters of the cameras and the dynamic
parameters of the motorcycle. It is worth noting that the case
of two-wheeled vehicles is more challenging than cars due to
the specific dynamic of these vehicles.

I. INTRODUCTION

Perceiving and understanding the environment is an essen-

tial task for a mobile robot or an autonomous vehicle. One

of the main issues for the development of these vehicles

is the existence of datasets. Among the datasets of pinhole

camera images dedicated to the development and study of

autonomous vehicles, mention may be made of KITTI [1],

Cityscape [2], Berkeley DeepDrive [3], CamVid [4] and

Mapillary Vistas Dataset [5]. Omnidirectional cameras can

perceive the surrounding environment with a field of view

that can reach 360°. For this reason, they are increas-

ingly used in the field of intelligent vehicles, including

fisheye cameras due to their compactness and inexpensive

design. Several datasets contain fisheye images, such as

CVRG [6], LMS [7], LaFiDa [8], SVMIS [9], "Go Stan-

ford" [10], GM-ATCI [11], and RTH Zurich multi-FoV syn-

thetic datasets [12]. However, it is noted that there is a lack

of road scenes omnidirectional images datasets embedded in

a vehicle dedicated for computer vision applications. Recent

work on semantic segmentation of fisheye images of road

scenes had been performed on perspective images to which

a distortion simulating the fisheye effect is applied [13],

[14], [15]. Such deformation induces artefacts in the resulting

images. There is a growing need to generate more reliable

datasets of omnidirectional images, without the need to

go through simple image rectification. Much recent work,

especially in deep learning applied on spherical images,
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have been confirming the need of omnidirectional image

databases [16], [17], [18], [19], [20], [21], [22], [23].

In this paper, we propose a framework that can be ap-

plied to any simulator or virtual environment to generate

omnidirectional images. We present the data acquired from

a simulator and describe its use to generate omnidirectional

images. We present in detail two well-known types of

omnidirectional images, fisheye and catadioptric images. The

models can be computed from a calibrated camera, using a

large class of models proposed by Geyer and Daniilidis [24],

Barreto and Araujo [25], Mei and Rives [26] or Scaramuzza

et al. [27].

While the proposed framework is generic, we demonstrate

its relevance in two famous simulators: CARLA Simulator

and Grand Theft Auto V (GTA V). CARLA is an open-

source simulator for urban autonomous driving. It gives the

possibility to generate datasets with several ground truth

modalities [28]. Grand Theft Auto V (GTA V) is a very

high quality AAA video game. Both simulators provide an

environment similar to real life, thanks to dynamic weather,

seasons, regulated road traffic, traffic lights, signaling, pedes-

trians, different types of vehicles, ... It is worth noting that

there is no support in these simulators or any other simula-

tor for omnidirectional images, which makes the proposed

framework of great interest for researchers working on om-

nidirectional images in robotics and automotive applications.

We show the relevance of this work by releasing the

OmniScape dataset1, which is a dataset of a motorised

two-wheeler in the aforementioned simulators. OmniScape

comprises stereo fisheye and stereo catadioptric images ac-

quired from the two front sides of a motorcycle, with the

corresponding depth maps, semantic segmentation, intrinsic

parameters of the cameras and dynamic parameters of the

motorcycle, such as velocity, angular velocity, acceleration,

location and rotation. See Fig. 1. The OmniScape dataset will

be progressively augmented with more omnidirectional data

using the same principle with different vehicles, modalities

and environments. We have chosen to provide data enquired

from a motorcycle because motorcycles present challenging

problems that were not addressed before. Indeed, the dynam-

ics of a motorcycle are totally different from the dynamics

of cars. As we know, a car is almost all the time parallel

to the road. In addition to the distortion in spherical or

omnidirectional images, motorcycles undergo rotations yaw,

pitch and roll on the three axes, which make the task even

harder, due to the inadaptability of classical methods to

changes of orientation without a particular learning.

1https://github.com/ARSekkat/OmniScape



Fig. 1: Recording platform and a representation of the different modalities.

The remainder of this paper is organized as follows.

Next section provides a survey on work made using virtual

environments as a data source. Section 3 introduces the

proposed framework to generate omnidirectional images.

Section 4 presents the OmniScape dataset. Finally, Section

6 concludes the paper.

II. RELATED WORK

In the literature, there are several works conducted on

virtual environments for the development or validation of au-

tonomous driving systems. Virtual environments have several

advantages, mainly the inexpensiveness to generate realistic

data, as well as the variety of the nature of the data that can

be generated, such as depth maps, semantic segmentation or

details of the dynamic properties of the vehicle. These virtual

environments allow to simulate different sensors. We also

do not have to deal with the problem of data protection and

privacy of individuals. Currently several datasets were gen-

erated from virtual environments, such as SYNTHIA [29],

VEIS [30], and Playing for benchmark [31].

Thanks to advantages offered by the reverse engineering

and modding tools, several recent works have been carried

out on the generation of data from GTA V. We can mention

the method proposed by Doan et al. in [32] for generating

perspective images using a virtual camera with six degrees

of freedom. In [33], Richter et al. used GTA V to capture

pixel-by-pixel semantic segmentation using an open source

middleware called renderdoc between the game and the GPU.

In [34], Angus et al. also extracted semantic segmentation

images by changing the textures and shaders of the game in

the game files. Richter et al. generated in [31] a benchmark

of several data types from GTA V, all annotated with ground

truth data for low-level and high-level vision tasks, including

optical flow, instance segmentation, detection and objects

tracking, as well as visual odometry.

Johnson-Roberson et al. used in [35] synthetic data gen-

erated by GTA V, to show that state-of-the-art algorithms

trained only by this data, work better than if they are driven

on manually annotated real-world data when tested on the

KITTI dataset for vehicle detection. We can note that all

these works considered perspective images and, until now,

there is neither a dataset for omnidirectional images, nor

a dataset for motorcycles or any powered two-wheeler. The

present paper seeks to fill this gap, by proposing a framework

for omnidirectional data generation from a virtual environ-

ment, and generating specifically motorcycles datasets.

III. PROPOSED FRAMEWORK

The proposed framework generates omnidirectional im-

ages from a virtual environment using 360° cubemap images.

To create 360° images, six images are extracted in the six

different directions. Using the appropriate omnidirectional

camera model, each pixel of the omnidirectional image can

be associated with a 3D direction on the unit sphere. We

then compute the cube that presents the six images under the

cubemap projection. Using ray tracing, we construct a lookup

table that stores correspondences between the omnidirection-

nal image and the cubemap images. It corresponds to the

intersection of the 3D direction associated to each pixel in the

omnidirectional image with the cubemap images. Then we

just need to affect to each pixel in the omnidirectional image

the corresponding relevant information from the cubemap

image (RGB, depth or semantic segmentation), as sketched

in Fig. 2.



Fig. 2: Lookup table construction to set the omnidirectional image pixel values.

The parameters of the model are calculated from a cali-

brated camera. To generate omnidirectional images, the pro-

posed framework can use well-known camera models, such

as the models proposed by Geyer and Daniilidis [24], Barreto

and Araujo [25], Mei and Rives [26] and Scaramuzza et

al. [27]. Without loss of generality, we detail in the following

the model proposed by Scaramuzza et al. in [27]. It is a

calibration model for omnidirectional cameras, considering

the omnidirectional imaging system as a compact and unique

system composed by a pinhole camera and a mirror. It allows

to compute the intrinsic parameters of the omnidirectional

camera. This means that it provides the relation between a

given 2D pixel and the corresponding 3D vector, from the

point of view of the unit sphere, as illustrated in Fig. 3. Let

(u, v) be the metric coordinates of a pixel p with respect to

the center of the omnidirectional image, and (x, y, z) those

of the corresponding 3D vector P , according to
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with w =
√

u2 + v2. Within this model, the function f(w)
is considered to be a polynomial function, namely of the

following form

f(w) = a0 + a1w + a2w
2 + a3w

3 + a4w
4 + ... (2)

The calibration parameters ai are estimated by the least-

squares method on data acquired with a real camera, as

described in [36].

Since the above model is general for omnidirectional

images, not just fisheye images, we use the same method

to generate also catadioptric images. We mean by catadiop-

tric images, in this paper, the images taken by a camera

composed by a pinhole camera (perspective camera) and a

hyperboloidal mirror [24], [26]. The catadioptric images we

generate in this work are made in a way that includes all

Fig. 3: The omnidirectional camera model proposed in [27].

Fig. 4: Mapping of the six images in the fisheye (left) and

catadioptric (right) images.

directions of the road in the images, which means that the

pinhole camera is on the top of the mirror or the contrary.

Fig. 4 shows the mapping of the six images in the fisheye

images and the catadioptric images. The colors red, orange,

yellow, blue, green and purple represent respectively the six

sides, front, back, left, right, up and down.

The computational cost to render one omnidirectional

frame does not exceed 4.6ms on Ubuntu 18.04.3 64-bit

running on an Intel Core i7-8750H CPU @ 2.20GHz.



Fisheye images Catadioptric images

(a) RGB left image. (b) RGB right image. (c) RGB left image. (d) RGB right image.

(e) Semantic segm. left im-
age.

(f) Semantic segm. right im-
age.

(g) Semantic segm. left im-
age.

(h) Semantic segm. right im-
age.

(i) Depth map left image. (j) Depth map right image. (k) Depth map left image. (l) Depth map right image.

Fig. 5: Examples of fisheye (left panel) and catadioptric (right panel) images generated from a single capture.

IV. OMNISCAPE DATASET

The OmniScape2 dataset contains, for each capture, fish-

eye and catadioptric stereo RGB images from the two front

sides of a motorcycle, with semantic segmentation and depth

map ground truth, as well as the dynamics of the vehicle with

its velocity, angular velocity, acceleration and orientation.

See Fig. 1 for an overview. The OmniScape dataset will be

progressively augmented with more omnidirectional data us-

ing the described framework with different vehicles, modal-

ities and environments. The dataset contains data generated

from GTA V and CARLA, and can be extended to other

simulators. However, due to space limitation, we present in

the following data extracted only from CARLA.

2https://github.com/ARSekkat/OmniScape

For more insights on the extraction of data from GTA V,

we refer the interested reader to our previous work [37].

To generate the images, we used 5 towns available in

CARLA Simulator. An example of images generated from

a single capture is given in Fig. 5. The RGB images are

available for 14 different weather conditions and time of

the day and this for each capture. Fig. 6 shows an example

of a capture with 4 different weather conditions in fisheye

and catadioptric. CARLA Simulator gives a semantic seg-

mentation into 13 classes, namely Building, Fence, Other,

Pedestrian, Pole, Road line, Road, Sidewalk, Vegetation,

Vehicle, Wall, Traffic sign, Unlabeled. Fig. 7 shows the

distribution of pixel of all images in the dataset for both

fisheye images and catadioptric images.



Default Hard rain sunset

Soft rain noon Clear noon

Fig. 6: Examples of fisheye and catadioptric images gener-

ated from a single capture with four different weather con-

ditions and time. The motorcycle in this capture undergoes

rotations.

TABLE I: Statistics concerning the dynamics (yaw, pitch and

roll, in degrees) of the motorcycle in a tested route

mean std min median max

Yaw 1.15 110.54 -179.99 0.85 179.99

Pitch -0.15 1.75 -10.26 -0.07 18.94

Roll 0.14 3.62 -24.83 0.00 25.91

In complement to these omnidirectional images, the Om-

niScape dataset contains also the dynamics of the vehicle at

each capture, such as velocity, angular velocity, acceleration

and orientation. As we explained before, the case of two-

wheelers is more challenging because of the dynamics of

these vehicles. We computed statistics concerning these

dynamics in CARLA Simulator. As presented in TABLE I,

we can see that the roll and the pitch change considerably.

These alterations will surely affect classical tasks such as

visual odometry and semantic segmentation. This is due to

the fact that most computer vision and machine learning tasks

are often trained on perspective data acquired with cars as

autonomous vehicles, while these vehicles do not suffer from

modifications in these dynamics.

In complement to the images given in this paper, more

examples from CARLA Simulator and GTA V can be found

in OmniScape GitHub.

Fig. 7: Percentage of pixels representing each class in the

dataset for both fisheye and catadioptric images.

V. CONCLUSION

This paper presented a general framework to generate

datasets of omnidirectional images from virtual environ-

ments, and provided the OmniScape dataset. We demon-

strated the relevance of this framework by generating fisheye

and catadioptric images with depth map, semantic seg-

mentation and dynamic parameters. Two simulators were

investigated with success, GTA V and open-source CARLA

Simulator.

There are many possible extensions to this application,

including the generation of other types of datasets, using

different types of omnidirectional camera models and dif-

ferent vehicles like drones. These datasets can be used as

evaluation credentials for different vision and deep learning

applications, whose algorithms applied to perspective images

have limited performance on omnidirectional images. A wide

variety of applications include Simultaneous Localization

And Mapping (SLAM), visual odometry, depth estimation,

object recognition and classification, detection and tracking.

Moreover, they can also be used to evaluate or even train

semantic segmentation algorithms developed for omnidirec-

tional images.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Vincent Vauchey for his

valuable suggestions on improving the optimisation of the

computational cost.

This work was mainly supported by a RIN grant, Région

Normandie, France. It was partially supported by ANR

CLARA (ANR-18-CE33-0004-02) and DAISI project funded

with the support from the European Union with the European

Regional Development Fund (ERDF) and from the Regional

Council of Normandy.



REFERENCES

[1] J. Fritsch, T. Kuehnl, and A. Geiger, “A new performance measure and
evaluation benchmark for road detection algorithms,” in International

Conference on Intelligent Transportation Systems (ITSC), 2013.
[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-

son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Proc. of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.
[3] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,

“BDD100K: A diverse driving video database with scalable annotation
tooling,” CoRR, vol. abs/1805.04687, 2018.

[4] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in
video: A high-definition ground truth database,” Pattern Recognition

Letters, vol. 30, pp. 88–97, 2009.
[5] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The

mapillary vistas dataset for semantic understanding of street scenes,”
in The IEEE International Conference on Computer Vision (ICCV),
Oct 2017.

[6] I. Baris and Y. Bastanlar, “Classification and tracking of traffic scene
objects with hybrid camera systems,” in 2017 IEEE 20th International

Conference on Intelligent Transportation Systems (ITSC), Oct 2017,
pp. 1–6.

[7] A. Eichenseer and A. Kaup, “A data set providing synthetic and real-
world fisheye video sequences,” in IEEE Int. Conf. on Acoustics,

Speech and Signal Processing (ICASSP), Mar 2016, pp. 1541–1545.
[8] S. Urban and B. Jutzi, “Lafida - a laserscanner multi-fisheye camera

dataset,” J. Imaging, vol. 3, p. 5, 2017.
[9] G. Caron and F. Morbidi, “Spherical Visual Gyroscope for Au-

tonomous Robots using the Mixture of Photometric Potentials,” in
IEEE International Conference on Robotics and Automation, Brisbane,
Australia, May 2018, pp. 820–827.

[10] N. Hirose, A. Sadeghian, M. Vázquez, P. Goebel, and S. Savarese,
“Gonet: A semi-supervised deep learning approach for traversability
estimation,” CoRR, vol. abs/1803.03254, 2018.

[11] D. Levi and S. Silberstein, “Tracking and motion cues for rear-view
pedestrian detection,” in 2015 IEEE 18th International Conference on

Intelligent Transportation Systems, Sep. 2015, pp. 664–671.
[12] Z.Zhang, H. Rebecq, C. Forster, and D. Scaramuzza, “Benefit of

large field-of-view cameras for visual odometry,” in 2016 IEEE

International Conference on Robotics and Automation (ICRA), May
2016, pp. 801–808.

[13] A. M. Sweeney, L. M. Bergasa, E. Romera, M. E. L. Guillén,
R. Barea, and R. Sanz, “Cnn-based fisheye image real-time semantic
segmentation,” 2018 IEEE Intelligent Vehicles Symposium (IV), pp.
1039–1044, 2018.

[14] L. Deng, M. Yang, Y. Qian, C. Wang, and B. Wang, “Cnn based
semantic segmentation for urban traffic scenes using fisheye camera,”
in 2017 IEEE Intelligent Vehicles Symposium (IV), June 2017, pp.
231–236.

[15] L. Deng, M. Yang, H. Li, T. Li, B. Hu, and C. Wang, “Restricted
deformable convolution based road scene semantic segmentation using
surround view cameras,” CoRR, vol. abs/1801.00708, 2018.

[16] X. Yin, X. Wang, J. Yu, M. Zhang, P. Fua, and D. Tao, “Fisheyerecnet:
A multi-context collaborative deep network for fisheye image rectifi-
cation,” in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert,
C. Sminchisescu, and Y. Weiss, Eds. Cham: Springer International
Publishing, 2018, pp. 475–490.

[17] Y.-C. Su and K. Grauman, “Learning spherical convolution for fast
features from 360°imagery,” in Advances in Neural Information Pro-

cessing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates,
Inc., 2017, pp. 529–539.

[18] N. Perraudin, M. Defferrard, T. Kacprzak, and R. Sgier, “Deepsphere:
Efficient spherical convolutional neural network with healpix sampling
for cosmological applications,” CoRR, vol. abs/1810.12186, 2018.

[19] B. Coors, A. P. Condurache, and A. Geiger, “Spherenet: Learning
spherical representations for detection and classification in omnidi-
rectional images,” in Computer Vision – ECCV 2018, V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham: Springer
International Publishing, 2018, pp. 525–541.

[20] W. Boomsma and J. Frellsen, “Spherical convolutions and their
application in molecular modelling,” in Advances in Neural Infor-

mation Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran
Associates, Inc., 2017, pp. 3433–3443.

[21] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis,
“Learning so(3) equivariant representations with spherical cnns,” in
The European Conference on Computer Vision (ECCV), September
2018.

[22] R. Kondor, Z. Lin, and S. Trivedi, “Clebsch-gordan nets: a fully fourier
space spherical convolutional neural network,” in NeurIPS, 2018.

[23] Q. Zhao, C. Zhu, F. Dai, Y. Ma, G. Jin, and Y. Zhang, “Distortion-
aware cnns for spherical images,” in Proceedings of the Twenty-

Seventh International Joint Conference on Artificial Intelligence,

IJCAI-18. International Joint Conferences on Artificial Intelligence
Organization, 7 2018, pp. 1198–1204.

[24] C. Geyer and K. Daniilidis, “A unifying theory for central panoramic
systems and practical implications,” in Computer Vision — ECCV

2000, D. Vernon, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 445–461.

[25] J. P. Barreto and H. Araujo, “Issues on the geometry of central
catadioptric image formation,” in Proceedings of the 2001 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition.

CVPR 2001, vol. 2, Dec 2001, pp. II–II.
[26] C. Mei and P. Rives, “Single view point omnidirectional camera

calibration from planar grids,” in Proceedings 2007 IEEE International

Conference on Robotics and Automation, April 2007, pp. 3945–3950.
[27] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolbox for easily

calibrating omnidirectional cameras,” in 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Oct 2006, pp. 5695–
5701.

[28] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the

1st Annual Conference on Robot Learning, 2017, pp. 1–16.
[29] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The

synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016, pp. 3234–3243.
[30] F. S. Saleh, M. S. Aliakbarian, M. Salzmann, L. Petersson, and J. M.

Alvarez, “Effective use of synthetic data for urban scene semantic
segmentation,” in ECCV, 2018.

[31] S. R. Richter, Z. Hayder, and V. Koltun, “Playing for benchmarks,”
in IEEE International Conference on Computer Vision, ICCV 2017,

Venice, Italy, October 22-29, 2017, 2017, pp. 2232–2241.
[32] A. Doan, A. M. Jawaid, T. Do, and T. Chin, “G2D: from GTA to

data,” CoRR, vol. abs/1806.07381, 2018.
[33] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:

Ground truth from computer games,” in European Conference on

Computer Vision (ECCV), ser. LNCS, B. Leibe, J. Matas, N. Sebe,
and M. Welling, Eds., vol. 9906. Springer International Publishing,
2016, pp. 102–118.

[34] M. Angus, M. ElBalkini, S. Khan, A. Harakeh, O. Andrienko,
C. Reading, S. L. Waslander, and K. Czarnecki, “Unlimited road-scene
synthetic annotation (URSA) dataset,” CoRR, vol. abs/1807.06056,
2018.

[35] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen,
and R. Vasudevan, “Driving in the matrix: Can virtual worlds replace
human-generated annotations for real world tasks?” in IEEE Interna-

tional Conference on Robotics and Automation, 2017, pp. 1–8.
[36] Y. Dupuis, X. Savatier, J. Ertaud, and P. Vasseur, “Robust radial face

detection for omnidirectional vision,” IEEE Transactions on Image

Processing, vol. 22, no. 5, pp. 1808–1821, May 2013.
[37] A. R. Sekkat, Y. Dupuis, P. Vasseur, and P. Honeine, “Génération

d’images omnidirectionnelles à partir d’un environnement virtuel,” in
27-ème Colloque GRETSI sur le Traitement du Signal et des Images,
Lille, France, Aug. 2019.


