
HAL Id: hal-03088297
https://normandie-univ.hal.science/hal-03088297

Submitted on 26 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pixel-wise linear/non linear nonnegative matrix
factorization for unmixing of hyperspectral data

Fei Zhu, Paul Honeine, Jie Chen

To cite this version:
Fei Zhu, Paul Honeine, Jie Chen. Pixel-wise linear/non linear nonnegative matrix factorization
for unmixing of hyperspectral data. ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2020, Barcelona, Spain. pp.4737-4741,
�10.1109/ICASSP40776.2020.9053239�. �hal-03088297�

https://normandie-univ.hal.science/hal-03088297
https://hal.archives-ouvertes.fr


PIXEL-WISE LINEAR/NONLINEAR NONNEGATIVE MATRIX FACTORIZATION
FOR UNMIXING OF HYPERSPECTRAL DATA

Fei Zhu(1), Paul Honeine(2) and Jie Chen (3)

(1)Tianjin University, Center for Applied Mathematics, 300072 Tianjin, China
(2)Normandie Univ, UNIROUEN, LITIS, 76000 Rouen, France

(3)Northwestern Polytechnical University, School of Marine Science and Technology, 710072 Xi’an, China
fei.zhu@tju.edu.cn, paul.honeine@univ-rouen.fr, dr.jie.chen@ieee.org

ABSTRACT

Nonlinear spectral unmixing is a challenging and important task in
hyperspectral image analysis. The kernel-based bi-objective non-
negative matrix factorization (Bi-NMF) has shown its usefulness
in nonlinear unmixing; However, it suffers several issues that pro-
hibit its practical application. In this work, we propose an unsuper-
vised nonlinear unmixing method that overcomes these weaknesses.
Specifically, the new method introduces into each pixel a parameter
that adjusts the nonlinearity therein. These parameters are jointly
optimized with endmembers and abundances, using a carefully de-
signed objective function by multiplicative update rules. Experi-
ments on synthetic and real datasets confirm the effectiveness of the
proposed method.

Index Terms— Hyperspectral data analysis, nonlinear unmix-
ing, unsupervised learning, kernel methods, nonnegative matrix fac-
torization.

1. INTRODUCTION

Spectral unmixing is an important issue in hyperspectral data anal-
ysis, and it covers a wide range of applications such as land cover
analysis, material sorting, water quality evaluation and mineral dis-
tribution analysis. In the unmixing problem, each observed pixel is
a mixture of several spectral signatures of pure materials (endmem-
bers) parameterized by their respective fractional abundances. We
aim to extract the endmembers and estimate the abundances based on
specific pre-assumed data models. The linear mixing model (LMM)
is the most prevalent model to characterize the relation between the
endmembers and an observed pixel. A variety of endmember extrac-
tion and abundance estimation methods have been studied with the
LMM as reviewed in [1].

However, the LMM may not be appropriate in some practical
situations where the light is scattered by multiple reflective or inter-
acted materials. Nonlinear mixture models (NLMM) then provide
an alternative to overcome the limitations of the LMM [2]. Physics-
oriented nonlinear methods include the Hapke’s model [3], bilinear-
mixing models [4, 5], polynomial post-nonlinear mixing model (PP-
NMM) [6] and multilinear mixing model (MLM) [7]. Besides these
parametric nonlinear models, kernel-based non-parametric methods
have recently drawn increasing attention. In [8], the mixture model
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is defined by augmenting LMM with an addictive nonlinear fluctu-
ation term defined in RKHS, and this model is extended in several
means [9, 10, 11].

Based on the same principle, a bi-objective nonnegative matrix
factorization (Bi-NMF) for nonlinear unmixing is proposed in [12].
Taking advantage of the NMF framework, the Bi-NMF is an un-
supervised algorithm able to simultaneously estimate endmembers
and abundances by jointly taking into account the nonlinear effects.
Though useful, it suffers from the following drawbacks: i) The non-
linearity of the entire image is characterized in a global manner, ii)
forming the Pareto front used in the algorithm requires to perform
the proposed factorization a number of times, and iii) selecting the
best factorization among Pareto solutions is difficult.

In this work, we present an unsupervised linear/nonlinear un-
mixing method that successfully bypasses the above drawbacks of
the Bi-NMF. Specifically, each observed spectrum is modeled jointly
by the linear and the kernel-based models, along with a pixel-wise
variable adjusting their relative importance. The optimization prob-
lem is addressed by a block-coordinate descent (BCD) approach.
Multiplicative algorithms are provided to update iteratively the end-
members, abundances, and nonlinearity variables. Experimental re-
sults on synthetic datasets with both linearly-mixed and nonlinearly-
mixed pixels, and on real datasets show the effectiveness of the pro-
posed method.

2. PROBLEM FORMULATION OF THE BI-NMF

This section briefly presents the LMM and the kernel-based mixture
model in [13], both employed in the Bi-NMF method. The proposed
unmixing approach will be developed based on these models.

Let X = [x1,x2, ...,xT ] ∈ RL×T+ be the collection of T
observed pixels over L spectral bands. Let E = [e1, e2, ..., eR] ∈
RL×R be the endmember matrix composed by R endmembers
{ei}Ri=1, and A = [a1,a2, ...,aT ] ∈ RR×T the abundance ma-
trix, where at ∈ RR is the abundance vector associated to the t-th
pixel, with the scalar art being the abundance fraction of the r-th
endmember.

The linear mixing model [1] assumes that each observed pixel
is a linear combination of several endmembers, weighted by their
fractional abundances, namely

xt ≈
R∑
r=1

art er, (1)

for all t = 1, ..., T . Let input space X be the subspace spanned by
all the pixels xt and endmembers er . The linear unmixing problem



aims to minimize the sum of squared residual errors between each
input spectrum and its estimate in the input space X , that is

JX (E,A) =
1

2

T∑
t=1

∥∥∥xt − R∑
r=1

art er

∥∥∥2, (2)

where the nonnegativity constraints E,A � 0 are imposed.
Let Φ(·) be a nonlinear function that maps all pixels xt and

endmembers er , from the input space X to some feature space H,
with the associated norm denoted by ‖ · ‖H. The inner product inH
computes 〈Φ(xt),Φ(xt′)〉H = κ(xt,xt′), where κ(·, ·) is a kernel
function. The kernel-based mixing model [13] defines the mixture
process in the RKHS feature space as

Φ(xt) ≈
R∑
r=1

art Φ(er), (3)

which allows to overcome the curse of the pre-image problem. Un-
der the nonnegativity constraints onE andA, the optimization prob-
lem is formulated to minimize the sum of the squared residual errors
in the feature spaceH, i.e.,

JH(E,A) =
1

2

T∑
t=1

∥∥∥Φ(xt)−
R∑
r=1

art Φ(er)
∥∥∥2
H
. (4)

In the Bi-NMF method [12], the nonlinear unmixing is for-
mulated as a bi-objective optimization problem. Using the sum-
weighted method, the original problem breaks down to a series of
single-objective subproblems in the form of

min
E,A�0

αJX (E,A) + (1− α)JH(E,A). (5)

Employing a spread of α between 0 and 1, the linear and nonlinear
models are fused at different levels. After solving each subproblem,
a set of Pareto optimal solutions are obtained as candidates of the
best unmixing result. Note that the major drawback of Bi-NMF is
that it provides a global result of the nonlinearity detection, ignor-
ing the fact that pixels in an image may have different nonlinearity
levels.

3. PROPOSED UNSUPERVISED LINEAR/NONLINEAR
UNMIXING BY KERNEL METHODS

Instead of characterizing the nonlinearity of all spectra by a single
parameter, it is more reasonable to individually describe the non-
linearity level of each pixel. To this end, we define the objective
function associated to each pixel xt by:

Jt(E,at, µt) =
‖xt −Eat‖2

2µt
+
‖Φ(xt)−

∑R
r=1 at Φ(er)‖2H

2(1− µt)
,

(6)
where the unknown scalar µt ∈ (0, 1) balances the relative impor-
tance between the linear and kernel-based models at the t-th spec-
trum. Intuitively, a pixel tends to be linearly mixed when its nonlin-
earity level is close to 0, while a value closed to 1 indicates that the
pixel is highly nonlinearly mixed. See [8] for a more thorough inter-
pretation of the usefulness of the problem formulation in this form
for hyperspectral unmixing.

Summing up the objective functions over all pixels and imposing
the nonnegativity constraints on both endmembers and abundances,

the optimization problem becomes

min
E,A,µ

T∑
t=1

Jt(E,at, µt)

subject to E,A � 0 and µt ∈ (0, 1),

(7)

whereµ = [µ1, µ2, · · · , µT ]> is an unknown vector collecting non-
linearity parameters of all pixels, with each element satisfying the
constraint µt ∈ (0, 1).

4. BLOCK-COORDINATE DESCENT ALGORITHM

To solve the problem (7), we apply a block-coordinate descent
(BCD) optimization approach, by alternately updating each of the
variables blocks E, A and µ, while keeping the elements in the
other two blocks fixed.

Recall that the inner product inH is given by 〈Φ(xt),Φ(xt′)〉H
= κ(xt,xt′), expanding the objective function in (7) and removing
all terms irrelevant to er and art, yields:

J =

T∑
t=1

[
1

2µt

( R∑
r,s=1

artaste
>
res−2

R∑
r=1

arte
>
rxt
)

+
1

2(1−µt)

( R∑
r,s=1

artastκ(er, es)−2

R∑
r=1

artκ(er,xt)
)]
.

(8)

We now solve (8) with respect to the variables E,A.

4.1. Optimization with respect to E

We first fixA and µ to minimize the objective function (8) in terms
of endmember matrix E. The gradient of (8) with respect to er is
given by

∇erJ =

T∑
t=1

ant
[ 1

µt
(Eat−xt)

+
1

1− µt

( R∑
m=1

amt∇erκ(er, em)−∇erκ(er,xt)
)]
.

(9)

In this work, we consider to use the Gaussian RBF kernel defined by
κ(x,y) = exp(− 1

2σ2 ‖x − y‖2) due to its good performance in a
wide-range of applications. Consequently, we have

∇erκ(er,z) = − 1

σ2
κ(er,z)(er − z). (10)

Using the split gradient method [14] to appropriately set the stepsize
parameter η in the gradient descent updating rule er=er−η∇erJ ,
a multiplicative update rule of endmember matrix E is achieved as

er=er⊗

T∑
t=1

σ2art
µt

xt+
art

1−µt

(
κ(er,xt)xt+

R∑
m=1

amtκ(er, em)er
)

T∑
t=1

σ2art
µt

Eat + art
1−µt

(
κ(er,xt)er+

R∑
m=1

amtκ(er, em)em
) ,

(11)
where ⊗ represents the Hadamard multiplication operator.



4.2. Optimization with respect toA

We then fix E and µ, to derive the update rule for the abundance
matrix A. The derivative of objective function (8) with respect to
art is given by:

∇artJ =
1

µt

[ R∑
m=1

amt e
>
r em − e>r xt

]
+

1

1− µt

[ R∑
m=1

amt κ(er, em)− κ(er,xt)
]
.

(12)

Again, applying the split gradient method leads to the multiplicative
update rule forA as follows:

art = art ×
(1− µt) e>r xt + µt κ(er,xt)

(1− µt)
R∑

m=1

amte
>
r em + µt

R∑
m=1

amt κ(er, em)

.

(13)

4.3. Optimization with respect to µ

Regarding the optimization with respect to µ, it has a closed-form
expression for the optimum solution µ∗, thanks to the elegant prob-
lem formulation in (6) 1. It is observed that the variable µt only
appears in Jt, thus, the gradient of (7) with respect to µ can be ex-
pressed as

∇µJ =
[∂J1

∂µ1
,
∂J2

∂µ2
, · · · , ∂JT

∂µT

]>
. (14)

Setting∇µJ = 0 yields the closed-form expression of the optimum
µ∗ = [µ∗1, µ

∗
2, ..., µ

∗
T ]>, where the t-th element µt takes the form

µ∗t =

 1 +

√
‖Φ(xt)−

∑R
r=1 art Φ(er)‖2H

‖xt −Eat‖2

−1

. (15)

Here, the residual errors in feature space H can be easily computed
via the kernel function by

‖Φ(xt)−
R∑
r=1

artΦ(er)‖2H

=

R∑
r,s=1

astartκ(er, es)− 2

R∑
r=1

artκ(xt, er) + 1.

(16)

Finally, we summarize the proposed algorithm in Algorithm 1.
Its total complexity is O(kR2LT ) after k iterations.

5. EXPERIMENTAL RESULTS

In this section, experiments were conducted with both synthetic and
real datasets to validate the proposed algorithm. Five state-of-the-
art unmixing algorithms were compared, including three supervised
methods, namely, FCLS [16], GBM [17], and PPNMM [18], and two
unsupervised ones, namely, MinDisCo [19] and MVCNMF [20].
For the supervised unmixing approaches, VCA [21] was applied to
extract endmembers.

1Consider the optimization of f(x) = a
x

+ b
1−x over the interval x ∈

(0, 1), where a, b ≥ 0 are constants. This function is convex on (0, 1), and
its optimum is achieved at x∗ = (1 +

√
b/a)−1 [15].

Algorithm 1 The BCD algorithm for solving problem (7)

Input: k = 0, Initialize E0 andA0

1: repeat
2: update Ek+1 with (11)
3: updateAk+1 with (13)
4: update µk+1 with (15)
5: k = k + 1
6: until stopping criterion

Output: E,A and µ

5.1. Experiments on synthetic data

The performance of the proposed method was firstly studied on a
series of synthetic images of size 20× 20 pixels. To ensure the exis-
tence of both linear and nonlinear mixed pixels, two mixing models,
namely LMM and GBM were used for data generation. The GBM
is defined by

xt =

N∑
n=1

ant en+

N−1∑
n=1

N∑
m=n+1

γnm ant amt (en ⊗ em)+n, (17)

where γnm ∈ [0, 1] was drawn from a uniform distribution and
n ∈ RL×1 is the additive noise [17]. The N = 3 endmembers
were randomly drawn from the candidate spectra set consisting of
19 spectra from the United States Geological Survey (USGS) digi-
tal spectral library [22]. The abundance vectors were generated us-
ing a uniform distribution by enforcing both the nonnegativity and
the sum-to-one constraints [22]. Each image was composed by pix-
els generated by the LMM and GBM with three proportion settings,
namely, (80%, 20%), (50%, 50%) and (20%, 80%). Gaussian noise
with the signal-to-noise ratio (SNR) of 25 dB, 30 dB and 35 dB were
added to the generated data.

The bandwidth parameter σ in the Gaussian kernel was tuned us-
ing the candidate values {1, 2, 5, 10, 15, 20, 25, 30, 35} on one syn-
thetic image, and then was set to σ = 25 in all experiments. The
maximum iteration number was set to 1500 in all tested methods.
Unmixing performance was evaluated by both the root mean square
error (RMSE) [17]

RMSE =

√√√√ 1

NT

T∑
t=1

‖at − at‖2 (18)

for abundance estimation, and the averaged spectral angle distance
(SADE) [19]

SADE =
1

N

N∑
n=1

arccos

(
〈en, en〉
‖en‖‖en‖

)
. (19)

for endmember estimation. Here, en and at represent the actual
endmember and abundance vector.

For each setting, ten Monte-Carlo simulations were conducted.
The average RMSE and SADE are reported in Table 1 and Table 2,
respectively. For abundance estimation, the proposed method pro-
vides the best estimation in most cases with varying proportions of
nonlinearly-mixed pixels at different noise levels. For the cases with
80% LMM and 20% GBM pixels at SNR = 25, 35 dB, and with
50% LMM and 50% GBM pixels at SNR = 35 dB, the proposed
method yields second best RMSE. For endmember estimation, the
proposed method is superior to the other algorithms in all experi-
ments.
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Fig. 1: Experimental results on Urban image: (a) Abundance maps for Grass, Asphalt, Tree, Roof obtained by MinDisCo, MVCNMF and the
proposed method. (b)µ-map obtained by the proposed method.

Table 1: RMSE of abundances on synthetic data (×10−2)

Unmix.
Mix. 80% LMM & 20% GBM 50% LMM & 50% GBM 20%LMM & 80 %GBM

25dB 30dB 35dB 25dB 30dB 35dB 25dB 30dB 35dB

FCLS 6.55 4.74 4.30 5.86 4.38 5.91 6.96 7.23 7.54
GBM 6.15 4.69 4.24 5.47 3.81 4.83 6.68 7.08 7.38

PPNMM 5.85 4.81 4.28 5.52 3.53 4.49 6.47 7.06 7.22
MinDisCo 8.27 9.31 8.20 8.19 8.17 9.46 10.40 11.00 10.13
MVCNMF 4.44 4.02 3.02 4.70 3.57 4.06 11.76 12.15 11.81
Proposed 5.65 3.98 3.54 4.58 3.42 4.48 5.38 5.84 5.78

Table 2: SADE of endmembers on synthetic data (×10−2)

Unmix.
Mix. 80% LMM & 20% GBM 50% LMM & 50% GBM 20% LMM & 80% GBM

25dB 30dB 35dB 25dB 30dB 35dB 25dB 30dB 35dB

VCA 3.31 3.14 2.89 4.49 3.76 4.04 4.79 5.22 4.67
MinDisCo 6.53 6.10 5.97 7.66 7.26 6.09 7.69 7.81 7.45
MVCNMF 3.35 3.08 2.64 4.00 3.74 3.85 28.19 28.99 28.70
Proposed 2.98 2.66 2.36 3.59 3.15 3.13 3.91 4.49 3.77

5.2. Experiments on real data

The performance of the proposed method was also examined on a
sub-image from the Urban data, captured by HYDICE sensor. The
raw image contains 307× 307 pixels, with 210 spectral bands rang-
ing from 0.4µm to 2.5µm. The field has been known mainly com-
posed of four endmembers, namely, asphalt, grass, tree and roof [12,
23]. The top left corner with 100×100 pixels were utilized, and 162
bands with high SNR were retained for analysis [12, 23].

Without information on actual abundance vectors and endmem-
bers, the unmixing performance is evaluated using the reconstruction
error (RE) and the average spectral angle distance (SAD) between
the observed and reconstructed pixels, as reported in Table 3. We
observe that the proposed method leads to the smallest RE and SAD
among all the comparing methods. The abundance maps estimated
by different methods are illustrated in Figure 1(a). The µ-map ob-
tained by the proposed method is shown in Figure 1(b), from which
the distribution of nonlinearity levels of pixels is clearly illustrated.

Table 3: RE and SAD on Urban image (×10−2)

FCLS GBM PPNMM MinDisCo MVCNMF Proposed

RE 8.64 8.64 1.37 1.13 0.79 0.78
SAD 31.44 31.46 13.79 7.71 6.19 5.98

6. CONCLUSION

This paper presented an unsupervised unmixing strategy based on
the linear/nonlinear mixture assumption, by taking advantage of the
NMF framework. The nonlinearity level was estimated at each pixel,
which allows to achieve a more accurate modeling capacity than
previously proposed methods, such as [12]. The formulated opti-
mization problem was solved by the BCD strategy. Future works
include incorporating proper spatial regularizations on these newly
introduced variables.
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