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Interpretable time series kernel analytics by pre-image1

estimation2

Abstract3

Kernel methods are known to be e↵ective to analyse complex objects by im-
plicitly embedding them into some feature space. To interpret and analyse the
obtained results, it is often required to restore in the input space the results ob-
tained in the feature space, by using pre-image estimation methods. This work
proposes a new closed-form pre-image estimation method for time series kernel
analytics that consists of two steps. In the first step, a time warp function,
driven by distance constraints in the feature space, is defined to embed time
series in a metric space where analytics can be performed conveniently. In the
second step, the time series pre-image estimation is cast as learning a linear (or
a nonlinear) transformation that ensures a local isometry between the time se-
ries embedding space and the feature space. The proposed method is compared
to the state of the art through three major tasks that require pre-image estima-
tion: 1) time series averaging, 2) time series reconstruction and denoising and
3) time series representation learning. The extensive experiments conducted on
33 publicly-available datasets show the benefits of the pre-image estimation for
time series kernel analytics.

1. Introduction4

Kernel methods [24] are well known to be e↵ective in dealing with nonlin-5

ear machine learning problems in general, and are often required for machine6

learning tasks on complex data as sequences, time series or graphs. The main7

idea behind kernel machines is to map the data from the input space to a8

higher dimension feature space (i.e., kernel space) via a nonlinear map, where9

the mapped data can be then analysed by linear models. While the mapping10

from input space to the feature space is of primary importance in kernel meth-11

ods, the reverse mapping of the obtained results from the feature space back to12

the input space (called the pre-image problem) is also very useful. Estimating13

pre-images is important in several contexts for interpretation and analysis pur-14

poses. From the beginning, it has been often considered to estimate denoised15

and compressed results of a kernel Principal Component Analysis (PCA). Other16

tasks are of great interest, since the pre-image estimation allows, for instance,17

to obtain the reverse mapping of the centroids of a kernel clustering, and of the18

atoms as well as of the sparse representations in kernel dictionary learning.19

20
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In view of the importance of the pre-image estimation issue and of its bene-21

fits in machine learning, several major propositions have been developed. First,22

in Mika et al. [23], the problem is formalised as a nonlinear optimisation prob-23

lem and, for the particular case of the Gaussian kernel, a fixed-point iterative24

solution to estimate the reverse mapping is proposed. To avoid numerical insta-25

bilities of the latter approach, in Kwok et al.[18], the relationship between the26

distances in feature and input spaces is established for standard kernels, and27

then used to approximate pre-images by multidimensional scaling. In Bakir et28

al. [3], the pre-image estimation problem is cast as a regression problem be-29

tween the input and the mapped data, the learned regression model is then30

used to predict pre-images. Honeine and Richard proposed in [15] an approach31

where the main idea is to estimate, from the mapped data, a coordinate system32

that ensures an isometry with the input space; this approach has the advantage33

to provide a closed-form solution, to be independent of the kernel nature and34

to involve only linear algebra. More recently, task-specific estimation has been35

studied, such as the resolution of the pre-image problem for nonnegative matrix36

factorisation in [32].37

All the proposed methods for pre-image estimation are either based on op-38

timisation schema, such as gradient descent or fixed-point iterative solution, or39

based on ideas borrowed from dimensionality reduction methods. In particu-40

lar, these methods were developed for Euclidean input spaces, as derivations41

are straightforward owing to linear algebra (see [16] for a survey on the resolu-42

tion of the pre-image problems in machine learning). A major challenge arises43

when dealing with non-Euclidean input spaces, that describe complex data as44

sequences, time series, manifolds or graphs. Some recent works address that45

pre-image problem on that challenging data. For instance, in Cloninger et al.46

[9] the pre-image problem is addressed for Laplacian Eigenmaps under L1 reg-47

ularisation and in Bianchi et al. [6] an encoder-decoder is used to learn a latent48

representation driven by the kernel similarities, where the pre-image estimation49

is explicitly given by the decoder side.50

For temporal data, while kernel machinery has been increasingly investigated51

with success for time series analytics [13, 27, 31, 30, 29, 19], the pre-image52

problem for temporal data remains in its infancy. In addition, time series data,53

that involve varying delays and/or di↵erent lengths, are naturally lying in a54

non-Euclidean input space, making the above existing pre-image approaches for55

static data inapplicable. This work aims to fill this gap, by proposing a pre-56

image estimation approach for time series kernel analytics, that consists of two57

steps. In the first step, a time warp function, driven by distance constraints58

in the feature space, is defined to embed time series in a metric space where59

analytics can be performed conveniently. In the second step, the time series60

pre-image estimation is cast as learning a linear or a nonlinear transformation61

that ensures a local isometry between the time series embedding space and the62

feature space. The relevance of the proposed method is studied through three63

major tasks that require pre-image estimation: 1) time series averaging, 2) time64

series reconstruction and denoising under kernel PCA, and 3) time series repre-65

sentation learning and dictionary learning under kernel k-SVD. The benefits of66
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the proposed method are assessed through extensive experiments conducted on67

33 publicly-available time series datasets, including univariate and multivariate68

time series that may include varying delays and be of the di↵erent lengths.69

70

The main contributions of this paper are:71

1. We propose a time warp function, driven by distance constraints in the72

feature space, that embeds time series into an Euclidean space73

2. We cast the time series pre-image estimation approach as learning a linear74

or nonlinear transformations in the feature space75

3. We propose a closed-form solution for pre-image estimation by preserving76

a local isometry between the temporal embedded space and the feature77

space78

4. We conduct wide experiments to compare the proposed approach to the79

major alternative pre-image estimation methods under three crucial tasks:80

1) time series averaging, 2) time series reconstruction and denoising and81

3) time series representation and dictionary learning.82

The reminder of the paper is organised as follows. Section 2 gives a brief83

introduction to kernel PCA and kernel k-SVD and Section 3 presents the major84

pre-image estimation methods. In Section 4, we formalise the pre-image esti-85

mation problem for time series and develop the proposed solution as well as the86

corresponding algorithm. We detail the experiments conducted and discuss the87

obtained results in Section 5.88

2. Kernel PCA and kernel k-SVD89

Kernel methods [24] rely on embedding samples xi 2 Rd with �(xi) into a90

feature space H, a Hilbert space of arbitrary large and possibly infinite dimen-91

sion. The map function � needs not to be explicitly defined, since computations92

conducted in H can be carried out by a kernel function that measures the inner93

product in that space, namely (xi,xi0) = h�(xi),�(xi0)i for all xi,xi0 . Given94

a set of input samples {xi}
N
i=1, xi 2 Rd, let K be the Gram matrix related95

to the kernel, namely Kii0 = (xi,xi0). Let X = [x1, ...,xN ] 2 Rd⇥N be the96

description of N input samples xi 2 Rd and, with some abuse of notation, let97

�(X) be the matrix of entries �(x1), ...,�(xN ).98

99

In the following, we describe two well-known kernel methods, kernel PCA100

and kernel k-SVD, as nonlinear extensions of the well-known PCA and k-SVD.101

While both methods estimate a linear combination for optimal reconstruction102

of the input samples, the former forces the orthogonality of the atoms that leads103

to an orthonormal basis, and the latter forces the sparsity while relaxing the104

orthogonality condition.105

2.1. Kernel PCA106

Kernel PCA extends standard PCA to find principal components that are107

nonlinearly related to the input variables. For that, the principal components108
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are rather determined in the feature space. For the sake of clarity, we assume109

for now that we are dealing with centred mapped data, namely
PN

i=1 �(xi) = 0.110

The covariance matrix in the feature space takes then the form111

C =
1

N

NX

i=1

�(xi)�(xi)
T
. (1)

Similarly to standard PCA, the objective comes to find the pairs of eigenvalue112

�j � 0 and corresponding eigenvector uj 2 H \ 0 that satisfy113

�juj = Cuj , (2)

namely for each �(xi)114

�jhuj ,�(xi)i = hCuj ,�(xi)i. (3)

As each eigenvector uj lies in the span of �(x1), ...,�(xN ), there exist coe�-115

cients ↵ij , ...,↵Nj such that116

uj =
NX

i=1

↵ij �(xi). (4)

From Eq. (3) and Eq. (4), and by simple developments, the problem in Eq. (2)117

remains to find the solution of the eigendecomposition problem:118

�j↵j = 1
NK↵j . (5)

Let �1 � ... � �p be the p highest non-zero eigenvalues of 1
NK and ↵1, ...,↵p119

their corresponding eigenvectors. The principal components in the feature space120

are then given by computing the projections Pj(�(x)) of the sample x onto the121

eigenvector uj = �(X)↵j :122

Pj(�(x)) = huj ,�(x)i =
NX

i=1

↵ijh�(xi),�(x)i = kx↵j (6)

with kx = [(x1,x), ...,(xN ,x)]. By denoting ↵ = [↵1, ...,↵p], the description123

P (�(x)) of �(x) into the subspace of the p first principal components is then124

P (�(x)) = (kx↵)
T (7)

Two considerations should be taken. First, the eigenvector expansion coe�-125

cients ↵j should be normalised by requiring �jh↵j ,↵ji = 1. Secondly, as �(xi)126

are assumed centred, both the Gram matrix K in Eq. (5) and kx used in Eq.127

(6) and Eq. (7) need to be substituted with their centred counterparts, namely128

eKij = (K � 1NK �K1N + 1NK1N )ij (8)

ekx =
⇣
kx �

1
N 1

T
N K

⌘
(IN � 1N ) (9)

with (1N )ij = 1/N for all i, j, IN the identity matrix and 1N 2 RN the unit129

vector.130
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2.2. Kernel k-SVD131

Sparse coding and dictionary learning become popular methods for a vari-132

ety of tasks as feature extraction, reconstruction, denoising, compressed sensing133

and classification [17, 4, 5]. k-SVD [1] is among the most-known and tractable134

dictionary learning approach to learn a dictionary and to sparse represent the135

input samples as a linear combination of the dictionary atoms. When deal-136

ing with complex data, kernel k-SVD may be required to learn, in the feature137

space, the dictionary and the sparse representations of the mapped samples as138

a nonlinear combination of the dictionary atoms [28]. Let us introduce a brief139

description of kernel k-SVD.140

141

Let D = [d1, ...,dL] 2 Rd⇥L be the dictionary composed of L atoms dj 2 Rd.142

The embedded dictionary �(D) = �(X)B is defined as a linear representation143

of �(X), since the atoms lie in the subspace spanned by the �(X). The kernel144

dictionary learning problem takes the form145

min
B,A

k�(X)� �(X)BAk
2
F (10)

s.t. kaik0  ⌧ 8i = 1, ..., N, (11)

where k.kF is the Frobenius norm1, the matrix B = [�1, ...,�L] 2 R
N⇥L

146

gives the representation of the embedded atoms into the base �(X) and A =147

[a1, ...,aN ] 2 RL⇥N gives the sparse representations of �(X), with the sparsity148

level ⌧ imposed by the above constraint.149

150

The kernel k-SVD algorithm iteratively cycles between two stages. In the151

first stage, the dictionary is assumed fixed with B known and a kernel orthog-152

onal matching pursuit (OMP) technique [20] is deployed to estimate A. As in153

standard OMP, given a sample x, we select the first atom that best reconstructs154

�(x); namely we select the j-th atom that maximises155

�
kx � aT

xB
T
K
�
�j . (12)

The sparse codes are then updated by the projections onto the subspace of the156

yet selected atoms157

ax =
�
B
T
⌦KB⌦

��1
(kxB⌦)

T
, (13)

where B
T
⌦ is the submatrix of B limited to the yet selected atoms. The proce-158

dure is reiterate until the selection of ⌧ atoms.159

160

Once the sparse codes A of the N samples estimated, the second stage of the161

kernel k-SVD is performed to update both B andA. For that, the reconstruction162

1kMkF =
qPp

i=1

Pq
j=1(mij)2 is the Frobenius norm of the matrix M 2 Rp⇥q of general

term mij
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error is defined as163

min
B,A

k�(X)� �(X)
LX

j=1

�jaj.k
2
F , (14)

with aj. 2 RN referencing the j-th row of A, namely164

min
B,A

k�(X)Ek � �(X)�kak.k
2
F , (15)

with Ek = IN �
P

j 6=k �jaj. the error of reconstruction matrix when removing165

the k-th atom. An eigendecomposition is then performed to get166

(ER
k )TK(ER

k ) = V ⌃V T
, (16)

where E
R
k is the error of reconstruction restricted to the samples that have167

involved the k-th atom. The sparse codes �k and aR
k. are updated by using the168

first eigenvector v1 with169

aR
k. = �1v

T
1 and �k = �

�1
1 E

R
k v1. (17)

3. Related works on pre-image estimation170

From the representer theorem [22] any result ' 2 H obtained by some kernel171

method may be expressed in the form ' =
PN

i=1 �i �(xi); that is as a linear172

combination of the mapped training samples {�(xi)}Ni=1. In general, finding173

the exact pre-image x such that �(x) = ' is an ill-posed problem, that is often174

addressed by providing an approximate solution, namely by estimating x⇤ such175

that �(x⇤) ⇡ '. In the following, we describe three major methods to estimate176

the pre-image x⇤ of a given ' 2 H.177

3.1. Pre-image estimation under distance constraints178

The main idea proposed in Kwok et al. [18] is to use the distances between179

' and �(xi) and their relation to the distances between the pre-image x⇤ and180

xi. The main steps of the proposed approach are:181

1. Let ed2(',�(xi)) = h','i�2h',�(xi)i+h�(xi),�(xi)i be the square dis-182

tance between ' and any �(xi). In practice, only neighbouring elements183

are considered. Let �(ẋ1), ...�(ẋn) denote the n-th closest elements to '.184

2. For an isotropic kernel2, the relation d
2(xi,xj) = g(ed2(�(xi),�(xj))) be-185

tween the distances in the input and the feature spaces can be established.186

2an isotropic kernel is a function of the form k(x,y) = f(kx � yk) that depends only on
the norm of the lag vector between two samples.
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3. A solution is then deployed to determine the pre-image x⇤ such that187

[d2(x⇤
, ẋ1), . . . , d

2(x⇤
, ẋn)] =

⇥
g(ed2(',�(ẋ1))), ..., g(ed2(',�(ẋn)))

⇤
. (18)

For that, an SVD is deployed on the centred version of the submatrix188

Xn = [ẋ1, ..., ẋn], namely189

Xn(In � 1n) = U⇤V T
, (19)

where U = [u1, . . . ,uq] is the d ⇥ q matrix of the left-singular vectors.190

Let Z = [z1, . . . , zn] = ⇤V T be the q⇥ n matrix giving the projections of191

ẋi on the uj ’s orthonormal vectors. The pre-image estimation x⇤ is then192

obtained as:193

x⇤ = Uz⇤ + 1
nXn1n, (20)

where z⇤, the projection of x⇤ on the [u1, ...,uq] coordinate system, is194

z⇤ = �
1

2
(Z Z

T )�1
Z (d2

� d2
0), (21)

with d2
0 = [kz1k

2
, ..., kznk

2]T , d2 = [d21, . . . , d
2
n]

T and d
2
i = g(ed2(',�(ẋi))).195

3.2. Pre-image estimation by isometry preserving196

To learn the pre-image x⇤ of a given ' =
PN

i=1 �i �(xi), the proposed197

approach in [15] proceeds in two steps. First, a coordinate system, spanned by198

the feature vectors {�(xi)}Ni=1 is learned to ensure an isometry with the input199

space; subsequently, the coordinate system is used to estimate the pre-image x⇤
200

of '. These two main steps are summarised in the followings:201

1. Let  = { 1, ..., p} (p  N) be a coordinate system in the feature space,202

with  k = �(X)↵k. The projection of �(X) onto the coordinate system203

is P (�(X)) = (KA)T , where A = [↵1, ...,↵p]. To estimate the coordinate204

system that is isometric with the input space, the following optimisation205

problem is solved206

argmin
A

kX
T
X �KAA

T
Kk

2
F + �kKAk

2
F , (22)

where the second term controls through the regularisation parameter �207

the smoothness of the solution. The solution of this problem satisfies208

AA
T = K

�1(XT
X � �K

�1)K�1.209

2. Based on this result, the pre-image estimation x⇤ takes the form210

x⇤ = argmin
x

kX
Tx � (XT

X � �K
�1)� k

2
F (23)

with � = (�1, ..., �N )T . This problem defines a standard overdetermined211

equation system (N � d) that can be resolved as a least-square min-212

imisation problem (i.e., any technique such as the pseudo-inverse or the213

eigendecomposition). The pre-image estimation is then:214

x⇤ = (XX
T )�1

X(XT
X � �K

�1)�. (24)

7



3.3. Pre-image estimation by kernel regression215

In Bakir et al. [3], the pre-image estimation consists in learning a kernel216

regression function that maps all the �(xi) in the feature space H (related to217

the kernel ) to xi in the input space Rd. For that, first a kernel PCA is deployed218

to embed �(X) into the subspace spanned by the eigenvectors u1, ...,up defined219

in (4), with uj = �(X)↵j . Then, a kernel regression is learned from the set of220

the projections onto the kernel PCA subspace and X as221

argmin
B

kX �B bKk
2
F + �kBk

2
F , (25)

where B 2 Rd⇥N is the regression coe�cient matrix and bK is the Gram matrix222

with entries bKij = b(P (�(xi)), P (�(xj))). The solution to the problem (25) is223

then224

B = X bK( bK2 + �IN )�1 (26)

For a given result ' = �(X)� 2 H, its pre-image x⇤ is then estimated as:225

x⇤ = Bbk
T

P ('), (27)

with226

bkP (') = [b(P ('), P (�(x1))), ..., b(P ('), P (�(xN )))], (28)

where b(P ('), P (�(xi))) = b(↵T
K�,↵TkT

xi
) and ↵ = [↵1, ...,↵p].227

228

3.4. Overview229

To sum up, the three major methods presented above define three di↵erent230

approaches for pre-image estimation problem. First of all, all the methods in-231

volve only linear algebra and propose solutions that don’t su↵er from numerical232

instabilities. In Kwok et al. [18], the solution is mainly requiring the definition233

of a relation between the distances into the input and the kernel feature spaces.234

That requirement limite the Kwok et al. [18] approach to linear or isotropic235

kernels. Honeine et al. [15] alleviate that point by proposing a closed-form solu-236

tion that is applicable to any type of kernels. Furthermore, while in Honeine et237

al. [15] the pre-image estimation is obtained by learning a linear transformation238

into the feature space that preserves the isometry between the input and the239

feature space, in Bakir et al. [3], the pre-image estimation is obtained by using240

a non linear kernel regression that predicts the input samples from their images241

into the feature space. Finally, while both [15] and [3] proposals involve the242

whole training samples for pre-image estimation, Kwok et al. [18] uses only the243

samples on the neighborhood of ', which o↵ers a significant speed-up; highly244

valuable in the case of large scale data.245
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4. Proposed pre-image estimation for time series kernel analytics246

Let {xi}
N
i=1 be a set of N time series, where each xi 2 Rd⇥ti is a mul-247

tivariate time series of length ti that may involve varying delays. Let �(xi)248

be the �-mapping of the time series xi into the Hilbert space H related to a249

temporal kernel  that involves dynamic time alignments such as dtak [25],250

kdtw [2] and kga [10]. Let K be a the corresponding Gram matrix, with251

entries Kii0 = (xi,xi0). Given ' =
PN

i=1 �i �(xi) a result generated in H,252

the objective is to estimate the time series x⇤
2 Rd⇥t⇤ that is the pre-image253

of '. This problem is particularly challenging since, under varying delays, the254

time series are not longer lying in a metric space, which makes inapplicable the255

related work on pre-image estimation.256

257

We tackle this problem in two parts. In the first part, we formalise the258

pre-image estimation problem as the estimation of a linear transformation in259

the feature space, that ensures an isometry between the input and the feature260

spaces. Moreover, this result is extended to the estimation of a nonlinear trans-261

formation in the feature space, shown powerful on challenging data in Section262

5. Subsequently, we propose a local time-warp mapping function to embed263

time series into a vector space where the pre-image estimation can be estimated264

conveniently.265

4.1. Learning linear and nonlinear transformations for pre-image estimation266

Let X = [x1, ...,xN ] 2 Rt⇥N be a matrix giving the description of N univari-267

ate3 time series xi that we assume first lying in the metric space Rt; Section 4.2268

addresses the general case of time series that are lying into nonEuclidean space.269

The proposed pre-image method relies on learning a linear transformation R270

in the feature space that ensures an isometry between X and �(X). We first271

describe the method as a linear transformation, and then extend it to nonlinear272

transformations.273

Linear transformation274

The main idea to solve the pre-image problem is the isometry preserving,275

in the same spirit as the method described in Section 3.2. For this purpose,276

we formalise the pre-image problem as the estimation of the square matrix R277

that establishes an isometry between X and �(X), by solving the optimisation278

problem279

R
⇤ = argmin

R
kX

T
X � �(X)TR�(X)k2F . (29)

By using a kernel PCA where a relevant subspace is considered, an explicit de-280

scription P (�(X)) 2 Rp⇥N of �(X) is given and Eq. (29) can thus be rewritten281

3For multivariate time series, simply define X 2 Rd t⇥N .
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as:282

R
⇤ = argmin

R
kX

T
X � P (�(X))T RP (�(X))k2F . (30)

As P (�(X))P (�(X))T is invertible, a closed-form solution is given by:283

R
⇤ =

�
P (�(X))P (�(X))T

��1
P (�(X))XT

XP (�(X))T
�
P (�(X))P (�(X))T

��1
.

(31)
The estimation of the time series x⇤, as the pre-image of ' = �(X)�, is then284

given by:285

x⇤ = (XX
T )�1

X P (�(X))TR⇤
P (')

= (XX
T )�1

X P (�(X))TR⇤↵T
K�, (32)

with P (') = ↵T
K� and ↵ defined in Eq. (7).286

287

One can easily include some regularisation terms in the optimisation prob-288

lems (29) and (30), which can be easily propagated to the pre-image expression.289

For example, in the case of non-invertible XX
T , a regularisation term is intro-290

duced in Eq. (32) as:291

x⇤ = (XX
T + �It)

�1
X P (�(X))TR⇤↵T

K�, (33)

for some positive regularisation parameter �.292

Nonlinear transformation293

In the following, we propose to extend the above result to learn nonlinear294

transformations for pre-image estimation. Let b be a kernel defined on the295

feature space H, and b� the corresponding embedding function that maps any296

element of H into the Hilbert space defined by b. With some abuse of notation,297

we denote b�(�(X)) the matrix of all mapped elements b�(�(xi)), for i = 1, ..., N .298

Let bK be the Gram matrix of general term b(�(xi),�(xj)).299

300

The pre-image estimation problem can be then defined as learning a nonlin-301

ear transformation that defines an isometry between X and b�(�(X)) as:302

R
⇤ = argmin

R
kX

T
X � b�(�(X))T R b�(�(X))k2F . (34)

Similarly, a closed-form solution for R⇤ can be obtained as:303

R
⇤ = (P (b�(�(X)))P (b�(�(X)))T )�1

P (b�(�(X))) (35)

X
T
XP (b�(�(X)))T (P (b�(�(X)))P (b�(�(X)))T )�1

,

and304

P (b�(�(X))) = b↵T bK. (36)
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To estimate bK, an indirect manner is to use a kernel PCA, with b(�(xi),�(xj)) ⇡305

b(P (�(xi)), P (�(xj))). A simpler way is possible when dealing with kernels306

that are radial basis functions. For example, for the well-known Gaussian ker-307

nel b, bK is estimated directly from K as:308

b(�(xi),�(xj)) = exp

 
�
k �(xi)� �(xj) k

2

2�2

!

= exp

✓
�
h�(xi),�(xi)i � 2h�(xi),�(xj)i+ h�(xj),�(xj)i

2�2

◆

= exp

✓
�
(xi,xi)� 2(xi,xj) + (xj ,xj)

2�2

◆
(37)

The estimation of the pre-image of ' =
PN

i=1 �i �(xi) is then given by the309

time series x⇤:310

x⇤ = (XX
T )�1

X P (b�(�(X)))TR⇤
P (b�(')), (38)

with P (b�(')) = (bk'b↵)T , where bk' is the vector whose i-th entry is311

b(',�(xi)) = exp

 
�
�T

K� � 2�TkT
xi

+Kii

2�2

!
. (39)

The above proposed formulations and results for pre-image estimation (Sec-312

tion 4.1) present some similarities and di↵erences with the method proposed313

in [16] and presented in Section 3.2. First of all, both approaches propose for-314

mulations and solutions that only require linear algebra and are independent315

of the type of kernel. To establish the isometry, in [16] a linear transforma-316

tion restricted to the form R = �(X)AA
T�(X)T is estimated, whereas in our317

proposal the estimated R may be linear Eq.(30) or non linear Eq.(34) and is im-318

portantly unconstrained, namely of general form which enlarges its potential to319

deal with complex structures. Finally, while in [16] the solution Eq.(24) involves320

the kernel information through the regularisation term, which may be canceled321

for lower values of �, in the proposed solutions Eq.(33) and Eq.(38) the kernel322

information is entirely considered regardless of the regularisation specifications.323

324

4.2. Learning a metric space embedding for time series pre-image estimation325

In Section 4.1, time series are assumed of the same length and lying in a met-326

ric space. However, in general X = {xi}
N
i=1 is instead composed of time series327

xi of di↵erent lengths ti that are located in a non-metric space, rendering the328

previous results as well as the pre-image estimation related works not applicable.329

330

To address the pre-image estimation for such challenging time series, we de-331

fine an embedding function that allows to represent the time series in a metric332
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space, where the previous linear and nonlinear transformations method for pre-333

image estimation can be performed conveniently.334

335

For this purpose, first we define N' in H and N
�1
' as the set of the n-closest336

neighbours of ' and its pre-image, given as:337

N' =
n
�(xi)

��� h�(xi),'i =
NX

j=1

�j(xi,xj) is among the n highest values
o
,(40)

N�1
' =

�
xi

�� �(xi) 2 N'

 
(41)

Let �(xr) be the representative of N' with xr 2 Rt⇤ defined as:338

�(xr) = argmax
�(xi)2N'

X

�(xj)2N'

(xi,xj). (42)

To resorb the arising delays, a temporal alignment between each xi and xr

is then performed by dynamic programming. An alignment ⇡ of length |⇡| = m

between xi and xr is defined as the set of m increasing couples

⇡ = ((⇡1(1),⇡2(1)), (⇡1(2),⇡2(2)), ..., (⇡1(m),⇡2(m))),

where the applications ⇡1 and ⇡2 defined from {1, ...,m} to {1, ..., ti} and {1, ..., t⇤}339

respectively obey to the following boundary and monotonicity conditions:340

1 = ⇡1(1)  ⇡1(2)  ...  ⇡1(m) = ti341

1 = ⇡2(1)  ⇡2(2)  ...  ⇡2(m) = t⇤342

and 8 l 2 {1, ...,m}, ⇡1(l + 1)  ⇡1(l) + 1 and ⇡2(l + 1)  ⇡2(l) + 1, (⇡1(l + 1) �343

⇡1(l)) + (⇡2(l + 1)� ⇡2(l)) � 1.344

345

Intuitively, an alignment ⇡ between xi and xr describes a way to associate346

each element of xi to one or more elements of xr and vice-versa. Such an347

alignment can be conveniently represented by a path in the ti ⇥ t
⇤ grid, as348

shown in Figure 1 (left), where the above monotonicity conditions ensure that349

the path is neither going back nor jumping. The optimal alignment ⇡⇤ between350

xi and xr is then obtained as:351

⇡⇤ = argmin
⇡=(⇡1,⇡2)

kx⇡1
i � x⇡2

r k2 (43)

where x⇡1
i = (xi⇡1(1), ..., xi⇡1(m)) and x⇡2

r = (xr ⇡2(1), ..., xr ⇡2(m)) are xi and352

xr aligned through ⇡.353

354

We define fr, the temporal embedding function, to embed time series xi 2355

Rd⇥ti into a new temporal metric space as:356

fr : X �! eX ⇢ eI = Rd⇥t⇤

xi �! fr(xi) = xi Wir Nir (44)

where Wir 2 {0, 1}ti⇥t⇤ is the binary matrix related to the optimal tempo-357

ral alignment between xi and xr, as shown in Figure 1 (right). The matrix358
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Figure 1: In the left, the temporal alignment between xi (ti = 5) and xr (t⇤ = 6), the optimal
alignment ⇡⇤ is indicated in green. In the right, the adjacency binary matrix related to the
optimal temporal alignment.

Nir = diag(WT
ir 1ti)

�1 is the weight diagonal matrix of order t⇤, of general term359

1
|Nt| , that gives the weight of the element t of xr, where |Nt| is the number of360

time stamps of xi aligned to t. In particular, note that xr remains unchanged361

by fr, as Wrr = Nrr = diag([1, 1, . . . , 1]).362

363

The set of embedded time series eX = {fr(x1), ..., fr(xN )} is for now lying364

in a metric space eI, where the delays are resorbed w.r.t. the representative365

time series xr. The pre-image solution provided in the method described in366

Section 4.1 can be developed to establish a linear or nonlinear transformations367

to preserve an isometry between eX and �(X). The algorithm for the proposed368

solution TsPrima is summarised in Algorithm 1.369

Algorithm 1 TsPrima: Pre-image estimation for time series

1: Input: {xi}
N
i=1 with xi 2 Rd⇥ti ,  (a temporal kernel), b (a Gaussian

kernel),

2: � (with ' =
PN

i=1 �i�(xi)), n (the neighbourhood size)
3: Output: x⇤ the pre-image estimation of '
4:

5: Define N', N�1
' and xr using respectively (40), (41) and (42)

6: Embed N
�1
' into a temporal metric space by using Eq. (44), set eN�1

' =
fr(N�1

' )

7: Set X = eN�1
' and �(X) = N'

8: Learn a linear (resp. nonlinear) transformation R by using Eq. (31) (resp.
Eq. (35))

9: Estimate the pre-image x⇤ based on a linear (resp. nonlinear) transforma-
tion using Eq. (33) (resp. Eq. (38))
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5. Experiments370

In this section, we evaluate the e�ciency of the proposed pre-image esti-371

mation method under three major time series analysis tasks: 1) time series372

averaging, 2) time series reconstruction and denoising and 3) time series rep-373

resentation learning. The proposed pre-image estimation method TsPrima is374

compared to three major alternative approaches introduced in Section 3, and375

referenced in the following as Honeine, Kwok and Bakir methods. The exper-376

iments are conducted on 33 public datasets (Table 1) including univariate and377

multivariate time series data, that may involve varying delays and be of the378

same or di↵erent lengths. The 25 first datasets in Table 1 are selected from the379

archive given in [8, 11] by using three selection criteria: a) have a reasonable380

number of classes (Nb. of Classes < 50), b) have a su�cient size for train and381

test samples (Train size <= 500 and Test size < 3000), c) avoid time series of382

extra large lengths (Time series length < 700). To obtain a manageable number383

of datasets, the 3 above selection criteria are applied on the top 40 datasets, in384

the order set out in [8]. The 25 obtained datasets are composed of univariate385

time series and half of the datasets include significant delays. We consider a386

dataset as including significant delays if the di↵erence between the 1-NN Eu-387

clidean distance error and the 1-NN Dynamic time warping [21] error is greater388

than 5%. The 5 next datasets include univariate and multivariate time series389

covering local and noisy salient events as described in [30, 27, 14] and the three390

last datasets are related to handwritten digits and characters, they are described391

as multivariate time series of variable lengths [7]. In the following, we detail the392

evaluation process of the pre-image estimation methods then give and discuss393

the obtained results.394

5.1. Time series averaging395

Estimating the centroid of a set of time series is a major topic for many time396

series analytics as summarisation, prototype extraction or clustering. Time se-397

ries averaging has been an active area in the last decade, where the propositions398

mainly focus on tackling the tricky problem of multiple temporal alignments399

[14, 26, 27]. A suitable way to circumvent the problem of multiple temporal400

alignments is to use a temporal kernel method to evaluate the time series cen-401

troid in the feature space. The pre-image of the centroid is then estimated to402

obtain the time series averaging in the input space.403

404

In that context, let {xi}
N
i=1 and {�(xi)}Ni=1 be, respectively, a set of time405

series and their mapped images into the Hilbert space H related to the temporal406

kernel dtak [25]. Let ' = 1
N

PN
i=1 �(xi) be the centroid of the mapped time407

series in the feature space and x⇤ its pre-image in the input space. The quality408

of the obtained centroids is given by the within-class similarity
P

i dtak(x
⇤
,xi);409

the higher the within-class similarity, the better is the estimated centroid.410

411

To evaluate the e�ciency of each pre-image estimation method, the time412

series centroid is estimated for each class of the studied datasets and the induced413

14



Table 1: Data Description

Dataset Nb. Classes Train Test Time series Univariate
size size length

CC 6 300 300 60 X
GunPoint 2 50 150 150 X
CBF 3 30 900 128 X
OSULeaf 6 200 242 427 X
SwedishLeaf 15 500 625 128 X
Trace 4 100 100 275 X
FaceFour 4 24 88 350 X
Lighting2 2 60 61 637 X
Lighting7 7 70 73 319 X
ECG200 2 100 100 96 X
Adiac 37 390 391 176 X
FISH 7 175 175 463 X
Beef 5 30 30 470 X
Co↵ee 2 28 28 286 X
OliveOil 4 30 30 570 X
DiatomSizeR 4 16 306 345 X
ECG5Days 2 23 861 136 X
FacesUCR 14 200 2050 131 X
ItalyPowerD 2 67 1029 24 X
MedicalImages 10 381 760 99 X
MoteStrain 2 20 1252 84 X
SonyAIBOII 2 27 953 65 X
SonyAIBO 2 20 601 70 X
Symbols 6 25 995 398 X
TwoLeadECG 2 23 1139 82 X
spiral1 1 50 50 101 7
spiral2 1 50 50 300 7
PowerCons 2 73 292 144 X
BME 3 30 150 128 X
UMD 3 36 144 150 X
digits 10 100 100 29⇠218 7
lower 26 130 260 27⇠163 7
upper 26 130 260 27⇠412 7

within-class similarity is evaluated. The average within-class similarity is then414

reported in Table 2 for each dataset and each pre-image estimation method; the415

best values are indicated in bold (t-test at 5% risk). In addition, a Nemenyi416

test [12] is performed to compare the significance of the obtained results, with417

the related critical di↵erence diagram given in Figure 2. The estimated time418

series centroids for some challenging classes are shown in Figure 3, where we419

retain particularly spiral1 and the handwritten digits and characters datasets420
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(digits, lower and upper) as they are more intuitive to visually evaluate the421

quality of the estimated time series centroids.422

Table 2: Average within-class similarity of the estimated time series centroids

DataSet TsPrima Honeine Kwok Bakir

CC 0.744 0.709 0.721 0.709
GunPoint 0.902 0.910 0.882 0.886
CBF 0.798 0.737 0.755 0.737
OSULeaf 0.985 0.987 0.986 0.987

SwedishLeaf 0.910 0.920 0.920 0.920

Trace 0.998 0.992 0.991 0.992
FaceFour 0.981 0.980 0.981 0.98
Lighting2 0.918 0.876 0.859 0.875
Lighting7 0.964 0.930 0.930 0.931
ECG200 0.593 0.565 0.567 0.566
Adiac 0.997 0.997 0.996 0.997

FISH 0.996 0.995 0.994 0.995
Beef 0.900 0.892 0.898 0.890
Co↵ee 0.998 0.998 0.998 0.998

OliveOil 0.999 0.999 0.998 0.999

DiatomSizeR 0.997 0.997 0.997 0.997

ECG5Days 0.777 0.746 0.417 0.746
FacesUCR 0.721 0.699 0.648 0.700
ItalyPowerD 0.610 0.552 0.420 0.542
MedicalImages 0.671 0.644 0.637 0.646
MoteStrain 0.776 0.777 0.701 0.777

SonyAIBOII 0.749 0.740 0.716 0.740
SonyAIBO 0.960 0.962 0.955 0.962

Symbols 0.959 0.949 0.904 0.951
TwoLeadECG 0.980 0.977 0.911 0.977
spiral1 0.831 0.823 0.799 0.824
spiral2 0.947 0.940 0.934 0.940
PowerCons 0.458 0.328 0.436 0.330
BME 0.701 0.572 0.638 0.555
UMD 0.800 0.765 0.724 0.755
digits 0.746 0.575 0.657 0.581
lower 0.713 0.544 0.645 0.545
upper 0.764 0.572 0.570 0.573

Nb. Best 28 9 4 8
Avg. Rank 1.5 2.68 3.24 2.58

5.2. Time series reconstruction and denoising423

The reconstruction and denoising tasks represent a standard application con-424

text for pre-image estimation. For the time series reconstruction task, a kernel425
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Figure 2: Nemenyi test: comparison of pre-image methods under centroid estimation task

PCA is performed on the training set, the reconstruction of a given test sample426

x is then defined as the pre-image x⇤ of its kernel PCA projection P (�(x)).427

The latter takes the form ' = �(X)�, with � defined as:428

� = (IN � 1N ) ↵↵T ek
T

x + 1
N 1N (45)

The quality of the reconstruction is then measured as the similarity dtak(x⇤
,x)429

between each test sample x and its reconstruction x⇤; the higher the criterion,430

the better is the reconstruction. Table 3 gives the average quality of recon-431

struction obtained for each dataset and each method. Figure 4 gives the critical432

di↵erence diagram related to the Nemenyi test for the average ranking compar-433

ison of the studied methods. Figure 5 shows the reconstructions obtained for434

some challenging time series of digits, lower and upper datasets.435

436

For the time series denoising task, first a kernel PCA is performed on the437

training set, then a (0,�2) Gaussian noise is added to the test samples x to438

generate noisy samples x̃ with di↵erent variances �
2. The denoised sample is439

obtained as the pre-image x⇤ of its kernel PCA projection P (�(x̃)), with �440

defined as in Eq. (45). Similarly, the quality of the denoising is measured as the441

similarity dtak(x⇤
,x) between x⇤ and the initial x. Table 4 gives, for di↵erent442

values of �2, the average quality of the denoising for some datasets. Figure 6443

illustrates the denoising results for some challenging times series of the noisy444

spiral2 data and of the class “M” of upper dataset.445
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Figure 3: Time series centroids for some challenging classes of digits, lower, upper and
spiral1 datasets
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Table 3: Quality of the time series reconstruction under kernel PCA

DataSet TsPrima Honeine Kwok Bakir

CC 0.798 0.747 0.758 0.747
GunPoint 0.994 0.996 0.992 0.990
CBF 0.916 0.854 0.896 0.875
OSULeaf 0.997 0.998 0.995 0.998

SwedishLeaf 0.798 0.701 0.690 0.650
Trace 0.689 0.519 0.597 0.519
FaceFour 0.981 0.951 0.967 0.964
Lighting2 0.993 0.967 0.984 0.975
Lighting7 0.954 0.920 0.938 0.922
ECG200 0.965 0.979 0.959 0.962
Adiac 0.194 0.127 0.139 0.125
FISH 0.779 0.580 0.586 0.579
Beef 0.528 0.703 0.643 0.704

Co↵ee 0.584 0.595 0.570 0.559
OliveOil 0.150 0.125 0.141 0.121
DiatomSizeR 0.330 0.174 0.186 0.173
ECG5Days 0.996 0.996 0.995 0.995
FacesUCR 0.939 0.825 0.878 0.847
ItalyPowerD 0.831 0.892 0.023 0.851
MedicalImages 0.946 0.906 0.935 0.928
MoteStrain 0.971 0.987 0.970 0.979
SonyAIBOII 0.978 0.989 0.969 0.985
SonyAIBO 0.939 0.98 0.924 0.967
Symbols 0.885 0.822 0.724 0.761
TwoLeadECG 0.825 0.630 0.444 0.669
spiral1 0.961 0.939 0.933 0.911
spiral2 0.966 0.939 0.946 0.940
PowerCons 0.971 0.966 0.955 0.977

BME 0.896 0.800 0.858 0.666
UMD 0.885 0.855 0.904 0.797
digits 0.840 0.721 0.798 0.726
lower 0.787 0.696 0.747 0.685
upper 0.856 0.678 0.787 0.687

Nb. Best 22 9 1 3
Avg. Rank 1.56 2.67 2.71 3.06
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Figure 4: Nemenyi test: comparison of pre-image methods under kernel PCA reconstruction
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Figure 5: The time series reconstruction under kernel PCA of some samples of digits, lower
and upper datasets
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Table 4: Quality of the denoising for several noise levels

DataSet �
2 TsPrima Honeine Kwok Bakir

digits 0.01 0.832 0.669 0.782 0.666
0.05 0.808 0.619 0.742 0.627
0.1 0.791 0.605 0.723 0.612
0.15 0.783 0.598 0.719 0.606

lower 0.01 0.766 0.651 0.721 0.637
0.05 0.746 0.614 0.689 0.606
0.1 0.736 0.601 0.675 0.596
0.15 0.729 0.594 0.670 0.591

upper 0.01 0.837 0.627 0.765 0.638
0.05 0.806 0.579 0.712 0.600
0.1 0.789 0.561 0.688 0.590
0.15 0.782 0.554 0.679 0.586

Nb. Best 12 0 0 0
Avg. Rank 1.00 3.58 2.00 3.42
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Figure 6: Time series denoising under kernel PCA of noisy samples of spiral2 and of the class
“M” of upper dataset.
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5.3. Time series representation learning446

For time series representation learning, the kernel k-SVD (⌧ = 5) is used447

to learn, for each class of the considered datasets, the dictionary �(X)B and448

the sparse representations A = [a1, ...,aN ] of its membership time series, as449

defined in Section 2.2. The pre-images D⇤ and X
⇤ of the dictionary �(X)B and450

of the sparse codes A are then obtained by considering � = B and � = BA,451

respectively. The quality of the learned sparse representations is then measured452

as the similarity dtak(xi,x⇤
i ) between each time series xi and the pre-image453

x⇤
i of the sparse representation �(X)B ai. Table 5 gives the average quality454

of the learned representations for each dataset and each pre-image estimation455

method. Figure 7 gives the critical di↵erence diagram related to the Nemenyi456

test for the average ranking comparison of the studied methods. Figure 8 shows457

the learned representations for some time series of digits, lower and upper458

datasets and Figure 9 illustrates, for a challenging sample of the class “k” of459

lower dataset, the learned representations as well as the top 3 atoms involved460

in its reconstruction.461
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Figure 7: Nemenyi test: comparison of pre-image methods under kernel k-SVD representation
learning
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Table 5: Quality of the time series representation learning under Kernel k-SVD

DataSet TsPrima Honeine Kwok Bakir

CC 0.788 0.730 0.751 0.732
GunPoint 0.993 0.994 0.992 0.985
CBF 0.917 0.862 0.900 0.872
OSULeaf 0.996 0.996 0.995 0.996

SwedishLeaf 0.789 0.659 0.691 0.623
Trace 0.687 0.514 0.602 0.514
FaceFour 0.971 0.940 0.959 0.947
Lighting2 0.991 0.961 0.982 0.968
Lighting7 0.961 0.934 0.947 0.934
ECG200 0.953 0.957 0.950 0.941
Adiac 0.184 0.122 0.131 0.117
FISH 0.757 0.553 0.579 0.560
Beef 0.411 0.555 0.605 0.621

Co↵ee 0.596 0.607 0.586 0.560
OliveOil 0.145 0.133 0.152 0.120
DiatomSizeR 0.287 0.177 0.198 0.178
ECG5Days 0.996 0.996 0.995 0.994
FacesUCR 0.917 0.834 0.878 0.842
ItalyPowerD 0.800 0.781 0.034 0.728
MedicalImages 0.937 0.860 0.930 0.878
MoteStrain 0.969 0.970 0.971 0.970
SonyAIBOII 0.974 0.975 0.973 0.975

SonyAIBO 0.932 0.938 0.930 0.936
Symbols 0.811 0.785 0.794 0.755
TwoLeadECG 0.810 0.617 0.411 0.629
spiral1 0.944 0.913 0.920 0.914
spiral2 0.964 0.936 0.949 0.937
PowerCons 0.968 0.946 0.957 0.951
BME 0.872 0.734 0.843 0.622
UMD 0.888 0.842 0.905 0.788
digits 0.822 0.699 0.793 0.706
lower 0.773 0.678 0.738 0.671
upper 0.840 0.664 0.797 0.675

Nb. Best 24 7 3 3
Avg. Rank 1.5 3.02 2.33 3.15
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Figure 8: The learned time series representations under kernel k-SVD of some samples of
digits, lower, upper datasets
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Figure 9: The sparse representation of a time series of the class “k” of lower dataset and the
top 3 involved atoms for its reconstruction
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5.4. Further comparison462

In the previous experiments (Sections 5.1 to 5.3), we have evaluated the463

performances of TsPrima that are mainly due to two major ingredients : 1)464

the defined temporal embedding function fr (Section 4.2) and 2) the proposed465

transformation R to preserve an isometry between the time series embedding466

space and the feature space (Section 4.1). In this last part, the aim is to evaluate467

the e�ciency of the proposed transformation R, regardless of the e↵ect of fr.468

For that, TsPrima is compared to the alternative methods Honeine, Kwok and469

Bakir once all the time series embedded into the same metric space; namely,470

all the pre-image estimation methods are performed between the time series471

embedding space and the feature space. Similar experiments are performed on472

the 33 public datasets (Table 1), the results obtained for the three tasks are473

summarised into Table 6 and the related Nemenyi tests are given in Figure 10.474

Table 6: Further comparisons for pre-image estimation

TsPrima Honeine Kwok Bakir

Averaging Nb. Best 19 20 4 19

Avg. Rank 2.23 2.21 3.35 2.21

Reconstruction Nb. Best 24 10 0 1
(kernel PCA) Avg. Rank 1.56 2.35 3.05 3.05
Denoising Nb. Best 12 0 0 0
(kernel PCA) Avg. Rank 1.50 3.25 2.62 3.12
Rep. Learning Nb. Best 25 8 1 2
(kernel kSVD) Avg. Rank 1.44 2.67 2.58 3.32
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Figure 10: Nemenyi Tests.
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5.5. Overall analysis475

The experiments conducted in Sections 5.1 to 5.3 show that the proposed476

method TsPrima leads on almost all the datasets and through the three stud-477

ied tasks to the best results. On the other hand, the performances obtained by478

the alternative methods seem slightly equivalent and lower than those obtained479

by TsPrima.480

481

In particular, for time series averaging task, we can see in Table 2 that the482

centroids estimated by TsPrima lead to the highest within-class similarity on483

almost all the datasets; namely, each centroid obtained by TsPrima is in gen-484

eral the closest to the set of time series it represents. The analysis of the critical485

di↵erence diagram given in Figure 2 indicates that the next best results are ob-486

tained respectively by Bakir, Honeine and Kwok methods. In addition, as the487

state of the art methods are connected by a solid bold line, their performances488

remain equivalent. From Figure 3, we can see that while all the methods succeed489

to restitute the centroids of some input classes (shown on the left column) as490

the class ”6” of digits and ”S” of upper dataset, only TsPrima succeeds to491

estimate the centroids of the most challenging classes, as the ”k” class of lower492

dataset and spiral1.493

494

For time series reconstruction, Table 3 shows that TsPrima leads to the495

highest reconstruction accuracies through almost all the datasets, followed by496

Honeine, Bakir and Kwok methods. Figure 4 indicates that there is no signifi-497

cant di↵erence between the performances of the three state of the art methods498

(connected by a solid bold line). These results are assessed in Figure 5 that499

shows, for some input time series, the quality of the reconstructions obtained500

by TsPrima and the state of the art methods.501

502

For the time series denoising task, we observe from Table 4 and for all the503

methods that the quality of the denoising decreases when the intensity of noise504

increases. This result is illustrated in Figure 6, that shows the denoising results505

of the time series ”M” of upper dataset and of the highly noisy time series of506

spiral2 dataset. In particular, note that that Kwok and TsPrima methods507

lead to the best results on spiral2 data and seem less sensitive to noise than508

Honeine and Bakir methods.509

510

Lastly, for time series representation learning task, Table 5 indicates that511

each studied method leads to the best sparse representations for at least some512

datatsets and that TsPrima performs better on almost all the datasets. Fig-513

ure 8 shows the goodness of the sparse representations obtained. While all the514

methods succeed to sparse represent some input time series, the time series of515

”k” and ”B” classes appear challenging for Honeine and Bakir methods. In Fig-516

ure 9, we get a look on the quality of the learned atoms, that are involved into517

the reconstruction of the input samples. The first row gives for some input sam-518

ple ”k” (on the left), the sparse representations learned by each method. The519
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three next rows, provide the three first atoms involved into the reconstructions.520

We can see that while the first atom learned by TsPrima is nearly su�cient521

to sparse represent the ”k” input sample, the state of the art methods need522

obviously more that one atom to sparse represent the input sample. Finally,523

the analysis of Figure 7 indicates that Honeine method performs equivalently524

than Kwok and Bakir, whereas the Kwok performances are significantly better525

that those of Bakir method.526

527

Further comparisons (Table 6) are conducted in Section 5.4 to evaluate the528

e�ciency of TsPrima related to the learned transformation R, regardless of529

the temporal embedding fr. For averaging task, TsPrima, Honeine and Bakir530

lead equivalently to the best performances, followed by Kwok method (Figure531

10 (a)). From these results we can conjecture that, linear transformations seem532

su�cient to achieve good pre-image estimations for averaging task on these533

datasets, as both linear and non linear approaches (TsPrima, Honeine, Bakir)534

perform equivalently. Furthermore, while Honeine and Bakir involve the whole535

datasets for the centroid pre-image estimations, Kwok uses a subset of samples536

into the neighbourhood of ', which may explain the slightly lower performances537

of Kwok method. Note that, although TsPrima involves, similarly to Kwok538

method, fewer samples into the neighbourhood of ', it succeeds to reach the539

best performances thanks to the e�ciency of the learned transformation R.540

For the remaining tasks reconstruction, denoising and representation learning,541

TsPrima achieves the highest performances, followed by far by Honeine, Kwok542

and Bakir (Figure 10 (b), (c) and (d)), which assesses the crucial contribution543

of the learned transformations R of TsPrima. Lastly, of particular note is that544

Honeine and Bakir that involve the whole training samples induce much com-545

putations, specifically for the time series embedding process, than Kwok and546

TsPrima that require fewer samples into the neighbourhood of '.547

548

Finally, as all the studied methods propose closed-form solutions, they lead549

to comparable complexities. However, for large data, TsPrima and Kwok meth-550

ods are expected to perform faster as requiring fewer samples on the neighbor-551

hood of ' than Honeine and Bakir that involve the whole samples for pre-image552

estimation. Note that the complexity of the proposed solutions is mainly re-553

lated to the matrix inversion operator. In Kwok method, the inversion of ZZ
T

554

required in Eq. (21), with Z of dimension (q ⇥ n) and n is the neighbourhood555

size, induces a complexity of O(q2n) + O(q3); as q is in general small and fixed556

beforehand, the overall complexity is about O(n). For Honeine method, Eq.557

(24) requires two inversions of XX
T and K, which induces, respectively, a com-558

plexity of O(d2N) + O(d3) and O(N3), that leads to an overall complexity of559

O(N3). For Bakir method, Eq. (26), requires the inversion of the Gram matrix,560

which leads to a complexity of O(N3). For TsPrima, Eq. (32) involves the561

inversion of XX
T , with X is of dimension (d ⇥ n), d is the time series length562

and n is the neighbourhood size. The induced complexity is of O(d2n)+O(d3).563

For the time series embedding part, the complexity is mainly related to the564

time warping function which is of order O(d2n). As d is in general higher that565
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the neighbourhood size n, the overall complexity for TSPrima is about O(d3).566

To sum up, as the neighbourhood size n << N and d << N (for not extra567

large time series), the complexity induced by both Kwok and TSPrima remains568

lower that the one of Honeine and Bakir. Note that, the Honeine method can569

be developed to consider only the neighbourhoods instead of all samples.570

6. Conclusion571

This work proposesTsPrima, a new closed-form pre-image estimation method572

for time series analytics under kernel machinery. The method consists of two573

stages. In the first step, we define a time warp embedding function, driven by574

distance constraints in the feature space, that allows to embed the time series in575

a metric space. In the second step, the time series pre-image estimation is cast576

as learning a linear (or a nonlinear) transformation to ensure a local isometry577

between the time series embedding space and the feature space. Extensive ex-578

periments show the e�ciency and the benefits of TsPrima through three major579

tasks that require pre-image estimation: 1) time series averaging, 2) time series580

reconstruction and denoising and 3) time series representation and dictionary581

learning. Future work will focus on using pre-image estimation methods to en-582

hance the interpretability and the computation of deep learning tasks for time583

series, sequence and graph analytics.584
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