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Nonlinear spectral unmixing is a challenging and important task in hyperspectral image analysis. The kernel-based bi-objective nonnegative matrix factorization (Bi-NMF) has shown its usefulness in nonlinear unmixing; However, it suffers several issues that prohibit its practical application. In this work, we propose an unsupervised nonlinear unmixing method that overcomes these weaknesses. Specifically, the new method introduces into each pixel a parameter that adjusts the nonlinearity therein. These parameters are jointly optimized with endmembers and abundances, using a carefully designed objective function by multiplicative update rules. Experiments on synthetic and real datasets confirm the effectiveness of the proposed method.

INTRODUCTION

Spectral unmixing is an important issue in hyperspectral data analysis, and it covers a wide range of applications such as land cover analysis, material sorting, water quality evaluation and mineral distribution analysis. In the unmixing problem, each observed pixel is a mixture of several spectral signatures of pure materials (endmembers) parameterized by their respective fractional abundances. We aim to extract the endmembers and estimate the abundances based on specific pre-assumed data models. The linear mixing model (LMM) is the most prevalent model to characterize the relation between the endmembers and an observed pixel. A variety of endmember extraction and abundance estimation methods have been studied with the LMM as reviewed in [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF].

However, the LMM may not be appropriate in some practical situations where the light is scattered by multiple reflective or interacted materials. Nonlinear mixture models (NLMM) then provide an alternative to overcome the limitations of the LMM [START_REF] Dobigeon | Nonlinear unmixing of hyperspectral images: Models and algorithms[END_REF]. Physicsoriented nonlinear methods include the Hapke's model [START_REF] Hapke | Bidirectional reflectance spectroscopy: 1. theory[END_REF], bilinearmixing models [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF][START_REF] Yokoya | Nonlinear unmixing of hyperspectral data using semi-nonnegative matrix factorization[END_REF], polynomial post-nonlinear mixing model (PP-NMM) [START_REF] Altmann | Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[END_REF] and multilinear mixing model (MLM) [START_REF] Heylen | A multilinear mixing model for nonlinear spectral unmixing[END_REF]. Besides these parametric nonlinear models, kernel-based non-parametric methods have recently drawn increasing attention. In [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF], the mixture model is defined by augmenting LMM with an addictive nonlinear fluctuation term defined in RKHS, and this model is extended in several means [START_REF] Chen | Nonlinear estimation of material abundances of hyperspectral with 1-norm spatial regularization[END_REF][START_REF] Chen | Robust nonlinear unmixing of hyperspectral images with a linear-mixture/nonlinear-fluctuation model[END_REF][START_REF] Li | A graph regularized multilinear mixing model for nonlinear hyperspectral unmixing[END_REF].

Based on the same principle, a bi-objective nonnegative matrix factorization (Bi-NMF) for nonlinear unmixing is proposed in [START_REF] Zhu | Bi-objective nonnegative matrix factorization: Linear versus kernel-based models[END_REF]. Taking advantage of the NMF framework, the Bi-NMF is an unsupervised algorithm able to simultaneously estimate endmembers and abundances by jointly taking into account the nonlinear effects. Though useful, it suffers from the following drawbacks: i) The nonlinearity of the entire image is characterized in a global manner, ii) forming the Pareto front used in the algorithm requires to perform the proposed factorization a number of times, and iii) selecting the best factorization among Pareto solutions is difficult.

In this work, we present an unsupervised linear/nonlinear unmixing method that successfully bypasses the above drawbacks of the Bi-NMF. Specifically, each observed spectrum is modeled jointly by the linear and the kernel-based models, along with a pixel-wise variable adjusting their relative importance. The optimization problem is addressed by a block-coordinate descent (BCD) approach. Multiplicative algorithms are provided to update iteratively the endmembers, abundances, and nonlinearity variables. Experimental results on synthetic datasets with both linearly-mixed and nonlinearlymixed pixels, and on real datasets show the effectiveness of the proposed method.

PROBLEM FORMULATION OF THE BI-NMF

This section briefly presents the LMM and the kernel-based mixture model in [START_REF] Zhu | Kernel non-negative matrix factorization without the pre-image problem[END_REF], both employed in the Bi-NMF method. The proposed unmixing approach will be developed based on these models.

Let X = [x1, x2, ..., xT ] ∈ R L×T + be the collection of T observed pixels over L spectral bands. Let E = [e1, e2, ..., eR] ∈ R L×R be the endmember matrix composed by R endmembers {ei} R i=1 , and A = [a1, a2, ..., aT ] ∈ R R×T the abundance matrix, where at ∈ R R is the abundance vector associated to the t-th pixel, with the scalar art being the abundance fraction of the r-th endmember.

The linear mixing model [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF] assumes that each observed pixel is a linear combination of several endmembers, weighted by their fractional abundances, namely

xt ≈ R r=1 art er, (1) 
for all t = 1, ..., T . Let input space X be the subspace spanned by all the pixels xt and endmembers er. The linear unmixing problem aims to minimize the sum of squared residual errors between each input spectrum and its estimate in the input space X , that is

JX (E, A) = 1 2 T t=1 xt - R r=1 art er 2 , (2) 
where the nonnegativity constraints E, A 0 are imposed. Let Φ(•) be a nonlinear function that maps all pixels xt and endmembers er, from the input space X to some feature space H, with the associated norm denoted by

• H. The inner product in H computes Φ(xt), Φ(x t ) H = κ(xt, x t ), where κ(•, •) is a kernel function.
The kernel-based mixing model [START_REF] Zhu | Kernel non-negative matrix factorization without the pre-image problem[END_REF] defines the mixture process in the RKHS feature space as

Φ(xt) ≈ R r=1 art Φ(er), (3) 
which allows to overcome the curse of the pre-image problem. Under the nonnegativity constraints on E and A, the optimization problem is formulated to minimize the sum of the squared residual errors in the feature space H, i.e.,

JH(E, A) = 1 2 T t=1 Φ(xt) - R r=1 art Φ(er) 2 H . (4) 
In the Bi-NMF method [START_REF] Zhu | Bi-objective nonnegative matrix factorization: Linear versus kernel-based models[END_REF], the nonlinear unmixing is formulated as a bi-objective optimization problem. Using the sumweighted method, the original problem breaks down to a series of single-objective subproblems in the form of min

E,A 0 αJX (E, A) + (1 -α)JH(E, A). (5) 
Employing a spread of α between 0 and 1, the linear and nonlinear models are fused at different levels. After solving each subproblem, a set of Pareto optimal solutions are obtained as candidates of the best unmixing result. Note that the major drawback of Bi-NMF is that it provides a global result of the nonlinearity detection, ignoring the fact that pixels in an image may have different nonlinearity levels.

PROPOSED UNSUPERVISED LINEAR/NONLINEAR UNMIXING BY KERNEL METHODS

Instead of characterizing the nonlinearity of all spectra by a single parameter, it is more reasonable to individually describe the nonlinearity level of each pixel. To this end, we define the objective function associated to each pixel xt by:

Jt(E, at, µt) = xt -Eat 2 2µt + Φ(xt) -R r=1 at Φ(er) 2 H 2(1 -µt) , (6) 
where the unknown scalar µt ∈ (0, 1) balances the relative importance between the linear and kernel-based models at the t-th spectrum. Intuitively, a pixel tends to be linearly mixed when its nonlinearity level is close to 0, while a value closed to 1 indicates that the pixel is highly nonlinearly mixed. See [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF] for a more thorough interpretation of the usefulness of the problem formulation in this form for hyperspectral unmixing.

Summing up the objective functions over all pixels and imposing the nonnegativity constraints on both endmembers and abundances, the optimization problem becomes

min E,A,µ T t=1
Jt(E, at, µt) subject to E, A 0 and µt ∈ (0, 1), [START_REF] Heylen | A multilinear mixing model for nonlinear spectral unmixing[END_REF] where µ = [µ1, µ2, • • • , µT ] is an unknown vector collecting nonlinearity parameters of all pixels, with each element satisfying the constraint µt ∈ (0, 1).

BLOCK-COORDINATE DESCENT ALGORITHM

To solve the problem [START_REF] Heylen | A multilinear mixing model for nonlinear spectral unmixing[END_REF], we apply a block-coordinate descent (BCD) optimization approach, by alternately updating each of the variables blocks E, A and µ, while keeping the elements in the other two blocks fixed.

Recall that the inner product in H is given by Φ(xt), Φ(x t ) H = κ(xt, x t ), expanding the objective function in [START_REF] Heylen | A multilinear mixing model for nonlinear spectral unmixing[END_REF] and removing all terms irrelevant to er and art, yields:

J = T t=1 1 2µt R r,s=1 artaste r es -2 R r=1 arte r xt + 1 2(1-µt) R r,s=1 artastκ(er, es)-2 R r=1 artκ(er, xt) . (8) 
We now solve [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF] with respect to the variables E, A.

Optimization with respect to E

We first fix A and µ to minimize the objective function [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF] in terms of endmember matrix E. The gradient of (8) with respect to er is given by

∇e r J = T t=1 ant 1 µt (Eat -xt) + 1 1 -µt R m=1 amt∇e r κ(er, em)-∇e r κ(er, xt) . (9) 
In this work, we consider to use the Gaussian RBF kernel defined by κ(x, y) = exp(-1 2σ 2 xy 2 ) due to its good performance in a wide-range of applications. Consequently, we have

∇e r κ(er, z) = - 1 σ 2 κ(er, z)(er -z). (10) 
Using the split gradient method [START_REF] Lanteri | Regularized split gradient method for nonnegative matrix factorization[END_REF] to appropriately set the stepsize parameter η in the gradient descent updating rule er = er-η∇e r J , a multiplicative update rule of endmember matrix E is achieved as er= er⊗ 

Optimization with respect to A

We then fix E and µ, to derive the update rule for the abundance matrix A. The derivative of objective function [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF] with respect to art is given by: Again, applying the split gradient method leads to the multiplicative update rule for A as follows:

∇a rt J = 1 µt
art = art × (1 -µt) e r xt + µt κ(er, xt) (1 -µt) R m=1 amte r em + µt R m=1
amt κ(er, em) .

(13)

Optimization with respect to µ

Regarding the optimization with respect to µ, it has a closed-form expression for the optimum solution µ * , thanks to the elegant problem formulation in (6) 1 . It is observed that the variable µt only appears in Jt, thus, the gradient of ( 7) with respect to µ can be expressed as

∇µJ = ∂J1 ∂µ1 , ∂J2 ∂µ2 , • • • , ∂JT ∂µT . (14) 
Setting ∇µJ = 0 yields the closed-form expression of the optimum

µ * = [µ * 1 , µ * 2 , ..., µ * T ]
, where the t-th element µt takes the form

µ * t =   1 + Φ(xt) -R r=1 art Φ(er) 2 H xt -Eat 2   -1 . ( 15 
)
Here, the residual errors in feature space H can be easily computed via the kernel function by

Φ(xt) - R r=1 artΦ(er) 2 H = R r,s=1 astartκ(er, es) -2 R r=1 artκ(xt, er) + 1. (16) 
Finally, we summarize the proposed algorithm in Algorithm 1. Its total complexity is O(kR 2 LT ) after k iterations.

EXPERIMENTAL RESULTS

In this section, experiments were conducted with both synthetic and real datasets to validate the proposed algorithm. Five state-of-theart unmixing algorithms were compared, including three supervised methods, namely, FCLS [START_REF] Heinz | Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[END_REF], GBM [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF], and PPNMM [START_REF] Altmann | Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[END_REF], and two unsupervised ones, namely, MinDisCo [START_REF] Huck | Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data[END_REF] and MVCNMF [START_REF] Miao | Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[END_REF]. For the supervised unmixing approaches, VCA [START_REF] Nascimento | Vertex component analysis: a fast algorithm to unmix hyperspectral data[END_REF] was applied to extract endmembers. 1 Consider the optimization of f (x) = a

x + b 1-x over the interval x ∈ (0, 1), where a, b ≥ 0 are constants. This function is convex on (0, 1), and its optimum is achieved at x * = (1 + b/a) -1 [START_REF] Chen | Nonlinear unmixing of hyperspectral data with partially linear least-squares support vector regression[END_REF].

Algorithm 1

The BCD algorithm for solving problem [START_REF] Heylen | A multilinear mixing model for nonlinear spectral unmixing[END_REF] Input: k = 0, Initialize E 0 and A 0 1: repeat 2:

update E k+1 with [START_REF] Li | A graph regularized multilinear mixing model for nonlinear hyperspectral unmixing[END_REF] 3:

update A k+1 with [START_REF] Zhu | Kernel non-negative matrix factorization without the pre-image problem[END_REF] 4:

update µ k+1 with [START_REF] Chen | Nonlinear unmixing of hyperspectral data with partially linear least-squares support vector regression[END_REF] 5:

k = k + 1 6: until stopping criterion Output: E, A and µ

Experiments on synthetic data

The performance of the proposed method was firstly studied on a series of synthetic images of size 20 × 20 pixels. To ensure the existence of both linear and nonlinear mixed pixels, two mixing models, namely LMM and GBM were used for data generation. The GBM is defined by

xt = N n=1 ant en + N -1 n=1 N m=n+1
γnm ant amt (en ⊗ em)+n, [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF] where γnm ∈ [0, 1] was drawn from a uniform distribution and n ∈ R L×1 is the additive noise [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF]. The N = 3 endmembers were randomly drawn from the candidate spectra set consisting of 19 spectra from the United States Geological Survey (USGS) digital spectral library [START_REF] Bioucas-Dias | Hyperspectral subspace identification[END_REF]. The abundance vectors were generated using a uniform distribution by enforcing both the nonnegativity and the sum-to-one constraints [START_REF] Bioucas-Dias | Hyperspectral subspace identification[END_REF]. Each image was composed by pixels generated by the LMM and GBM with three proportion settings, namely, (80%, 20%), (50%, 50%) and (20%, 80%). Gaussian noise with the signal-to-noise ratio (SNR) of 25 dB, 30 dB and 35 dB were added to the generated data.

The bandwidth parameter σ in the Gaussian kernel was tuned using the candidate values {1, 2, 5, 10, 15, 20, 25, 30, 35} on one synthetic image, and then was set to σ = 25 in all experiments. The maximum iteration number was set to 1500 in all tested methods. Unmixing performance was evaluated by both the root mean square error (RMSE) [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF] 

RMSE = 1 N T T t=1 at -at 2 (18) 
for abundance estimation, and the averaged spectral angle distance (SAD E ) [START_REF] Huck | Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data[END_REF]]

SAD E = 1 N N n=1 arccos en, en en en . ( 19 
)
for endmember estimation. Here, en and at represent the actual endmember and abundance vector.

For each setting, ten Monte-Carlo simulations were conducted. The average RMSE and SAD E are reported in Table 1 andTable 2, respectively. For abundance estimation, the proposed method provides the best estimation in most cases with varying proportions of nonlinearly-mixed pixels at different noise levels. For the cases with 80% LMM and 20% GBM pixels at SNR = 25, 35 dB, and with 50% LMM and 50% GBM pixels at SNR = 35 dB, the proposed method yields second best RMSE. For endmember estimation, the proposed method is superior to the other algorithms in all experiments. 

Experiments on real data

The performance of the proposed method was also examined on a sub-image from the Urban data, captured by HYDICE sensor. The raw image contains 307 × 307 pixels, with 210 spectral bands ranging from 0.4µm to 2.5µm. The field has been known mainly composed of four endmembers, namely, asphalt, grass, tree and roof [START_REF] Zhu | Bi-objective nonnegative matrix factorization: Linear versus kernel-based models[END_REF][START_REF] Jia | Spectral and spatial complexity-based hyperspectral unmixing[END_REF]. The top left corner with 100 × 100 pixels were utilized, and 162 bands with high SNR were retained for analysis [START_REF] Zhu | Bi-objective nonnegative matrix factorization: Linear versus kernel-based models[END_REF][START_REF] Jia | Spectral and spatial complexity-based hyperspectral unmixing[END_REF]. Without information on actual abundance vectors and endmembers, the unmixing performance is evaluated using the reconstruction error (RE) and the average spectral angle distance (SAD) between the observed and reconstructed pixels, as reported in Table 3. We observe that the proposed method leads to the smallest RE and SAD among all the comparing methods. The abundance maps estimated by different methods are illustrated in Figure 1(a). The µ-map obtained by the proposed method is shown in Figure 1(b), from which the distribution of nonlinearity levels of pixels is clearly illustrated. 

CONCLUSION

This paper presented an unsupervised unmixing strategy based on the linear/nonlinear mixture assumption, by taking advantage of the NMF framework. The nonlinearity level was estimated at each pixel, which allows to achieve a more accurate modeling capacity than previously proposed methods, such as [START_REF] Zhu | Bi-objective nonnegative matrix factorization: Linear versus kernel-based models[END_REF]. The formulated optimization problem was solved by the BCD strategy. Future works include incorporating proper spatial regularizations on these newly introduced variables.
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 1 Fig. 1: Experimental results on Urban image: (a) Abundance maps for Grass, Asphalt, Tree, Roof obtained by MinDisCo, MVCNMF and the proposed method. (b)µ-map obtained by the proposed method.

Table 1 :

 1 RMSE of abundances on synthetic data (×10 -2 )

	Mix.	80% LMM & 20% GBM	50% LMM & 50% GBM	20%LMM & 80 %GBM
	Unmix.	25dB	30dB	35dB	25dB	30dB	35dB		30dB	35dB
	FCLS	6.55	4.74	4.30	5.86	4.38	5.91	6.96	7.23	7.54
	GBM	6.15	4.69	4.24	5.47	3.81	4.83	6.68	7.08	7.38
	PPNMM	5.85	4.81	4.28	5.52	3.53	4.49	6.47	7.06	7.22
	MinDisCo	8.27	9.31	8.20	8.19	8.17	9.46	10.40	11.00	10.13
	MVCNMF	4.44	4.02	3.02	4.70	3.57	4.06	11.76	12.15	11.81
	Proposed	5.65	3.98	3.54	4.58	3.42	4.48	5.38	5.84	5.78

Table 2 :

 2 SAD E of endmembers on synthetic data (×10 -2 )

	Mix.	80% LMM & 20% GBM	50% LMM & 50% GBM	20% LMM & 80% GBM
	Unmix.	25dB	30dB	35dB	25dB	30dB	35dB	25dB	30dB	35dB
	VCA	3.31	3.14	2.89	4.49	3.76	4.04	4.79	5.22	4.67
	MinDisCo	6.53	6.10	5.97	7.66	7.26	6.09	7.69	7.81	7.45
	MVCNMF	3.35	3.08	2.64	4.00	3.74	3.85	28.19	28.99	28.70
	Proposed	2.98	2.66	2.36	3.59	3.15	3.13	3.91	4.49	3.77

Table 3 :

 3 RE and SAD on Urban image (×10 -2 )

		FCLS	GBM PPNMM MinDisCo MVCNMF Proposed
	RE	8.64	8.64	1.37	1.13	0.79	0.78
	SAD 31.44	31.46	13.79	7.71	6.19	5.98
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