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Abstract

The problem of social spam detection has been traditionally modeled as a su-

pervised classification problem. Despite the initial success of this detection

approach, later analysis of proposed systems and detection features has shown

that, like email spam, the dynamic and adversarial nature of social spam makes

the performance achieved by supervised systems hard to maintain. In this paper,

we investigate the possibility of using the output of previously proposed super-

vised classification systems as a tool for spammers discovery. The hypothesis is

that these systems are still highly capable of detecting spammers reliably even

when their recall is far from perfect. We then propose to use the output of these

classifiers as prior beliefs in a probabilistic graphical model framework. This

framework allows beliefs to be propagated to similar social accounts. Basing

similarity on a who-connects-to-whom network has been empirically critiqued

in recent literature and we propose here an alternative definition based on a

bipartite users-content interaction graph. For evaluation, we build a Markov

Random Field on a graph of similar users and compute prior beliefs using a

selection of state-of-the-art classifiers. We apply Loopy Belief Propagation to

obtain posterior predictions on users. The proposed system is evaluated on a

recent Twitter dataset that we collected and manually labeled. Classification

results show a significant increase in recall and a maintained precision. This
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validates that formulating the detection problem with an undirected graphical

model framework permits to restore the deteriorated performances of previously

proposed statistical classifiers and to effectively mitigate the effect of spam evo-

lution.

Keywords: Social Spam detection, Online Social Networks, Twitter,

Supervised Learning, Markov Random Field, Cybersecurity

1. Introduction

Stories of abuse of Online Social Networks have been frequently surfacing in

the news scene. The Facebook Cambridge Analytica crisis and the repetitive

bot-based manipulations of political elections on Twitter have brought to light

the extent to which Online Media, and in particular, Online Social Networks5

(OSNs) can be abused. While the media involvement is relatively recent, there

has been a decade long research effort to characterize, detect and control the

ever increasing and proliferating forms of abuse on OSNs. Manifestations of

spam and abusive behavior range from opinion manipulation and popularity

inflation through to spammy advertisement, phishing, and malware dissemina-10

tion. Attacks have been often undertaken by coordinated armies of fake (or

sybil) accounts and occasionally by compromised accounts.

On Twitter, the 500 million tweets posted daily are impossible to monitor

and filter manually, thus making the development and deployment of machine-

learned detection and filtering systems a pressing necessity. The task is aggra-15

vated by the uniquely pronounced use of automation, which is now a major

component of the abuse scene on Twitter.

The most commonly used paradigm to detect spammers on social networks

is the supervised classification approach, which builds statistical classifiers of

social accounts (or messages) based on features extracted from their profile,20

content, behavior and social network. Many early studies have shown that

supervised classifiers were indeed able to yield high detection performance Ben-

evenuto et al. (2010); Stringhini et al. (2010); McCord and Chuah (2011). Later
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works Yang et al. (2011); Cresci et al. (2017a) have shown, however, that the

supervised learning methodology falls short in keeping up with the complex25

and ever-changing social spam characteristics. The dynamic and evolving na-

ture of social spam renders the rigid definitions and methods of the supervised

paradigm especially ineffective.

Of special interest to this discussion is the concept of spam evolution. This is

the process through which spammers change their characteristics and behavior30

with the goal of evading detection systems. As part of the population drifts away

from the known pattern of spammers, the recall of machine learning systems

is usually asymmetrically impacted Barreno et al. (2006). Other spammers do

not drastically change their characteristics and they remain reliably detected.

We use this asymmetrical deterioration in performance to motivate a change in35

the perception of supervised systems. Instead of detection, they can be seen

as tools for discovering spammers in the wild. Discovery can furthermore be

used for seeding, a concept that has been successfully exploited in unsupervised

systems (e.g. in Leas, Youtube’s unsupervised detection system where seeds are

used to start localized graph clustering Li et al. (2016)).40

The system we propose further exploits two main assumptions, namely that

accounts similarity implies class homophily, and that predictions of supervised

classifiers can be used to initialize beliefs about social accounts. This combined

belief/similarity framework is an excellent candidate to a probabilistic graphical

model. We use here the Markov Random Field, a simple yet versatile framework45

commonly used for belief modeling over dependent variables. This is an undi-

rected graphical model, that models joint probability over a graph of dependent

random variables. Social accounts are modeled as random variables, similarity

is modeled as edges, and predictions of accounts classes by supervised classifiers

as prior beliefs.50

The classification problem can then be cast as an inference over dependent

variables, and learning would correspond to finding the MRF parameters that

minimise the classification loss.

Accounts networks on OSNs have traditionally been based on the who-
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connects-to-whom network (called social graphs). Since using these as sim-55

ilarity graphs would require a problematic “strong trust” assumption Ghosh

et al. (2012), we propose here a new content-based similarity measure. This is

motivated by the observation that complicit spammers need to share the same

(or similar) content. We show that content-based similarity offers an excellent

way to construct graphs that are homophilic with respect to users classes.60

We show that the proposed similarity measure successfully captures the con-

cept of class homophily between social accounts.

The proposed system can be re-formulated and adapted to any online so-

cial network. We focus on the implementation of the system on Twitter since

a substantial literature addresses the development of Twitter-based statistical65

detection features for the supervised learning paradigm.

In order to construct the bipartite content-users graph and evaluate the pro-

posed model, we collect and manually label a recent dataset of Twitter accounts.

This dataset, which we made public in a form that respects Twitter’s rules, can

be used by fellow researchers to reproduce the work in this paper and for fur-70

ther development and evaluation of similar models. Results demonstrate that,

compared to individual prior predictions by state-of-the-art supervised classifi-

cation systems, the probabilistic formulation leads to a significant increase in

recall while maintaining high precision.

This work shows that traditional account-based supervised models, despite75

being inaccurate and lacking graceful degradation, can be effectively exploited

in the context of a probabilistic framework. This is an important step towards

the goal of exploiting scarce, inaccurate and biased predictions from variable

sources (including biased statistical classifiers) and towards building detection

systems that are more robust to features variations.80

The remaining of this paper is structured as follows. Section 2 overviews re-

lated work on social spam detection by comparing and contrasting the existing

detection approaches. Section 3 introduces the proposed system and explains

its main components and parameters. Section 4 describes data collection and

labeling techniques. Section 5 introduces the proposed content-based graph con-85
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struction mechanism and describes its implementation on Twitter. The Markov

Random Field notation is introduced in Section 6. Section 7 presents the exper-

imental evaluation and compares the results with existing approaches. Section 8

concludes the paper.

Research Contributions90

The main implications of this work are summarized as follows:

• This paper shows that undirected graphical models can be used to model

the problem of social spam detection.

• The Markov Random Fields formalism allows a hybrid social spam de-

tection model that exploits both users features and their content-based95

similarity.

• A robust measure of similarity between users can be defined in terms of

common content published by these users.

• The results validate that biased and inaccurate prior predictions on users

classes can be effectively used in the context of probabilistic graphical100

models as demonstrated by the significant increase in recall obtained by

the proposed approach.

2. Background and Related Work

2.1. Supervised Detection of Spam on OSNs

The first mention of social spam in a research work was in Yardi et al.105

(2009), where authors analyzed the behavior and characteristics of early forms

of spamming accounts, namely accounts that posted unwanted URLs to trend-

ing Twitter topics. The rising problem of spam on OSNs was later formally

addressed by several works Benevenuto et al. (2010); Stringhini et al. (2010);

Lee et al. (2010); Chu et al. (2010); Jiang et al. (2016); Inuwa-Dutse et al. (2018).110

These works undertook the mission of characterizing and identifying spammers
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using supervised learning tools and models. Their application spanned Twitter,

Facebook and MySpace and their main contributions were focused on ”features

engineering”. The proposed (and sometimes overlapping) sets of features were

extracted from users’ profiles, content, behavior and social network to charac-115

terize and identify spammers. They form the relatively constant core of later

contributions.

One way to generally organize existing work is to classify the proposed sys-

tems based on the detection objective. We define the objective of the detection

as the particular instance of the social platform the detection system wishes to120

identify or to label as abusive/spam-related. There are three distinct instances

found in the literature: the social account, the social post (e.g. a tweet), and the

URL. The first instance refers to a single profile on the platform, while a post

represents the atomic unit of content. A URL is also an instance of content that

can be found in text-based components, such as posts and about-me sections.125

This classification platform can also be applied to subcategories of abusive

behavior on social media. An example is the detection of fake followers Stringh-

ini et al. (2013); Cresci et al. (2015) (sybil accounts following other accounts

in order to inflate their popularity) which can be considered as a subcategory

of spam accounts detection. Similarly, the task of detecting opinion manipu-130

lation and political propaganda Thomas et al. (2012); Ferrara (2017); Kušen

and Strembeck (2020) can be considered a subcategory of the broader spam

messages detection Wang et al. (2015); Clark et al. (2016). Although opinion

manipulation is related to the more recent studies on fake news detection Zhang

and Ghorbani (2019); Bondielli and Marcelloni (2019); Meel and Vishwakarma135

(2019), it is generally discussed in the context of bots-operated large scale ma-

nipulation, while fake news can propagate organically by legitimate accounts.

Trends poisoning Lee et al. (2012), also known as hashtag hijacking, is the prac-

tice of linking one’s content to trending topics by including these topics hashtags

and keywords in the post text. It aims at diverting the public attention towards140

the hijackers content. This can be studied as a text Lee et al. (2012) or an

account Benevenuto et al. (2010) detection problem. Note that URLs are usu-
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ally detected in the context of spamvertising Zhang et al. (2014), and phishing

and malware dissemination Aggarwal et al. (2012); Chhabra et al. (2011); Javed

et al. (2019) but they can fit into the message detection category as well.145

The problem of social spam detection is usually modelled under a supervised

classification framework and the majority of papers consider that the task is to

detect individual accounts. Few works deviate from this paradigm either by

modeling the task as one of community classification (using community-based

features) Bhat and Abulaish (2013) or by using an unsupervised platform Beutel150

et al. (2013); Cao et al. (2014); Li et al. (2016).

Along with detection systems, some works have attempted to quantify and

qualify the mechanisms and dynamics that controlled the underground of mali-

cious and abusive behavior on social media. The work of Thomas et al. Thomas

et al. (2011, 2013) and Stringhini et al. Stringhini et al. (2013, 2012) on the155

spam underground and communities are notable in this domain.

The adversarial nature of the problem meant that spammers benefited from

changing their characteristics in order to evade detection. Yang et al. Yang

et al. (2011) demonstrate early evidence of spam evolution by underlining a

change in spammers characteristics. Other studies Cresci et al. (2017a); El-160

Mawass and Alaboodi (2016) have evaluated the performance of state-of-the-art

classification systems on recent datasets and have also conjectured that results

indicate a spam evolution. A few recent articles have explored adversarial and

proactive ways to predict spam evolution Cresci et al. (2018, 2019a,b); Washha

et al. (2019).165

2.2. Graph-based Detection of Social Spam

In contrast to the previously discussed approaches which constitute the bulk

of the community contributions, a more recent paradigm is centered around

the graphical representation of the problem by exploiting a major loophole in

the spam strategy. The guiding assumption of this paradigm is that, in order170

to be effective, malicious attacks need to be at least loosely coordinated or

synchronized. This results in sybil accounts being linked, either through the
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social graph structure or through some form of similarity. This assumption is

used to construct what can be called, depending on the application, a social Yu

et al. (2008); Yu et al. (2008), interaction Li et al. (2016); Beutel et al. (2013)175

or similarity graph Cao et al. (2014); El-Mawass et al. (2018). Detection is

therefore executed either by means of graph clustering (or cutting) Cao et al.

(2014), or is modeled as a search for abnormally dense subgraphs Beutel et al.

(2013). Detection models based on social graphs can be attacked by engineering

social links with legitimate accounts. This issue is addressed in Fraudar Hooi180

et al. (2017, 2016), a next generation graph-based detection system designed to

detect fraudsters in the presence of camouflage.

Some of these graph-based works are completely unsupervised Beutel et al.

(2013); Cao et al. (2014), while some, especially works based on graph cutting,

assume the presence of at least one label to help associate the identified clusters185

Danezis and Mittal (2009).

While most of the unsupervised detection approaches are graph-based, a

notable exception is the work of Cresci et al. on DNA fingerprinting Cresci

et al. (2017b). The approach assumes that collusive spammers have similar

activity dynamics and proposes a DNA-like alphabet to model account’s activity.190

Spammers are then detected by clustering similar DNA profiles.

2.3. Probabilistic Graphical Models for Online Abuse Detection

Previous applications of probabilistic graphical models in the context of

anomaly detection on online platforms include Netprobe Pandit et al. (2007)

and FraudEagle Akoglu et al. (2013); Rayana and Akoglu (2015), which tar-195

get fraudulent accounts on online markets (e.g. Amazon and eBay) and review

fraud, respectively. A notable example in the domain of malware detection is

Semantic Norton’s Polonium system Chau et al. (2011) which implements belief

propagation over a large-scale bipartite graph of machines and files. Machines

are assigned a proprietary reputation belief and the belief propagation helps200

identify malware files. Despite some similarities with the problem of online

social spam detection, the context and formulation of these models are quite
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different, making it impossible to transfer them directly to the setting of social

spam detection.

On a closer front, applications of Markov Random Field (MRF) to spam205

detection have followed the traditional model of earlier graph-based approaches

(e.g. SybilGuard Yu et al. (2006) and SybilLimit Yu et al. (2008)) by basing

the users graph on the social structure of the network (the who-follows-whom

graph). SybilBelief Gong et al. (2014) is a system that propagates known labels

of users over the social structure using a MRF model. The system is tested on210

synthetic and real-world social graphs including the social graph of Facebook.

SybilFrame Gao et al. (2015) is based on a similar idea but uses a probabilistic

representation of users based on their perceived labels. The proposed system

is evaluated on synthetic data and the social structure of Twitter. SybilBelief

and SybilGuard are direct extensions of the established graph-based detection215

community which traditionally bases detection on the social structure network.

The leading assumption is that links between users are based on a relationship

of trust, an assumption that has been shown to be questionable on real online

social networks including Twitter Ghosh et al. (2012).

This paper brings a completely different approach to the use of MRF for220

social spam detection. We position our work as an extension to the work of

the machine learning community. Moreover, the proposed graph presentation

does not use the social structure of the network, choosing instead to base the

graph on the similarity between users. We thus avoid the notion of strong-trust

that is assumed in structure-based contributions. This choice is also in line225

with the more recent graph-based contributions from Facebook and Youtube Li

et al. (2016); Cao et al. (2014), which define a graph of interaction or similarity

between users. On a practical note, constructing the graph with content-based

similarity makes our work more easily reproducible and generalizable than works

using proprietary social graph information.230
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3. Proposed System

3.1. Problem Formulation

Setting and Input. Assume we have a set of social accounts U , where

each user u ∈ U has an associated vector of numerical characteristics xu ∈ X

and a set of messages M(u) that represents the content posted by this user. For235

each user u, we would like to assign a class yu in L = {0, 1} where 0 denotes a

legitimate account and 1 denotes a malicious account. We also have access to

an inaccurate oracle (e.g. a classification system or a blacklist) that predicts,

for each account u, the probability p(yu = 1) that u is malicious based on xu

(or M(u) in the case of a URL blacklist).240

Domain knowledge indicates that if users have content in common, they are

likely to share the same class, i.e. be both legitimate or both malicious. By

defining a measure of similarity between users, it is possible to define N (u)

the neighborhood of user u containing all nodes connected to u in the defined

similarity graph.245

Goal: We would like to know if, given the biased individual predictions offered

by the oracle, it is possible to reach a better individual prediction for each user by

taking into consideration its similarities to other users. Similarity is formulated

here in terms of content and the leading assumption is that similarity can be

used to calibrate the bias in the oracle’s predictions.250

Formal Definition: We formulate the problem of assigning a class to each

user u as a classic classification problem where the goal is to find a mapping

from the user’s representation xu to the set of labels L.

To take into account the similarity between accounts, we rely on the Markov

Random Field formalism, which allows us to define dependencies between pre-255

dictions of similar users. The model represents the class of each user u as a ran-

dom variable Zu and the relations between these variables as a graph G(V,E)

where V = {Zu}u∈Users is the set of users predictions and E is the set of edges

linking similar users.

Dependency between users is simplified by assuming the Markov property,260
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defined by a node being independent of all other nodes given its neighbors. On

the defined undirected graph, the local Markov property is formally stated as:

P (Zu | ZV \u) = P (Zu | ZN (u)) where N (u) is the neighborhood of u.

3.2. System Design

The problem we formulated above and the general system we propose to265

improve the classification performance are both platform-agnostic. The details

of the implementation in this paper are specific to Twitter but the solution can

be adapted to any social network platform in which a similar problem can be

defined (e.g. Facebook, Instagram, etc...). Figure 1 illustrates the data flow and

general architecture of the proposed system. The data flow can be summarized270

as follows:

1. Data Crawling: Accounts and content information is first crawled from

the online social platform (Section 6).

2. Features Extraction: Distinguishing behavioral, social and content-

based characteristics are extracted from accounts content and profiles,275

and a numerical features vector is assigned to each account (Section 7.1).

3. Priors Computing: A prior probability is assigned to each account

given its numerical features vector (in Section 7.1, we obtain priors via

state-of-the-art supervised classifiers but other sources can also be used to

assign a prior belief to the class prediction).280

4. Graph Construction: To construct the users similarity graph, a bipar-

tite graph of users and messages is created to identify accounts that have

identical or very similar content (Section 4).

5. Posteriors computing: Joint optimization of labels is finally applied

using Loopy Belief Propagation over the constructed Markov Random285

Field (defined in Section 5) . Once the propagation converges, the most

probable configuration of labels is inferred from the resulting posterior

probabilities (Section 7.4).
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Figure 1: General architecture of the proposed system.

4. Users Similarity Graph

Accounts networks on OSNs have traditionally been based on the who-290

connects-to-whom network in bidirectional networks (e.g. the friendship net-

work on Facebook) or on who-follows-whom networks in unidirectional networks

(e.g. on Twitter). These networks can be used as similarity graphs by assuming

“strong trust” between connected accounts. The “strong trust” assumption is

the assumption that friendship between two accounts means that there is a bidi-295

rectional endorsement between these two accounts. Recent empirical analysis,

however, suggests that the strong trust assumption is violated on unidirectional

social networks. This is especially the case for Twitter Ghosh et al. (2012).

Recent unsupervised detection systems on Facebook (CopyCatch Beutel

et al. (2013) and SynchroTrap Cao et al. (2014)) and Youtube (LEAS Li et al.300

(2016)) have used interaction graphs instead of social graphs. We propose a

similar idea for Twitter where we base similarity on a bipartite content-users

graph. The assumption here is that complicit spammers need to share the same

content for better coverage. Shared content is also a more significant complicity

signal than an unsolicited following link on Twitter. The users similarity graph305

consists of a graph where nodes are users and edges represent similarity between

12



Figure 2: Construction of the bipartite users-messages graph on a toy example.

users.

The proposed definition of similarity relies therefore on the assumption that

accounts that have common content tend to belong to the same class of users

(see Figure 6 for a tweet that was shared across many profiles on Twitter).310

Specifically, spammers belonging to the same or similar spam campaigns tend

to have similar content. We start by defining a bipartite users to messages

graph and then collapse this bipartite graph into a users similarity graph. We

also describe some special considerations to take into account when applying

this general mechanism to Twitter.315

4.1. Users-messages graph

To construct the bipartite users to messages graph, we start by processing the

text messages published by each account and create an edge between accounts

and the processed text of their messages. The process is illustrated in Figure 2.

Text pre-processing. Adding spurious characters, obfuscating final urls and vary-320

ing the user mentioned in messages are all techniques that abusers are known

to use to avoid their messages being detected as exact duplicates. Text pre-

processing is therefore a vital part of the users-messages graph construction

pipeline. In this instance, it consists of lowercasing and tokenizing texts and

removing punctuation. Urls and users mentions are replaced by place holders325

(i.e. <url>and <mention>respectively). We do not replace hashtags by place
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holders since they are frequently used as an integral part of the message text

(due to the limitation on the number of characters per tweet). The described

text processing is done once for each message by each user in the dataset, and

the complexity of this step is linear in the number of messages.330

Short texts containing less than three non place holders tokens (e.g. “Hi

<mention>”) are discarded to avoid creating false connections between users.

The remaining exact replicates are merged and the set of resulting unique mes-

sages M forms the messages in the bipartite users-messages graph.

4.2. Users similarity graph335

The users graph is generated by collapsing the messages in the bipartite

graph. This is done by creating an edge between every pair of users that are

connected to the same message as detailed in algorithm 1. Table 1 explains

the notation used in the algorithm. This is a time consuming process since

the complexity of generating all users pairs is quadratic in the number of edges

between each message and its associated users. The number of users pairs is

specifically equal to:
1

2

∑
m∈M

nm(nm − 1), (1)

where M is the set of processed messages and nm =| {(u,m) ∈ EUM for u ∈ U} |

is the set of edges in the bipartite graph that link to message m.

Note that despite its high computational load, the generation of a users

similarity graph is a prerequisite of many unsupervised detection models Li

et al. (2016); Cao et al. (2014). It can be partially parallelized by assigning340

pairs generation of each message to a different process. A discussion of the

parallelized implementation of a similarity graph on Facebook (based on login

information and IP addresses) is provided in Cao et al. (2014). A threshold can

be implemented in order to prevent the generation of pairs for highly popular

content (messages in our case) Li et al. (2016); Cao et al. (2014). These popular345

messages are usually associated with legitimate content and the number of users

linked to them would yield a significant computational load. Since the number

14



Table 1: Notation used for bipartite and similarity graphs.

Symbol Description

U set of users

M set of processed messages

u, v users in U

m a message in M

nm number of users that posted message m

EUM set of bipartite user-message edges

(u,m) a user-message edge in the bipartite graph

EU set of user-user edges in the users similarity graph

G(U,EU ) users similarity graph

G(U ∪M, EUM ) bipartite users-messages graph

of users associated with messages in our dataset is reasonable (most popular

message is shared by 24 users, see Table 5), we did not have to implement a

similar measure.350

4.3. Twitter-specific considerations

The main assumption regarding the resulting bipartite graph described above

is that created edges encode homophily: a malicious account creates spam mes-

sages while a legitimate account creates legitimate messages. While applying

the general graph construction mechanism described above to Twitter, however,355

we became aware of two special cases in which an edge between a user and a

message can be used to falsify credibility.

1. Content copying: A malicious account can engage in legitimate content

copying. This leads to legitimate content (endorsed by links from legit-

imate accounts) being linked to malicious accounts, thus boosting the360

credibility of these accounts.

2. Compromising legitimate accounts: This has the opposite effect of content

copying. When a spammer gains control of a legitimate account, any

15



Algorithm 1: Users pairs generation from the bipartite users -

messages graph

Input: The set of processed messages M and the set of bipartite edges EUM

Output: EU = (u, v, w) the set of weighted edges in the users similarity

graph where u, v ∈ U and w is an integer weight.

1 D ← new hash map

2 for m ∈M do

3 Um ← array of {u ∈ U | (u,m) ∈ EUM}

4 for i = 1 to |Um|−1 do

5 for j = i+ 1 to |Um| do

6 u← Um[i]

7 v ← Um[j]

8 s← min(u, v)

9 t← max(u, v)

10 if (s, t) ∈ D then

11 D[(s, t)]← D[(s, t)] + 1

12 else

13 D[(s, t)]← 1

14 EU ← {u, v,D[(u, v)]} for (u, v) ∈ D

16



malicious or spam content he publishes using this account will be endorsed

by the previously established legitimacy of the compromised account.365

Both problems can be solved using the notion of application on Twitter. An

application, also known as the tweet source, is a term used to coin the software

that published the tweet. Each application has a unique text identifier. We

introduce the following changes on the algorithm described above.

1. Content copying: we identify a unique message by both its processed370

text and the source that published it. Thus, even if two messages share

the same text, they are considered as different entities if they were not

published by the same source. This restriction is reasonable since most

legitimate accounts use the web interface or Twitter’s mobile applications

(e.g. Twitter for Android and Twitter for iPhone), while automated ac-375

counts use content management applications (e.g. dlvr.it and buffer) or

custom scripts. Moreover, malicious campaigns often work in bursts to

accomplish maximum visibility, and thus the shared content is usually

published by the same application.

2. Exploiting compromised accounts: we introduce the notion of applications

profiles. These are computed by extracting the application used to post

each tweet and computing, for each account, the normalized proportion

of tweets posted by each application. Since temporarily compromised

accounts are often quickly restored, we expect that a compromised account

that has a malicious message in common with a malicious account, will

nonetheless have a significantly different application profile compared to

this latter. To quantify this difference, we compute the cosine similarity

between application profiles. For two users u and v, this is defined as the

normalized inner product of the normalized applications vectors Au and

Av (as illustrated in Figure 3). The similarity is defined as:

Sim(u, v) = cos(Au, Av) =
ATuAv

‖Au‖ ‖Av‖
, where ‖.‖ is the Euclidean norm.

(2)
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Figure 3: A toy example showing the computation of similarity based on applications profile.

5. Markov Random Field380

An MRF (G,Ψ) is a probabilistic graphical model that allows joint inference

over dependent random variables. It consists of a graph G(V,E), where V =

{Zu}u∈U is the set of random variables corresponding to users (Zu ∈ {0, 1}),

and E = {(u, v)} is the set of edges denoting a dependency between two random

variables Zu and Zv. A set Ψ of potential functions governs the relationships385

between random variables. Potentials are factors defined over cliques of nodes.

In this work, we propose to use the pairwise MRF model which allows defin-

ing two types of potentials: edge (or pairwise) potentials and node (or unary)

potentials.

5.1. MRF Potentials390

Edge potentials are defined over edges in E. They ensure that the model

responds to the smoothness criteria between connected variables in V , and gen-

erally direct the model towards predicting the same class for connected nodes.

Unary potentials, on the other hand, are defined over individual nodes. They

make it possible to take into consideration the features vector of each account395

by penalizing discrepancy between an observation vector xu and the predicted

class Zu of user u. We construct these potentials as follows:

(i) A unary potential φu is a local function that quantifies how favorable a

class is for node Zu given its features vector xu. We define the unary poten-
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tial here as a function that for each user u ∈ U and class in L, associates a

probability1.

φu : U × L→ [0, 1]. (3)

The unary potential is thus defined as a vector of two probabilities, the value of

which is the system’s prior belief about the class. This probability can be ob-

tained from multiple sources including a supervised classification model trained

on users features. This permits to indirectly incorporate the features informa-

tion into the proposed MRF model as follows:

φu(Zu) =

1− pu if Zu = 0

pu if Zu = 1

where pu = p(yu = 1 | xu) ∈ [0, 1] (4)

(ii) An edge connects two nodes, Zu and Zv, if the corresponding users u

and v are connected in the constructed similarity graph. Each edge is associ-

ated with a pairwise potential φu,v(Zu, Zv). In the current context, the edge

potential is a function that represents compatibility between labels. Formally,

edge potentials are defined as functions that for every realization of a pair of

labels (in L), associates a real-valued factor quantifying its likelihood. Note

that in this implementation, the edge potential is the same for all edges and is

not conditional on the observations.

φu,v : L× L→ R+. (5)

Specifically, we define the edge potentials as follows:

φu,v(Zu, Zv) = exp(f(Zu, Zv))

= exp

Zv = 0 Zv = 1( )
w0 w2 Zu = 0

w1 w3 Zu = 1

where w0−3 ∈ R and Zu (resp. v) = 1 if u (resp. v) is a spammer.

(6)

1Note that in the general case, an MRF potential can take any value in the set of real

numbers
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Figure 4: The edge potential matrix in (a) a symmetric special case, (b) an asymmetric case

where inter-spammers and inter-legitimate connections are assigned different strengths.

We set w1 = w2 since they both designate a connection between a spammer

and a legitimate user. The connection between two legitimate users and two

spammers are governed by w0 and w3 respectively. There are two distinct cases400

that are generally used to model edge potentials:

• A symmetric MRF where the edge potential is the same for edges connect-

ing spammers (w3) and edges connecting legitimate users (w0). A common

setting is to set expw1 = expw2 = ε = 0.1 and expw0 = expw3 = 1− ε =

0.9 (see the associated matrix in Figure 4a).405

• An asymmetric MRF (Figure 4b), defining a flexible relation between pa-

rameters. We set w0 = w and w3 = α.w where α is a positive tunable

parameter. As we demonstrate in Section 7, this gives our model a greater

expressiveness and allows it to more accurately capture the empirical re-

lationships in the dataset. Since the model is over-parametrized, we set410

ew1 = 1.

5.2. Computing Marginal Probabilities by Loopy Belief Propagation

Our goal is to obtain posterior class probabilities over nodes, given the node

and edge potentials of the defined MRF. Exact computation of the marginal

probabilities over the random variables requires summing the joint probabil-

ity defined in eq. 7 over all possible labels permutations and is intractable for

large graphs. Additionally, since the graph contains loops, efficient inference
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algorithms designed for trees and chains are not applicable.

P (Z) =
P̃ (Z)∑

Z′∈LN P̃ (Z ′)
where P̃ (Z) =

∏
u∈V

φu(Zu)
∏

(u,v)∈E

φu,v(Zu, Zv) (7)

The Loopy Belief Propagation (LBP) algorithm Murphy et al. (1999) is an

iterative message-passing algorithm that is frequently used to solve the inference

problem on MRFs with general graph structure (e.g. in Computer Vision appli-415

cations Freeman et al. (2000)). For graphs containing loops, LBP provides an

approximate solution to the inference problem. LBP is considered linear in the

number of edges. Its time complexity is O(d |E|), where d is the number of iter-

ations required until convergence and |E| is the number of edges. The outline of

the algorithm is provided in Algorithm 2. Although the algorithm does not of-420

fer convergence guarantees, it converges in practice after few iterations Murphy

et al. (1999). Convergence is reached when beliefs converge (the inter-iterations

difference is below a defined threshold, usually the machine epsilon).

Figure 5 illustrates how the predictions of a weak local classifier can be

exploited to enhance the detection performance. It shows belief propagation425

on a cluster of 3 spammers. Edge potentials are computed for α = 2 and

w = 0.6 (see the next paragraph for more details on the choice of α and w).

Because it is linked to two spammers, user 3 is correctly classified by MRF as

a spammer. Moreover, users 1 and 2, being both linked and initially believed

to be spammers, reinforce the prediction of each other, thus the probability of430

predicting the spammer class increases.

6. Dataset Collection and Labeling

A number of datasets containing annotated Twitter accounts has been in-

troduced by previous work (e.g. in Benevenuto et al. (2010); Yang et al. (2011);

Cresci et al. (2017a) and on the bot repository2.). Due to Twitter’s terms of435

2The Bot Repository https://botometer.iuni.iu.edu/bot-repository/datasets.html.
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Algorithm 2: Loopy Belief Propagation algorithm

Input: MRF (G,Ψ), E

Ψ : φu(Zu), φu,v(Zu, Zv).

E = {(u, v), (v, u)} for (u, v) ∈ E.

Output: Posterior marginal probabilities, p(Zu) for u ∈ V

1 /* Initialization */

2 mu→v(Zv) = 1 for (u, v) ∈ E /* Messages uniformly initialized */

3 bu(Zu) = 1 /* Beliefs of all nodes initialized to 1 */

4 repeat

5 /* Update messages */

6 for (u, v) ∈ E do

7 mu→v(Zv) =
∑

Zu

(
φu(Zu)φu,v(Zu, Zv)

∏
i∈Ne(u)\vmi→u(Zu)

)
8 /* Compute node beliefs */

9 for u ∈ V do

10 bu(Zu) ∝ φu(Zu)
∏

v∈Ne(u)\vmv→u(Zu)

until convergence;

Figure 5: Loopy Belief Propagation illustrated on a cluster of 3 spammers. Input priors and

potentials are shown on the left. The central frame shows the first and last iterations of belief

propagation. The output frame shows posterior probabilities computed from the final values

of messages. The algorithm in this instance converges after 4 iterations.
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service, researchers are not allowed to share users’ content of their datasets ex-

ternally3. Most of the mentioned datasets therefore consist of users ids (and

occasionally a vector of numerical features computed for each user e.g. in Ben-

evenuto et al. (2010)). Moreover, Since Twitter executes regular purges of suspi-

cious accounts, content of suspended and deleted accounts in the aforementioned440

datasets is no longer accessible4.

Given that our model requires computation on users content for both features

extraction and users graph construction, we collected and manually labeled a

custom ground-truth Twitter dataset5 to evaluate the model. The dataset con-

tains 767 users6 divided over four categories of users: verified accounts, normal445

users, hashtag hijackers and promoters. The first two categories belong to legiti-

mate accounts and constitute 83% of the dataset, while the other two categories

constitute the remaining 17% and exhibit an abusive behavior that violates

Twitter terms of service7. Table 2 summarizes the general characteristics of the

ground-truth dataset. For each of these users, Twitter’s Rest API 8 was used450

to crawl users profiles and tweets. These were subsequently used to extract

relevant content and behavioral features.

We explain hereafter the techniques used to collect and label Twitter ac-

counts. Note that to obtain some users (e.g. users in the Verified category as

well as some human users and promotional spambots), we needed to first collect455

a large dataset of random accounts and tweets. For this, we used the Developer

Streaming API 8 in the period between 5 and 21 October 2017 and obtained a

3Twitter’s policy on research use cases https://twittercommunity.com/t/

policy-update-clarification-research-use-cases/87566
4See Bastos and Mercea (2019) for unique insights on the volatile nature of manipulative

content on Twitter.
5The dataset (users ids, features and users graph) is available via https://nourmawass.

wordpress.com/datasets/.
6The number of users in our dataset is comparable to other datasets obtained via manual

labeling e.g. 759 users in RTbust Mazza et al. (2019), 62 and 529 accounts in Yang et al.

(2019) and 1065 accounts in Benevenuto et al. (2010).
7Twitter terms of service https://twitter.com/en/tos
8Twitter developers API https://developer.twitter.com/en/docs

23

https://twittercommunity.com/t/policy-update-clarification-research-use-cases/87566
https://twittercommunity.com/t/policy-update-clarification-research-use-cases/87566
https://nourmawass.wordpress.com/datasets/
https://nourmawass.wordpress.com/datasets/
https://twitter.com/en/tos
https://developer.twitter.com/en/docs


Table 2: Characteristics of the ground-truth dataset

Group Designation Class Users Tweets

Verified Users Legitimate 500 100 108

Human Users Legitimate 130 56 663

Trends Hijackers Spammer 51 22 586

Promotional Spambots Spammer 86 31 404

Total 767 210 761

random sample of 20M tweets from 12M active users. For the remaining ac-

counts in the ground-truth dataset, the collection targeted trending hashtags,

the content of which was collected via the Search API.460

6.1. Verified Accounts

Since automation on Twitter can be used by both legitimate and sybil users,

it is important that the dataset comprises automated users from both categories.

Verified users often belong to companies, celebrities or public figures, and are

often operated by dedicated or generic content management applications9. They465

exhibit a behavior typical of what has come to be known in the literature as a

“cyborg” account. These accounts may therefore have different features from

those of normal human-based accounts and it is important to include them in

the dataset to prevent the classifier from learning that every automated behavior

is abusive.470

Verified users are easy to identify (their profiles are marked with a blue tick

mark and their crawled profiles include a “verified” flag). We randomly selected

500 users among 43k verified users appearing in the dataset and we included

these 500 users in the ground-truth dataset.

9Examples of generic content management applications include TweetDeck and dlvr.
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Figure 6: A screenshot of a compromised

verified account posting a tweet containing

a phishing link.

Figure 7: An example of trend-hijacking

spam on Twitter.

6.2. Human users475

The remaining 134 legitimate users in the ground-truth dataset were normal

human-operated accounts. These users were identified by manually investigat-

ing a sample of active accounts from the initial dataset. This required a careful

examination of the account in question, its tweets, profile and behavioral char-

acteristics, and has therefore a small throughput. We elaborate on the pitfalls480

and advantages of manual labeling in the next paragraphs.

6.3. Promoters

The blacklisted links heuristic is a well-known heuristic that is commonly

used to identify spammers in email and social media Aggarwal et al. (2012);

Lee and Kim (2012). It consists of identifying users that post links to malicious485

webpages by verifying links appearing on social media against a continuously

updated database of malicious webpages such as Google Safe Browsing10 and

Phishtank11.

We applied this heuristic to the crawled dataset. For this, we first started

by extracting all 3.8M links in the 20M crawled tweets. We subsequently wrote490

a program that follows the redirection chain of each link and returns the final

landing webpage12. We then used Google Safe Browsing API to identify suspi-

10Google Safe Browsing API: https://developers.google.com/safe-browsing/
11The Phishtank database https://www.phishtank.com/
12To detect dynamic redirection, we used the selenium Python package to open each URL

in a browser window.
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cious URLs. Only 156 URLs were identified as being phishing or malware URLs.

We extracted all users IDs that posted any of these malicious URLs and then

proceeded to the manual verification of the resulting accounts. Surprisingly, a495

significant number of these accounts were actually legitimate accounts that were

temporarily compromised13 by a malicious posting mechanism14. Consequently,

we could not rely on this labeling heuristic alone to obtain malicious accounts as

it yielded a high false negative rate. Alternatively, for the users that were found

to be genuinely malicious, we extracted the text associated with the blacklisted500

URLs. We then searched Twitter for users that posted the same text, and were

able to identify several communities of spammers. We obtained 86 users in total,

most of them engaged in promotional and site referral activity.

6.4. Trends hijackers

Trend hijacking is a type of collective-attention spam Lee et al. (2012) that505

is particularly ubiquitous on social media. It consists of poisoning trending

topics (which typically offer high visibility and attract a large audience) with

unrelated posts, often to promote a particular product or service (see Figure 7 for

an example) or to manipulate public opinion Ratkiewicz et al. (2011); Thomas

et al. (2012).510

We obtained 47 trends hijackers by reading the tweets of a trending sport-

related hashtag and manually identifying suspect tweets. This was followed

by a manual investigation consisting of reading the recent tweets of suspect

profiles and cross-examining different profiles for similar patterns and content.

This process is similar to the one described in Cresci et al. (2016); El-Mawass515

13Compromise is fairly common on social media. We used a variation of the Compa system

described in Egele et al. (2013) for identifying and excluding compromised accounts among

identified suspicious accounts. Compa builds statistical profiles for users and identifies com-

promise by comparing recent posts with the previously built profile.
14In one instance of these compromise campaigns, the “Rayban sale” scam, one verified

account was found to retweet the same malicious URL dozens of times before the malicious

behavior stops and the account restarts its normal behavior (see Figure 6).
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and Alaboodi (2016). Manual labeling is different from mainstream labeling

techniques described in the literature in that it is time consuming and requires

an annotator that is familiar with current spam techniques and tricks15.

7. Experimental Evaluation on Twitter

One of the leading motivations of this work is to establish that the extensive520

literature on supervised classification, which attempts to characterize spammers

based solely on their behavioral, content and social network attributes, can

still be leveraged . The main drawback of supervised approaches is that their

performance degrades over the time as has been discussed in previous works

Yang et al. (2011); Cresci et al. (2017a). We show that, even with beliefs525

produced by a weak supervised classifier, the MRF model can leverage the prior

predictions of the supervised classifiers and output improved predictions. In

the following, we define the statistical features and classifiers that we used to

produce prior predictions for users in the groundtruth dataset.

We evaluate the performance of the proposed MRF-based model over the530

ground-truth Twitter dataset. We compare these results to the baseline per-

formance yielded by state-of-the-art supervised classifiers and discuss their sig-

nificance and implications. We use the 157 accounts belonging to the graph

constructed in 7.2 to evaluate the MRF model with the prior probabilities

predicted by the supervised classifiers. The remaining 610 accounts form the535

training dataset for the supervised classifiers (80% of the ground-truth dataset).

Section 7.1 discusses obtaining prior predictions via traditional supervised

classifiers. Section 7.2 presents the implementation of the graph construction

over the ground-truth dataset. Section 7.3 introduces the details of MRF and

15Previous work that uses manual labeling such as Benevenuto et al. (2010) relies on crowd-

sourced annotation of individual hashtag tweets. While we think that this method could have

yielded trustworthy annotation back when spam was less complicated and more straight-

forward, recent empirical evidence Freeman (2017); Cresci et al. (2017a) suggests that non-

initiated human annotators fail to identify the new generation of spam on social media.
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LBP implementation. The results are presented and discussed in Section 7.4.540

7.1. Generating Prediction Priors

For each user u, with features vector denoted xu, the classifier predicts a class

yu with a probability p(yu). This probability quantifies the classifier confidence

of its prediction and is the prior prediction probability used in LBP.

7.1.1. Statistical account features545

We select 28 features from different previous works Benevenuto et al. (2010);

Stringhini et al. (2010); McCord and Chuah (2011); Lee et al. (2010) and com-

pute their values for accounts in the dataset. A list of these features along

with their description is presented in Table 3. This set captures a wide range

of information including aspects related to the accounts behavior, social net-550

work, content and social profile. We also specifically reproduce the works in

Benevenuto et al. (2010) and Stringhini et al. (2010) (denoted hereafter as Ben-

evenuto and Stringhini respectively) which represent subsets of the larger set

of features. These were chosen based on self-reported performance, wide ac-

ceptance in the community, and reproducibility. The latter is defined by the555

possibility of reproducing the model with accessible account information and

without the need for internal information such as IP addresses or the social

graph16.

Figure 8 shows cumulative distribution functions (CDFs) of the top 9 in-

dividually relevant features selected by the mutual information method. The560

curves distinguish three types of users: verified, humans and spammers. They

confirm that verified users are indeed different from humans and sometimes

exhibit behavior closer to spammers. Some of the cumulative distributions as-

sociated with spammers have more than one inflection point. This suggests that

16While it is certainly possible to use Twitter’s Rest API to obtain a user’s social graph,

the imposed API rate limit makes it prohibitive and impractical to require this information

in a large-scale model. Models using such information (e.g. Yang et al. (2011)) are hard to

reproduce with a normal-level API access.
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Figure 8: The CDF plots of the top 9 relevant features in the ground-truth dataset as selected

by the mutual information method.

Figure 9: Distribution plots of features showacasing a dual spammer behavior.
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the spammers population has a dual distribution with respect to these features565

(e.g. proportion of retweets, ratio of tweets containing URLs). This empirical

observation generally supports the proposition that spammers are not a ho-

mogeneous population. The distribution of some of these features are shown

in Figure 9. These show that spammers’ behavior can closely mimic that of

verified or human users.570

7.1.2. Choosing a suitable classification model

We train and evaluate the described set of features using the following dis-

criminative models: Support Vector Machines (SVM) Hearst et al. (1998), Lo-

gistic Regression (LR) Kleinbaum and Klein (2010) and Random Forests (RF)

Breiman (2001). We do not to use generative learning models (e.g. Naive Bayes)575

to avoid learning a joint distribution p(x, y) over the input and output spaces.

This is done because the collection of Twitter ground-truth datasets introduces

a selection bias and the resulting dataset does not offer a true distribution p(x)

over the input space17. We only want therefore to learn the conditional proba-

bility p(y|x). The probabilities p(yu|xu) predicted by the classification models580

are used as priors in our MRF model18. Note that, although deep neural net-

works can also be used as a local supervised classifier, the limited size of the

available datasets does not allow an effective deep implementation.

7.1.3. Implementation

We used the sickit-learn library Pedregosa et al. (2011) in Python to train the585

SVM, Logistic Regression (LR) and Random Forests (RF) classifiers. The SVM

classifier used the RBF kernel, and its parameters C and γ were obtained using

a grid search19. For LR, we compared results with L1 and L2 regularization.

17The selection bias introduced by the methods used to collect labeled instances is more

amply discussed in El-Mawass and Alaboodi (2017).
18In our implementation, we used the predict proba function of the scikit-learn Python

package to compute the probability each supervised model assigns to its prediction.
19The values for C and γ obtained via cross-validation are (103, 10−2) for our features,

(102, 10−1) for Benevenuto features, and (103, 10−3) for Stringhini features.
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Table 4: Most used applications in the groundtruth dataset (in terms of the number of unique

messages.)

Application No. messages % Application type

Twitter for iPhone 71,755 39.1 Twitter affiliated

Twitter Web Client 27,397 14.9 Twitter affiliated

Twitter for Android 17,866 9.7 Twitter affiliated

TweetDeck 11,198 6.1
Content management

(Twitter affiliated)

Done For You Traffic 7,963 4.3 Content management

dlvr.it 7,079 3.9 Content management

IFTTT 6,343 3.5 Content management

Hootsuite 4,994 2.7 Content management

Google 3,572 1.9 Content Referral

Facebook 2,204 1.2 Content Referral

We evaluated and compared the classifiers over the three previously discussed

sets of features, namely our selected set of state-of-the-art features and the sets590

of features proposed in Benevenuto and Stringhini. All features were normalized

before training.

7.2. Constructing the Similarity Graph

We implemented the revised version of the graph construction algorithm

by defining messages as a tuple that contains both the processed text and the595

source application (Table 4 lists the top 10 applications generating 87% of the

messages in the ground-truth dataset). We then filtered edges in the resulting

users graph according to the pairwise similarity of applications profiles. We

removed edges that have a content weight of one (one common tweet) or an

application similarity rate of less than 0.9. This choice is taken so that an edge600

represents real complicity between users. It also decreases the probability of

linking two users based on text that is falsely identified as similar.

The resulting similarity graph is a sparse graph with 157 nodes and 549

edges.Edges represent 4.5% of the number of edges in a fully connected graph
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Table 5: Processed texts and applications of the top five tweets in the dataset (in terms of

number of users sharing the tweet).

Processed text message Application No. users

“<url>the daunting risks of laparoscopic obesity surgery” Done For Your Traffic 24

(translation) ”<mention>: to al nasr fans [sports team], I

was honored this evening to be one of the world

championship players...”

Twitter for iPhone 7

“<url>15 reasons to join affiliate programs” Done For Your Traffic 7

“<url>8 ways to improve your affiliate marketing strategies” Done For Your Traffic 7

“<url>finding the perfect product at clickbank” Done For Your Traffic 7

with 157 nodes.605

The similarity graph in Figure 10 illustrates the labels homophily captured

by the similarity measure. It shows that linked users generally belong to the

same class. Legitimate users and spammers also tend to form their own re-

spective clusters. Among the 30 identified clusters, only 2 contain spammers

and legitimate nodes simultaneously. This validates that the proposed similar-610

ity measure does indeed result in users of the same class being linked together.

The high modularity (0.873) and average clustering coefficient (0.795) of the

graph also demonstrate that users tend to cluster in communities of mutually

similar users that are quite distinct and disassociated from the rest of the graph.

Moreover, the graph clearly shows that the assumption that spammers form one615

connected community, which forms the basis of many previous works, does not

hold.

7.3. MRF Classification

We implemented MRF using the UGM library Schmidt (2007) in Matlab.

For inference, we used the library’s implementation of LBP. Starting from the620

priors computed on each node, we applied LBP over the graph and updated

classes beliefs according to the defined edge potentials. The MRF predictions

are associated with posterior prediction probabilities obtained on LBP con-
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Figure 10: The similarity graph of connected users in the ground-truth dataset. Legitimate

users are represented in green while spammers are shown in red.

Figure 11: Performance gain of the MRF classification as a function of edge potentials for α

ranging from 2 to 3.5.
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Figure 12: Average absolute gain in performance as a function of edge potentials for α = 3.5.

Upper and lower limits correspond to the maximum and minimum gain at each value of w.

vergence. Note that the comparison between the MRF performance and the

performance of baseline classifiers is only meaningful for connected nodes. The625

results are thus obtained and compared over connected nodes only. In the case

of a singleton (a node that is not connected to other nodes), the node does not

have an associated edge potential. Its prediction probability is therefore solely

governed by the prior predicted by the baseline classifier. The output of the

MRF model for singletons is thus equivalent to the output of the traditional630

classifier.

7.4. Results

Classification results of the baseline supervised classifiers, symmetric and

asymmetric MRF models are shown in Table 6. The highest values for each

metric are highlighted in bold. The performance is evaluated in terms of ac-635

curacy, precision, recall and F1-measure, where the F1-measure is defined as

follows:

F1-measure = 2× Precision× Recall/(Precision + Recall).

Results demonstrate that traditional classifiers have a high precision but a
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Table 6: Classification performance, evaluated over the test dataset, of the baseline supervised

classifiers, the symmetric MRF classifier (ew0 = ew3 = 0.9 and ew1 = ew2 = 0.1) and the

asymmetric MRF classifier (w = 0.6, α = 2.5).

All features Benevenuto features Stringhini features

Sup.
Sym.

MRF

Asym.

MRF
Sup.

Sym.

MRF

Asym.

MRF
Sup.

Sym.

MRF

Asym.

MRF

SVM

Precision 0.891 0.917 0.919 0.939 0.955 0.930 0.941 1.0 0.966

Recall 0.598 0.571 0.883 0.756 0.273 0.857 0.195 0.143 0.364

F1 0.715 0.704 0.901 0.838 0.424 0.892 0.323 0.25 0.528

Accuracy 0.752 0.764 0.904 0.847 0.637 0.898 0.573 0.58 0.682

LR L1

Precision 0.865 0.86 0.89 0.961 1.0 0.924 1.0 1.0 1.0

Recall 0.549 0.558 0.844 0.598 0.545 0.792 0.159 0.325 0.506

F1 0.672 0.677 0.867 0.737 0.706 0.853 0.274 0.49 0.672

Accuracy 0.72 0.739 0.873 0.777 0.777 0.866 0.561 0.669 0.758

LR L2

Precision 0.956 0.9 0.933 1.0 1.0 1.0 1.0 1.0 1.0

Recall 0.524 0.468 0.727 0.317 0.182 0.714 0.159 0.325 0.481

F1 0.677 0.615 0.818 0.481 0.308 0.833 0.274 0.49 0.649

Accuracy 0.739 0.713 0.841 0.643 0.599 0.86 0.561 0.669 0.745

RF

Precision 0.955 0.924 0.902 1.0 0.933 0.928 0.96 1.0 0.925

Recall 0.78 0.792 0.961 0.585 0.727 0.831 0.585 0.532 0.805

F1 0.859 0.853 0.931 0.738 0.818 0.877 0.727 0.695 0.861

Accuracy 0.866 0.866 0.930 0.783 0.841 0.885 0.771 0.771 0.873

generally low recall20. Although the models have the advantage of being trained640

on the ground-truth accounts we recently collected, the obtained performance

is significantly lower than the performance reported in the works in which these

models were originally presented. This is especially the case for features pro-

posed in Stringhini et al. (2010) that have a very low recall of contemporary

spammers.Since features are still able to identify part of the spammers popu-645

lation with a relatively high precision, it can be argued that the deterioration

in recall is due to some spammers succeeding at evading detection, thus driv-

ing the recall down. The limited efficiency of these features in keeping up with

spam evolution validate the need to explore alternative approaches to traditional

20Supervised classifiers outperform a random classifier that classifies 85% of the population

as legitimate. On the test dataset, a random classifier has a 52% precision, a 15% recall,

a 6% f1-measure and a 48.6% accuracy. The 85% rate is based on estimates of the ratio

of spammers to the total population of social accounts on Twitter (ranging between 4% in

Benevenuto et al. (2010) and 15% in Varol et al. (2017)).
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supervised classification.650

As for MRF results, the average gain in performance (recall and precision)

achieved by the asymmetric MRF classification compared to the baseline local

classifiers is shown in Figure 11 for α ranging between 2 and 3.5. Gain is defined

as the absolute change between the MRF performance and the performance

of the local classifier on which it is based. The evolution of performance is655

computed as a function of edge potentials (w0 = w and w3 = α × w). The

figure clearly shows that MRF classification consistently increases the recall

while maintaining precision around its baseline level.

Figure 12 shows the performance gain for α = 3.5. Note that the best

performance is obtained by setting w between 0.4 and 0.7. This yields a positive660

increase in recall (20 to 27% on average) while maintaining original precision

(average decrease of 1.6 to 3%).

The reported values of α and w are in agreement with the empirical charac-

teristics of the dataset for several reasons:

• First, it is to be expected that w0 and w3 (strength of connection between665

legitimate users and spammers respectively) should be bigger than w1 (a

spammer to legitimate user connection): users having the same class are

more likely to be connected than users of different classes (only 4 edges in

the similarity graph are inter-classes edges).

• Second, two observations confirm that w3 (spammer to spammer connec-670

tion) is expected to be higher than w0 (legitimate to legitimate connec-

tion): (1) Spammers are more densely connected than legitimate users

and (2) classifiers are always more confident about their spam labels (see

the precision of the spam class in Table 6) making a spam label prediction

more trustworthy than a legitimate label prediction.675

7.5. Discussion and Generalization Insights

We present in this section the generalization insights gained from the results

of the model above and discuss practical implementation issues that are faced
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in a large-scale implementation.

7.5.1. Modularity vs. Homophily680

For the MRF to work, edges should generally indicate a relationship of ho-

mophily: connected nodes have the same class. This assumption is vital to en-

sure that belief can be propagated on the users similarity graph. As discussed

in section 4, the graph construction mechanism is tuned so that the number

of edges connecting accounts from opposite classes is minimized. Although the685

resulting graph is modular, modularity in itself is not seeked: if two spam (resp.

legitimate) clusters become connected through an edge, the model will become

even more certain about its posterior predictions. In this case, an edge offers

additional information.

The opposite case is problematic. If a legitimate account or cluster of ac-690

counts become connected to a spam cluster, belief will be propagated between

the two clusters, leading to a decreased certainty in both the spam and legit-

imate class predictions. It is therefore important for the graph construction

mechanism to result in homophilic edges and for the similarity measure to con-

nect accounts having the same class.695

A practical obstacle that would be faced in the case of a large-scale imple-

mentation is represented by “quotes apps”. These are applications the generate

automated sayings and posts and are generally subscribed for by both legitimate

and spam accounts. The latter benefit from these applications in keeping their

accounts active and posting. Tweets posted by these applications on behalf of700

subscribing accounts will inevitably result in edges created between spam and

legitimate users. A simple solution would be to filter posts generated by these

applications. This is feasible as these applications have a large throughput and

are usually easy to identify when aggregating content from a large collection of

users.705
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7.5.2. Time Complexity of Graph Construction

We have discussed in section 4 the time complexity of of generating users

edges from a list of users associated with a post. In practice, there are two

facets associated with the computational load of generating the graph:

• Quantifying the computational load of creating a similarity graph.710

• Fixing a threshold to the number of users associated with a post (a unit

of content).

Computational load of generating a similarity graph. We start by answering the

first part: assessing the time required to build a similarity graph. For that we

need two information:715

• An empirical distribution of the number of users per post (text/unit of

content).

• An empirical estimation of the time required to expand a list of users as

a function of the number of users in the list.

Recall that expanding a list of users refers to creating an edge between all720

pairs of users. The complexity of this is O(n2), where n is the number of users

in the list. To assess the expansion time, we conducted a simulation on an intel

i7 machine with a 2.5 GHz clock and 16 GB RAM machine and measured the

time required to list all edges associated with a given number of users. We

used a user ID format comparable to that of Twitter to mimic realistic memory725

usage. The results are shown in Figure 13 and confirm that the time increases

exponentially with the number of users. Figure 14 shows the evolution of the

logarithmic time as a function of the number of edges. It further confirms that

the time is proportional to the squared number of users. The processing time

reaches one minute around 10000 users (or 108 edges). This means that it730

becomes 10 minutes for 31k users and 100 minutes for 100k users. Note that for

expanding less than 1000 users, the processing time is negligible (< 1 second).

To assess the time required to build the similarity graph, we also need to

assess the empirical distribution of the number of users to expand per post.
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Figure 13: Time required to expand a list of users into edges.

Figure 14: Time required to generate users edges.
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For that, we consider the real case scenario where our system is used to detect735

spammers in trending topics. Trending topics are typically related to current

and controversial topics and events and are characterized by a large audience.

This makes them a particularly interesting target for spammers and opinion

manipulators. We consider a dataset of trending topics we previously collected.

The dataset covers trending topics in KSA in the period between 19/3/2015740

and 1/4/2015, and contains 1, 124, 926 unique tweets.

We construct the bipartite users-content graph and plot the distribution of

users per text (processed post) for each trending topic as shown for example

in Figure 15. All the distributions for the studied trending topics represent a

similar pattern where every post (unit of content) is predominantly shared by745

a small number of users. This means that the associated users edges should be

obtained in milliseconds. Only a few texts are shared by thousands of users.

Specifically, a typical trending topic does not have more than 5 messages count-

ing more than one thousand users. The most shared text in the studied dataset

has been shared by 14k users and associated edges should therefore be produced750

in around one minute.

Note that the construction of the graph is completely parallelizable in that

every list of users (associated with a given post) can be assigned to a differ-

ent machine core or mapper (in a MapReduce framework). The total time is

therefore bounded by the time required to process the largest list of users. Even755

when the processing is serialized, the total time is dominated by the same value

as the distribution is usually biased towards less popular posts.

Choosing a threshold. The question of where the threshold should be placed

depends on the application and the available processing power. A threshold is

the number of users beyond which a list of users is not expanded (not trans-760

formed into edges). We empirically assessed the upper bounds of content-based

aggregation of users in trending topics and deduced that they can be processed

in reasonable time. By interpolating the plot obtained in Figure 14, we can

safely consider that a threshold of around 30k users is a reasonable restriction.
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Figure 15: Histogram of the distribution of identical texts in a trending topic.

Posts with this degree of popularity are usually initiated by celebrity profiles,765

and we can safely consider that a (text, application) tuple having 30k accounts

is an indication of an organic legitimate sharing activity.

7.5.3. Effect of baseline recall and precision

All compared baseline classifiers have a relatively high precision and can

therefore be reliably used to detected seeds of spam accounts. Table 6 shows770

that even when baseline recall is lower than 50% (Stringhini features), beliefs

can be effectively propagated, and the MRF model can increase the recall while

maintaining precision. This can be explained by two reasons. The first is that

the edge potentials matrix favors spammer-spammer edges. When a spammer is

identified, connections are more likely to be predicted by the model as spammers.775

The second reason is that accounts features are not randomly distributed among

users. Connected users are more likely to have similar features and therefore to

have similar prior predictions. In other terms, when seeds are discovered, they

are more likely to be clustered together than to be randomly distributed among

spammers clusters. Thus, even when the baseline recall is low, the concentration780

of seeds in particular clusters ensure that other spammers in those clusters will

be correctly identified.
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7.5.4. Role of the edge potentials matrix

MRF is a generative model. The potentials can be used to quantify the

likelihood of incidence of a particular edge configuration. Higher values of w785

would therefore indicate that a spammer-spammer edge is much more likely

than other configurations. This blocks belief propagation across the graph as

inference becomes dominated by the edge potential. Figure 11 shows a gen-

eral trend of decreasing precision when w reaches higher values. This can be

explained by the edge potential becoming significantly higher than the node790

potentials21. Thus, the model becomes mostly equivalent to an MRF with no

observations on the nodes and assumes that most edges are statistically asso-

ciated with spammers. This is similar to the case where a traditional classifier

assumes that all or the majority of classified instances belong to a certain class,

resulting in a perfect recall and a low precision.795

Spam clusters are typically denser and are therefore associated with more

edges. This makes asymmetric edge potentials matrices better at capturing the

distribution of edges in a users graph. However, Lower values of w should be

preferred to avoid the scenario discussed above.

Finally, results confirm that similarity can be used to improve the perfor-800

mance of a weak local classifier. The local information synthesized as a belief

can be propagated throughout the graph to correct misclassified instances and

mitigate the effect of spam evolution. Compared to local classifiers, our model

consistently improves recall over several sets of features, and generally main-

tains high precision. The notion of a weak local classifier is therefore effectively805

exploitable in the context of probabilistic graphical inference.

8. Conclusion and Future Work

In this paper, we tackle the problem of the deteriorating classification per-

formance of state-of-the-art supervised classifiers by proposing a system based

21For w = 1 and α = 3.5: φu ∈ [0, 1], φu,v(1, 1) ≈ 33, φu � φu,v(1, 1)
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on the Markov Random Field framework. We propose a solution where the810

predictions of supervised classifiers are considered prior beliefs on the classes of

social users. We then propagate these beliefs on a users graph to obtain more

accurate posterior beliefs. To construct a homophilic users graph, we define

similarity based on an interaction graph instead of the commonly used social

graph. We evaluate this hybrid features/graph framework on a ground-truth815

Twitter dataset. The performance deterioration of state-of-the-art supervised

classifiers evaluated on this dataset corroborates similar results reported in the

literature. The implementation of the proposed system on this dataset vali-

dates that it is indeed possible to exploit accounts similarity in a probabilistic

framework. The Markov Random Field framework restores classification per-820

formance of the mentioned classifiers by increasing recall while simultaneously

maintaining precision.

As a future work, we would like to bypass some of the limitations of the cur-

rent work. Specifically, we would like to explore forms of graphical models that

are more expressive than the commonly used but relatively rigid representation825

of the Markov Random Field. Several aspects of similarity for example can be

more accurately represented through conditional edge potentials. This may re-

sult in a model that is more accurate, more expressive and less data-dependent.

Additionally, we would like to assess the implications of the obtained results on

a full-fledged in-the-wild application. This could represent an interesting and830

potentially useful venue for future exploration.
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