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Abstract

During the past decade, the dictionary learning has been a hot topic in
sparse representation. With theoretical guarantees, a low-coherence dictionary
is demonstrated to optimize the sparsity and improve the accuracy of the perfor-
mance of signal reconstruction. Two strategies have been investigated to learn
incoherent dictionaries: (i) by adding a decorrelation step after the dictionary
updating (e.g. INK-SVD), or (ii) by introducing an additive penalty term of
the mutual coherence to the general dictionary learning problem. In this paper,
we propose a third method, which learns an incoherent dictionary by solving a
constrained quadratic programming problem. Therefore, we can learn a dictio-
nary with a prior fixed coherence value, which cannot be realized by the second
strategy. Moreover, it updates the dictionary by considering simultaneously
the reconstruction error and the incoherence, and thus does not suffer from the
performance reduction of the first strategy.

The constrained quadratic programming problem is difficult problem due to
its non-smoothness and non-convexity. To deal with the problem, a two-step
alternating method is used: sparse coding by solving a problem of mixed-integer
programming and dictionary updating by the hybrid method of augmented La-
grangian and alternating proximal linearized minimization. Finally, extensive
experiments conducted in image denoising demonstrate the relevance of the pro-
posed method, and illustrate the relation between coherence of dictionary and
reconstruction quality.
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1. Introduction

Sparse representations have been successfully applied in signal and image
processing, as well as computer vision tasks, such as image denoising, image in-
painting, object recognition, face recognition and many classification tasks (see
for instance [1] and included references). In the sparse representation paradigm,5

a signal is approximated by a linear combination of a few atoms of a dictionary.
Early developments in sparse representations considered pre-defined dictionar-
ies, such as wavelets and many variants [2, 3]. More recently, data-driven dictio-
nary learning has been proposed, which allows to have well-adapted and more
natural representations for the signals at hand. Moreover, dictionaries can be10

learned for some specific tasks. For example, to achieve good performance in
classification, the dictionary learning problem is optimized by minimizing the
classification error measured by Fisher criterion [4] or logistic regression loss [5].

Dictionary learning seeks to solve an optimization problem with sparsity-
prompting functional on the coefficients of the sparse representation. This is15

an NP-hard problem. It is often relaxed and solved by alternating between two
minimization steps: In the so-called sparse coding step, the coefficients are esti-
mated with the dictionary fixed; In the so-called dictionary updating step, the
dictionary with sparse codes fixed. Several dictionary learning algorithms have
been proposed in the literature, the most known being the K-SVD algorithm20

[6]. However, these conventional algorithms do not guarantee the “good” quality
of the obtained dictionary, neither the resulting sparse representation.

The coherence measure is a fundamental measure to characterize a dictio-
nary, corresponding to the largest correlation between the elements of the dic-
tionary (e.g. null coherence for dictionaries with orthogonal elements). Beyond25

being elementary and very simple to compute, the coherence is intimately re-
lated to the sparsity level and the relevance of the resulting sparse represen-
tation. Indeed, several theoretical studies have demonstrated the prominence
of having incoherent dictionaries, namely dictionaries having a low coherence
measure [7, 8, 9]. Incoherent dictionary learning, as an extension of generic dic-30

tionary learning, aims at minimizing the reconstruction error by imposing spar-
sity on the coefficient and coherence of the dictionary, simultaneously. For this
purpose, several incoherent dictionary learning algorithms have been proposed,
within two major strategies: either adding a decorrelation step after dictionary
updating at each iteration, such as INK-SVD and related algorithms [10, 11],35

or introduced an additional regularization of the coherence in the optimization
problem [12, 13, 14]. While the latter strategy may provide better performance,
the former is often recommended because it allows the fix the coherence level
beforehand. See next section for a survey.

In this paper, we examine the exact resolution of the incoherent dictionary40

learning problem, by considering explicitly the constraints on the coherence
and the unit-norm of the dictionary elements. This NP-hard problem is much
more difficult than the typical dictionary learning problem. To address this
constrained optimization problem, we provide a two-step alternating approach,
in the same spirit as the generic dictionary learning algorithms.45
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We address the sparse coding step in its exact `0-norm formulation. To
this end, the optimization problem is recast as a mixed-integer program (MIP),
namely involving both integer and continuous variables. While the use of MIP
for pattern recognition is not new [15], only very recently it has been investigated
with success to generate fiducial marker [16], to perform multiple face tracking50

[17] and vehicle detection [18]. In sparse representation, preliminary studies con-
ducted in [19] were restricted to tiny toy data (120-sample synthesized signals)
due to high computational complexity. By taking advantage of breakthrough in
optimization theory, we have more recently demonstrated the relevance of MIP
in exact dictionary learning for sparse representation of well-known images [20].55

The dictionary updating step faces a minimization problem with convex ob-
jective function but non-convex constraints, due to the constraints on the coher-
ence and the unit norm of the dictionary elements. To deal with the constrained
optimization problem, a first attempt is to use the augmented Lagrangian
method, with a penalty to assure the second order sufficient condition (See60

Chapters 3 and 4 in [21] for details). However, with the inequality constraint
associated to the coherence, it is hard to solve the problem directly by satisfying
the Karush-Kuhn-Tucker (KKT) optimality condition. Thus, in this paper, we
propose a resolution based on the hybrid method of augmented Lagrangian and
the extended proximal alternating linearized minimization (EPALM) [22, 23].65

The choice of the latter is motivated by its convergence for a large class of
non-convex problems [22]. In the appendix of the present paper, the global con-
vergence of the algorithm is demonstrated based on the theoretical convergence
analysis of Kurdyka-Łojasiewicz function [24].

Finally, the relevance of the proposed method is examined with extensive70

experiments, on synthetic and real well-known images. A comparative analysis
with the state-of-the-art methods is conducted. For this purpose, we examine
two versions of the proposed method depending on the sparse coding algorithm,
one based on the MIQP and one using the proximal method. By examining the
properties and reconstruction results, we show the relation between the coher-75

ence of dictionary and the image reconstruction accuracy. Moreover, for several
values of the coherence parameter, we show that the proposed MIQP+EPALM
dictionary learning method outperforms the other methods.

The main contributions of this work are summarized as follows:

• The problem of the incoherent dictionary is formulated as a constrained80

quadratic programming problem, by explicitly adding the constraint of
the dictionary mutual coherence.

• The incoherent dictionary is learned via the generic alternating strategy.
Specifically, for the problem of dictionary updating, we propose to use the
augmented Lagrangian method to transform the problem into an uncon-85

strained quadratic programming problem. Then, the dictionary with the
target mutual coherence can be learned by the algorithm of EPALM after
a finite number of iterations. Moreover, we give the convergence analysis
of our proposed algorithm.
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• The incoherent dictionary learning algorithm is applied in image recon-90

struction, which shows better performance compared with state-of-the-art
algorithms. The obtained results verify that increasing the incoherence
may have positive effect on the performance. These results corroborate
theoretical results that has not been proved by the compared algorithm.

The rest of the paper is organized as follows. In next section, related works95

are presented, with a focus on incoherent dictionary learning algorithms. The
sparse representation problem with coherence constraints is introduced in Sec-
tion 3. The proposed method is described in detail in Section 4, with conver-
gence analysis given in the appendix. Section 5 provides extensive experiments
for image reconstruction.100

2. Related Works

Incoherent dictionary learning algorithms are designed via two principal
strategies.

In the first strategy, a dictionary with low coherence is learned by adding a
decorrelation step after the dictionary update step at each iteration. The lead-105

ing method is INK-SVD [10], developed from the well-known K-SVD algorithm.
INK-SVD seeks to minimize the approximation quality with a constraint of co-
herence level. To find the optimal solution, an iterative algorithm is proposed
by identifying the sub-dictionary (in the same spirit as K-SVD) and decorre-
lating pairs of atoms with a greedy algorithm. Barchiesi et al [11] optimize110

the INK-SVD algorithm by considering simultaneously the minimization of the
residual error of sparse approximation when learning the dictionary with a fixed
target coherence level. While the employed algorithm introduces a decorrela-
tion step after dictionary updating as in INK-SVD, the decorrelation step is
accomplished by an iterative projection followed by a rotation of dictionary. In115

this paper, this method is denoted IPR (for iterative projections and rotations).
These incoherent dictionary learning algorithms based on this strategy (i.e., by
adding a decorrelation step) allow to fix the coherence level beforehand, thus
evaluate explicitly the relationship between the reconstruction performance and
the coherence of dictionary.120

Methods from the second strategy seek to learn an incoherent dictionary by
minimizing a regularized objective function, where the regularization term con-
strains the coherence. The method of optimal coherence-constraint directions
(MOCOD) [25], inspired from the method of optimal direction (MOD), intro-
duces the regularization term of coherence and unit norm of dictionary elements.125

The MOCOD method outperforms the MOD method in image reconstruction.
In [13], the incoherent dictionary learning problem is formulated by introducing
only the coherence regularization, namely, the Frobenius norm of the difference
of Gram matrix and identity. The incoherent dictionary is learned via a hybrid
alternating proximal method, and the dictionary is normalized after dictionary130

updating at each iteration. Similarly, Abolghasemi et al [26] tackled the problem
with the same coherence regularization as in [13]. However, they proposed an
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incoherent dictionary learning algorithm with dictionary updating by a gradient
descent method. In [27], another incoherence penalty was introduced to learn a
discriminative dictionary, where it exploited the alternating algorithm with the135

dictionary updated by the method of alternating direction method of multipliers
(ADMM). In addition, the coherence regularization was also measured by the
sum of `1-norm of every two different atoms [28, 29]. Even, for some task (such
as classification), the Fisher criterion [30] and the weighted auto-correlation be-
tween atoms [31] can be regarded as a coherence regularization, which makes the140

sub-dictionary of different class coherent. Incoherent dictionary learning algo-
rithms of the second strategy achieve good performance in data reconstruction
[26, 29], classification [13] and object recognition [30, 32]. However, they suffer
from a major issue: it is not possible to constraint exactly the coherence level
to a fixed value, because the relation between it and the regularization trade-off145

parameter is unknown.
In this paper, we consider the simplest way to formulate the problem, by

adding the constraints of coherence and a unit norm of the dictionary elements
into the generic dictionary learning problem. Hence, the resulting incoherent
dictionary learning problem is the minimization of a quadratic objective func-150

tion with a quadratic inequality constraint. It is noted that the problem is
non-convex and non-smooth because of the sparsity-prompting `0-norm and the
constraints. To the best of our knowledge, there is no work on incoherent dic-
tionary learning by solving the problem with explicit constraints on dictionary
coherence and its unit norm. To solve this constrained optimization problem,155

we take advantage of recent developments in optimization problem with orthog-
onality constraints, with the augmented Lagrangian method and the alternating
proximal minimization method. A review of these methods is given in the fol-
lowing.

The optimization problem with orthogonality constraints has been recently160

addressed in physics [33], mathematics [34] and information science [35]. The
Lagrangian multiplier method [21] is frequently used to deal with such a prob-
lem [34, 33]. However, it is not always easy to solve the Lagrangian function
by satisfying the first order optimal condition. In [33], the Kohn-Sham prob-
lem was reformulated by the Lagrangian multiplier method, and the proximal165

gradient method was then proposed to solve the Lagrange function. Moreover,
it was proven that the algorithm has good convergence property. Orthogonal-
ity constrained optimization problems were also solved via the augmented La-
grangian method [35, 22]. Compared with the Lagrangian method, the penalty
method shows more stability [21]. However, the reformulated problem can be170

non-convex and non-smooth, which makes the problem hard to tackle. In [35],
the alternating proximal method was combined with the augmented Lagrangian
method and the existence of the sub-sequence to a KKT point was proven. The
new proposed algorithm was then applied in compressed mode for variational
problems in physics, illustrating the effectiveness and efficiency of the algorithm.175

In [22], an extended proximal alternating linearized minimization method was
introduced to solve the Lagrangian function, and its convergence was proven
based on the theory of the Kurdyka-Łojasiewicz inequality property [24].
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3. Problem Statement

Given a matrix Y = [y1, . . . ,yi, . . . ,y`] ∈ Rn×` of ` signals of dimension
n, a sparse representation of Y consists in a decomposition of the form Y =
DX, where the matrix X = [x1, . . . ,x`] ∈ Rp×` containing the decomposition
coefficients is sparse, and the matrix D = [d1, . . . ,dp] ∈ Rn×p is the dictionary
with each column called atom. We consider in this paper the overcomplete
dictionary learning problem, namely n < p. The optimization problem is written
as

min
D∈C,xi∈Rp

1

`

∑̀
i=1

1
2‖yi −Dxi‖22

subject to ‖xi‖0 ≤ T, i = 1, . . . , `,

(1)

where the cost function 1
2‖yi−Dxi‖22 is the reconstruction error with ‖ . ‖2 being

the Euclidean norm. The sparsity of each xi, measured with its quasi-norm
‖xi‖0 that refers to the number of non zero elements in xi, is constrained by the
preset sparsity parameter T . In image denoising, T varies with the noise level
σ, such as in [6] where T is determined with the constraint ‖yi −Dxi‖22 ≤ ε(σ)
where ε(σ) is a function of σ. The dictionary D is restricted in the constraint

C =
{
D ∈ Rn×p

∣∣ dTj dj = 1, ∀j = 1, . . . , p
}
,

in order to prevent the `2-norm of dictionary’s atoms from being arbitrarily180

large, which leads to arbitrarily small decomposition coefficients in X.
The optimization problem (1) is addressed by using a relaxation procedure

that alternates two phases. The first, called sparse coding, seeks to estimate
X while the dictionary D is fixed. Because of the `0 norm, this optimization
problem is non-convex and NP-hard. To overcome this difficulty, most of the185

work in this field operate a relaxation, by substituting the `0 norm with a
convex one such as the `1-norm [36], or use a greedy approximate algorithm [37].
We have recently shown that it is possible to have an exact resolution, by the
integer quadratic integer programming (MIQP) [20]. The second phase, called
dictionary update, seeks to estimate the dictionaryD whileX is fixed. The most190

used algorithms are the least squares and the stochastic gradient descent [36].
Independently of the implemented algorithm, the resulting dictionary does not
guarantee excellent performance, because its atoms can be arbitrarily correlated.

A fundamental measure to characterize the quantity of a dictionary is the
coherence. It is defined as the greatest correlation, in absolute value, between
two distinct atoms of the dictionary under scrutiny. When dealing with unit-
norm atoms, the coherence is defined as

µ = max
i 6=j
|dTi dj |. (2)

The importance of this measure to characterize dictionaries has been demon-
strated in several works [7, 8, 9]. For example, it is proven in [9] that orthogonal195

matching pursuit and basic pursuit can correctly recover the signal under the
condition p < 1

2 (µ−1 + 1). Though this condition may not be applicable for
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all sparse coding methods, the importance of incoherent dictionary learning is
undoubted. It motivates the research on learning incoherent dictionaries.

Two strategies have been proposed to learn incoherent dictionaries, as sur-200

veyed in Section 2. In one strategy (the second strategy in Section 2), an incoher-
ent dictionary is learned by introducing the regularization term ‖DTD − Ip‖2F ,
where Ip is the identity matrix of size p×p [25, 13]. The normalization is realized
by adding the regularization term

∑p
i=1(‖di‖2 − 1)2 [25] or by a normalization

step following the dictionary updating [13]. However, with these methods, the205

influence of the coherence of dictionary on the sparse representation cannot be
explicitly measured. In the first strategy given in Section 2 with INK-SVD and
IPR [10, 11], the incoherent dictionary learning algorithms give the relation be-
tween coherence of dictionary and accuracy of sparse representation. The price
to pay is reduced accuracy of the sparse representation.210

In this paper, we consider the explicit constraints. The coherence of the
dictionary is constrained with the inequality

|dTk dh| ≤ µc, ∀k, h ∈ {1, 2, . . . , p}, k 6= h (3)

where µc is the predefined coherence level. The unit norm of the dictionary’s
atoms is obtained by the equality

dTk dk = 1, ∀k = 1, 2, . . . , p. (4)

Thus, the problem of incoherent dictionary learning can be resumed as a con-
strained optimization problem with quadratic objective function and quadratic
constraints

min
D∈Rn×p,xi∈Rp

1

`

∑̀
i=1

1
2‖yi −Dxi‖22

subject to

 |d
T
k dh| ≤ µc, ∀k, h ∈ {1, 2, . . . , p}, k 6= h

dTk dk = 1, k = 1, . . . , p
‖xi‖0 ≤ T, i = 1, . . . , `.

(5)

The problem of estimating simultaneously X and D is non-convex and belongs
to NP-hard problems. In next section, we provide an algorithm to solve this
problem by an alternating strategy between sparse coding and dictionary up-
dating, under all the explicit constraints.

4. Proposed Incoherent Dictionary Learning215

In this section, we propose an incoherent dictionary learning algorithm. The
algorithm learns a dictionary through two alternating processes: sparse coding
and dictionary updating. For sparse coding, the problem with respect to X is
reformulated as an MIQP problem that can be solved by the advanced opti-
mization techniques [38, 39]. We also examine another method for sparse cod-220

ing based on the proximal operator [40]. With a fixed sparse code, the problem
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with respect to the dictionary D becomes a non-convex constrained optimiza-
tion problem. For solving this problem, the augmented Lagrange method and
proximal alternating linearized minimization method are used. The convergence
of the proposed algorithm is analyzed in the appendix.225

4.1. Sparse Coding Algorithm
Sparse coding tackles the problem (5) with D fixed, which is written as:

min
xi∈Rp

1

`

∑̀
i=1

(
1
2‖yi −Dxi‖22

)
subject to ‖xi‖0 ≤ T, i = 1, . . . , `.

(6)

By considering the independence of the signals, the above problem can be split
into ` small problems,

min
x∈Rp

1
2‖y −Dx‖22, subject to ‖x‖0 ≤ T. (7)

Here, for the sake of clarity, any signal yi and its sparse representation xi are
denoted respectively by y and x.

This problem can be easily solved by a greedy algorithm such as matching
pursuit (MP) [41] and orthogonal matching pursuit (OMP) [42] algorithm, or it230

can be relaxed as a convex problem that is known as basis pursuit [43]. In this
research, we explore two recently proposed methods, proximal method [44, 13]
and MIQP method [44, 20], to compute the sparse code of a signal.

4.1.1. Proximal method
The proximal method is proven to be an efficient algorithm to deal with

non-smooth constrained large-scale problems [40]. The proximal minimization
algorithm solves a problem by applying iteratively the proximal operator

proxf (v) = arg min
x∈Rp

f(x) + 1
2‖x− v‖2. (8)

Let ST denotes the T -sparse space, namely

ST = {v ∈ Rp | ‖v‖0 ≤ T}.

The objective function in our problem can be written as

f(x) = δST (x) + 1
2‖y −Dx‖2, (9)

where δST denotes the indicator function over ST , namely

δST (x) =

{
0 if ‖x‖0 ≤ T ;
+∞ otherwise. (10)
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It is hard to have a closed-form solution to our problem. Thus, here, the
proximal linearized minimization algorithm is considered. By denoting q(x) =
1
2‖y −Dx‖2, the sparse coding problem can be rewritten as

arg min
x∈ST

〈x− xk,∇xq(x
k)〉+ 1

2λ‖x− xk‖2, (11)

where λ is the decrease step size. The solution to this problem (11) can be
expressed with the help of the proximal operator,

xk+1 = proxST (xk − λ∇xq(x
k)), (12)

where proxST (·) boils down to the projection onto the T -sparse space. In prac-235

tice, xk+1 is simple to be obtained by keeping the T largest absolute values of
xk−λ∇xq(x

k). It will produce a series (xk). The global optimal solution of the
original problem will be achieved when a fixed point is reached. This process
can be interpreted as a succession of minimization of an upper bound on the
objective function value.240

4.1.2. MIQP
In the sparse coding problem, the discontinuity of the constraint makes it

hard to tackle. The classical optimization techniques cannot be applied directly.
To address this issue, we have recently proposed in [20] a strategy based on
introducing an auxiliary variable z ∈ {0, 1}p (i.e., a vector of p binary variables)
indicating if the corresponding element in x is zero, that is

(1p − z)Tx = 0, (13)

where 1p is a vector of ones of size p. The sparsity constraint on x can be now
explained by a constraint on z,

1T z ≤ T. (14)

Thus, in this problem, the optimization variables x and z are respectively con-
tinuous and integer. It is called a mixed-integer programming problem, with a
quadratic objective function and non-linear constraints. The discretization of
the variable makes this problem hard to solve. Fortunately, z can be relaxed to245

[0, 1]p and the final solution is still discrete. See in [45] for the proof.
Introduced in [20], a second strategy consists in recasting the logical rela-

tion by a ‘big-M ’ reformulation. As a consequence, the `0-based sparse coding
problem (7) becomes, for a given M large enough,

min
x∈Rp,z∈{0,1}p

1
2‖y −Dx‖22

subject to
{
−zM ≤ x ≤ zM
1Tp z ≤ T.

(15)

In this formulation, all the constraints are linear. Hence, the sparse coding
can be interpreted as an MIQP. To solve MIQP problems, various optimization
software packages can be explored, for example CPLEX and Gurobi Optimizer.
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In general, the indicator constraint formulation shows advantage in comput-250

ing complexity. However, if a tight M is given, the second strategy will be the
first choice. In practice, an initialization value is produced by applying the prox-
imal method, which helps to define an appropriate and tight M . Therefore, the
‘big-M ’ formulation is used in this paper to tackle the sparse coding problem.

4.2. Dictionary Update via Proximal Alternating Method and Augmented La-255

grangian Method
The dictionary update aims at addressing the problem:

min
D∈Rn×p

1

`

∑̀
i=1

(
1
2‖yi −Dxi‖22

)
subject to

 |dTk dh| ≤ µc, ∀k, h ∈ {1, 2, . . . , p}, k 6= h

dTk dk = 1, k = 1, . . . , p.

(16)

By introducing a new variable G ∈ Rp×p that satisfies the itentity

G = DTD,

the problem can be written in the form

min
D∈Rn×p,G∈Rp×p

1
2‖Y −DX‖

2
F

subject to

{
G = DTD, G ∈ SG
dTk dk = 1, k = 1, . . . , p,

(17)

where
SG =

{
G ∈ Rp×p

∣∣ |Gij | ≤ µc, i, j = {1, 2, . . . , p}, i 6= j
}
.

Let δSG (G) be the indicator function on this set, namely

δSG (G) =

{
0, if G ∈ SG
+∞, otherwise. (18)

The constrained optimization problem can be solved by considering the aug-
mented Lagrangian function:

L(c1,c2)(D,G,λλλ,H) =
1

2
‖Y −DX‖2F +

p∑
k=1

λk(dTk dk − 1) +
c1
2

p∑
k=1

(dTk dk − 1)2

+ tr(H(G−DTD)) +
c2
2
‖G−DTD‖2F + δSG (G), (19)

where λλλ = [λ1, . . . , λp] and H are respectively the vector and matrix associated
to the equality constraints on the diagonal of DTD and on G, c1 and c2 are the
positive penalty parameters (the augmentation). When these parameters grow
into infinity, the optimal solution of the original problem (17) can be reached.260
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Algorithm 1 The inexact ADMM framework for solving (20)
Input: The training data (Y and X), the initialization of the parameters (λλλ0, D0, c01, H

0,
G0, c02, ρ1, ρ2), the stop criteria (ε, Niter).

Output: The optimal solution D∗
function dictionaryUpdating

for all i = 0 to Niter − 1 do
1. Computing the optimal solution (Di, Gi):

(Di, Gi) = arg minL(ci1,c
i
2)

(D,G,λλλi, Hi).

2. Updating the Lagrangian multiplier (λλλi, Hi):{
λλλi+1 = λλλi + ci1(diag((Di)TDi)− 1);
Hi+1 = Hi + ci2(Gi − (Di)TDi).

3. Updating the penalty parameters (ci1, c
i
2):{

ci+1
1 = ρ1ci1;

ci+1
2 = ρ2ci2.

4. Output the solution if the stop criteria or
the maximum iteration number is reached.

if max |(di
k)Tdi

k − 1| ≤ ε and max |Gi − (Di)TDi| ≤ ε then
return,

end if
end for

end function

Therefore, the optimization problem becomes:

min
D∈Rn×p,G∈Rp×p

L(c1,c2)(D,G,λλλ,H). (20)

It is not the standard augmented Lagrangian method (where the objective func-
tion is convex and has only one term, in most case, the constraints are closed
convex set). While our problem is non-convex and non-smooth, it is still reason-
able to consider the inexact ADMM framework [21]. The resulting algorithm is
illustrated in Algorithm 1.265

As presented in Algorithm 1, the inexact augmented Lagrangian method
operates in three alternating steps: In Step 1, the primal variables D, G are
computed, namely

(Di, Gi) = arg min
D,G

L(ci1,c
i
2)

(D,G,λλλi, Hi), (21)

where Di, Gi λλλi and Hi are the values in the i-th iteration; In Step 2, the
Lagrangian multipliers λλλ and H are updated; And in Step 3, the penalty pa-
rameters c1 and c2 are increased. It is proven that the two parameters c1 and
c2 can stay much smaller than +∞ to solve the problem [21].

The problem (21) is a non-convex and non-smooth optimization problem. It270

is unsolvable by satisfying the KKT conditions. We propose to use the alter-
nating strategy to address this problem. The optimal matrices of D and G are
obtained by alternating the gradient descent method and the proximal method,
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which can be regarded as the generalisation the extended proximal alternating
linearized minimization (EPALM) introduced in [22]. However, the proposed275

modification makes it treat the more difficult problem.
To investigate the EPALM method, we rewrite the objective function in

problem (21) in the form of three additive parts:

L(ci1,c
i
2)

(D,G,λλλi, Hi) = f(D) + h(D,G) + g(G), (22)

with the definition of:
f(D) =

1

2
‖Y −DX‖2F +

∑p
k=1 λ

i
k(dTk dk − 1) +

ci1
2

∑p
k=1(dTk dk − 1)2

h(D,G)= tr
(
Hi(G−DTD)

)
+
ci2
2
‖G−DTD‖2F

g(G) = δSG (G),

This problem is proved to be well defined, the details of demonstration can be
found in the appendix.

The problem (21) can now be solved by alternating the optimization prob-
lems with respect to D and G, respectively:

Di,j = arg min
D∈Rn×p

f(D) + h(Di,j−1, Gi,j−1)

+tr
(
(D −Di,j−1)T∇Dh(Di,j−1, Gi,j−1)

)
+
t̃1
2
‖D −Di,j−1‖2F

Gi,j = arg min
G∈Rp×p

g(G) + h(Di,j , Gi,j−1)

+〈G−Gi,j−1,∇Gh(Di,j , Gi,j−1)〉+
t2
2
‖G−Gi,j−1‖2F ,

(23)
where 〈M1,M2〉 = tr(MT

1 M2) is defined as the scalar product in the matrix
spaceMn(R), t̃1 and t2 are the coefficients associated respectively to the second
order approximation term. By considering that the function f is differentiable,
the problem of estimating D can be expressed as:

Di,j = arg min
D∈Rn×p

f(Di,j−1) + h(Di,j−1, Gi,j−1)

+tr
(
(D −Di,j−1)T∇D(f(Di,j−1) + h(Di,j−1, Gi,j−1)

)
+
t1
2
‖D −Di,j−1‖2F .

(24)

To solve this problem, it is easy to update D by the method of gradient descent.
As for the problem of estimating G in (23), the proximal method is applicable.
By combining both steps, the solution of D and G can be achieved by the
following process: Di,j = Di,j−1 − 1

t1
∇D
(
f(Di,j−1) + h(Di,j−1, Gi,j−1)

)
Gi,j = prox 1

t2
g

(
Gi,j−1 − 1

t2
∇G(h(Di,j , Gi,j−1))

)
,

(25)
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where the notation proxuf denotes the proximal operator defined in (8) of the
scaled function uf (also called the proximal operator of g with parameter u),
namely

prox 1
t2
f (v) = arg min

x
f(x) + 1

2t2
‖x− v‖2. (26)

The partial derivatives of the three parts of (22) are:

∇Df(Di,j−1) =−(Y −Di,j−1X)XT

+2Di,j−1diag(λiλiλi) + 2ci1D
i,j−1diag(vj−1)

∇Dh(Di,j−1, Gi,j−1) =−Di,j−1(Hi + (Hi)T )

−ci2Di,j−1(Gi,j−1 + (Gi,j−1)T − 2(Di,j−1)TDi,j−1)
∇Gh(Di,j , Gi,j−1) =Hi + ci2(Gi,j−1 − (Di,j)TDi,j),

(27)
where vj−1 = diag

(
(Di,j−1)TDi,j−1 − Ip

)
denotes the vector with the entries

valued by the diagonal of the matrix (Di,j−1)TDi,j−1− Ip. The two expressions
diag(λiλiλi) and diag(vj−1) return the matrix with the diagonal filled by the ele-
ments in the vectors λiλiλi and vj−1, respectively. Moreover, Gi,j can be computed
as:

Gi,j(ix, iy) =

 G̃(ix, iy) if |G̃(ix, iy)| ≤ µc
sign(G̃(ix, iy))µc otherwise,

(28)

where G̃ = Gi,j−1 − 1
t2
∇G
(
h(Di,j , Gi,j−1)

)
, sign(G̃(ix, iy)) is the sign of the

G̃(ix, iy), i.e., +1 if G̃(ix, iy) ≥ 0 and −1 otherwise. In these expressions,280

ix and iy are respectively the row and column indices of the matrix G̃, with
ix, iy = 1, 2, . . . , p.

The proposed EPALM method for estimating D and G is summarized in
Algorithm 2.

5. Experiments and results285

In this part, we describe the experiments conducted on synthetic and real
images, and analyze on the results. We first evaluate the accuracy and the
convergence property of the proposed algorithm using synthetic data. And then,
the dictionary learning algorithm based on the EPALMmethod is used for image
reconstruction on a real image. The results are compared with INK-SVD [10]290

and the incoherent dictionary learning algorithm by iterative projection and
rotation (IPR) [11].

5.1. Experiment on synthetic data
While theoretical convergence is proven in this paper (see appendix), we

provide in this section experiments on the accuracy and convergence using syn-295

thetic data. The analysis is conducted on the proposed dictionary updating
algorithm, independently of the sparse coding algorithm.
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Algorithm 2 EPALM algorithm for solving subproblem (21)
Input: The training data (Y and X), the parameters (λiλiλi, Hi, ci1 and ci2, the initialization

of the variables Di,0 = Di−1, the step size t1 and t2), the stop criteria (εi, N i
iter, the

subdifferential Θi of the L(ci1,c
i
2)

(Di, Gi,λλλi, Hi))

Output: The solution Di and Gi

function EPALM
Initialization j = 0,
Gi,0 = (Di,0)TDi,0,
Gi,0(ix, iy) = sign(Gi,0(ix, iy)) min(|Gi,0(ix, iy)|, µc),
Θi = Θi(Di,0, Gi,0).
while j < N i

iter and Θi > εi do
1. Updating Di,j by computing:

Di,j = Di,j−1 − 1
t1
∇D

(
f(Di,j−1) + h(Di,j−1, Gi,j−1)

)
.

2. Computing:
G̃ = Gi,j−1 − 1

t2
∇G

(
h(Di,j , Gi,j−1)

)
.

3. Projecting the G̃ in the space SG :

Gi,j(ix, iy) =

{
G̃(ix, iy) if |G̃(ix, iy)| ≤ µc;

sign(G̃(ix, iy))µc otherwise.

4. Calculating the subdifferential Θi(Di,j , Gi,j).
5. j = j + 1.

end while
end function

In this first experiment, we consider ` = 100 signals of dimension n = 5, and
p = 20 atoms to be learned. A sparse matrix X ∈ R20×100 with the maximal
column-wise sparsity level 3 is manually created. A learned dictionary D ∈
R5×20 is generated from the IPR incoherent dictionary learning algorithm [11]
on an arbitrary image, with the coherence parameter set to 0.6; The obtained
dictionary has a coherence computed by (2) of 0.608. Then, in each test, the
set of signals Y can be generated in the way that:

Y = DX + ωE, (29)

where the second term in the right-hand-side corresponds to the unfitness noise,
where E a white Gaussian zero-mean matrix with a noise level set to ω = 0.1.

To provide an overall evaluation of the proposed algorithm, sev-
eral different values of the coherence parameters are used, with µc =
{0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1}. It is worth noting that values below 0.4 cannot
be reached due to geometric constraints [9], namely, the coherence of an over-
complete dictionary of size n× p is bounded by

µ >

√
p− n
n(p− 1)

. (30)

The algorithm is run in the Matlab R© environment on a MacBook with 2 Intel300

Core i5 processors with a CPU clocked at 2.7 GHz. The parameters values are
set as follows: For Algorithm 1, the maximal outer iteration number Niter = 50,
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Table 1: Accuracy results and computing time on synthetic data

Coherence parameter µc 0.5 0.55 0.6 0.7 0.8 0.9 1.0
Initial objective function value: 1

2
‖Y −D0X‖2F 9523 9592 9318 9643 9340 9483 9446

Final objective function value: 1
2
‖Y − D̃X‖2F 216.84 91.80 2.01 1.89 1.89 1.89 1.89

Accuracy: ‖D̃ −D∗‖F 1.480 1.060 0.058 0.100 0.100 0.100 0.100
Outer iteration number 50 22 9 4 4 4 4
Inner iteration number 972 877 692 312 319 319 318
max |dT

k dk − 1| 0.015 0.001 0.003 0.007 0.007 0.007 0.007
max |G−DTD| 0.052 0.0057 0.0084 10−8 10−8 10−8 10−8

Computing time in seconds 155.78 47.31 16.33 3.38 3.42 3.41 3.39

the coefficient to update the penalty parameter ρ1 = ρ2 = 1.5, the stop criterion
ε = 0.01; For Algorithm 2: the maximal inner iteration number N i

iter = 1000,
the stop criterion εi = ε0 = 0.01. For each coherence parameter value, five305

independent Monte Carlo simulations are conducted.
We analyze the algorithm through the accuracy ‖D̃−D∗‖F and the objective

function value 1
2‖Y − D̃X‖

2
F , as well as the computing time, where D̃ is output

of the algorithm and D∗ is the optimal known solution. Moreover, the iteration
numbers with different coherence parameter settings is also studied. The results310

are listed in the Table 1. It shows that, with the decrease of the coherent
parameter µc, more iterations are needed to converge, and thus more time.
On the other hand, as the coherence parameter increases, the stopping criteria
max (|dTk dk − 1|) ≤ 0.01 and max |G−DTD| ≤ 0.01 can be easily satisfied.

From Table 1, we observe that when µc = 0.6, which is the closest value to315

the coherence of the target dictionary D∗ (i.e., µ∗ = 0.607), the results have
the greatest accuracy of 0.058. For the other values of µc, the results remain
consistent but with a deduced accuracy. This is easy to understand since, for
µc > µ∗, the optimal solution D∗ is in the feasible region, which should also
be the output of the algorithm. But, influenced by the noise, the output of320

the algorithm cannot be exactly D∗. For this reason, the objective function for
µc > µ∗ are always less than that when µc = 0.6. However, when µc < µ∗, the
situation is totally different, because µ∗ is out of the feasible region. Therefore,
a solution that satisfies the coherence constraint can be found, but the price to
pay is an increase of the objective function, as well as the computational cost to325

converge. Consequently, by appropriately choosing the coherent parameter, an
incoherent dictionary can be produced by this algorithm. Moreover, the smaller
the target coherent parameter is, the greater the computational complexity will
be.

5.2. Real image reconstruction330

This experiment focuses on the performance of image reconstruction by using
the proposed dictionary learning algorithm, namely by combining the EPALM
dictionary update algorithm with either the proximal or the MIQP sparse cod-
ing algorithms. The property of the convergence and reconstruction accuracy
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Figure 1: Barbara image

will be discussed in the following. Furthermore, the influence of the coherence335

parameter on the reconstruction results will be compared with other algorithms,
such as INK-SVD [10] and the incoherent dictionary learning algorithm by it-
erative projection and rotation (IPR) [11].

The segment of image Barbara of size 121 × 121, as shown in Figure 1, is
chosen as the experimental data. The overlapping patches of size 8×8 (namely,340

a signal is a vector of size 64) form the set of signals Y . With the signals, a
dictionary D is learned by using the proposed method (EPALM for dictionary
updating and proximal method or MIQP for sparse coding) and compared to the
other two comparative incoherent dictionary learning algorithms. When both
D and Y are known, the sparse code X can be easily obtained using a sparse345

coding method, namely proximal method and MIQP for our algorithm, OMP
algorithm for the other two methods. Then, the reconstructed image is obtained
by doing the matrix multiplication Ỹ = DX. Consequently, we compare their
performance by calculating the peak signal-to-noise ratio (PSNR).

The MIQP problem is solved by the software Gurobi Optimizer 8.1.0. We350

run the programs in the Matlab R© environment on a server with 4 Intel R© Xeon R©

processors with a CPU clocked at 2.4 GHz. The parameter settings of Gurobi
are fixed as the default values except that the time limit is set 0.5 seconds
and iteration number 1000. The initialization of MIQP is given by running the
proximal method with the maximal iteration number set to 200. When only the355

proximal method is used for sparse coding, the iteration number is set to 1000.
The number of atoms is set to p = 256 and the sparsity level T = 20 (the active
atoms is less than 8%). In the phase of dictionary update, the parameter setting
is just set the same as in the test on synthetic data. The iteration number for
learning a dictionary is determined 30, which is sufficient for the algorithms to360

converge, as shown in Figure 3. For the other two comparative methods, the
parameter values are chosen as in the original papers [10, 11].

Figure 2 presents the convergence property of the algorithms, which is ob-
tained by fixing the coherent parameter to µc = 0.6, which corresponds to hav-
ing angles between any two atoms greater than 53◦. It is observable that the365

dictionary algorithm with MIQP for sparse coding and EPALM for dictionary
updating has the fastest convergence and the value of limit is the smallest. It is
worth pointing out that 30 iteration is sufficient for the algorithms to converge,
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Figure 2: The convergence of the proposed algorithm and its comparison to the INK-SVD
and IPR algorithms

Table 2: Statistics on the resulting dictionary

µ Average of Variance of
{|dT

i dj | | i 6= j} {|dT
i dj | | i 6= j}

INK-SVD 0.601 0.368 0.0177
IPR 0.711 0.557 0.0073
Proximal+EPALM 0.608 0.352 0.0176
MIQP+EPALM 0.609 0.382 0.0146

even though the IPR algorithm shows some convergence unstability.
Figure 3 shows the distribution of the absolute inner product between each370

two atoms in the learned dictionary. Combined by the statistics in Table 2,
we notice that independently of the used sparse coding algorithm, the pro-
posed method can achieve a dictionary with almost the target coherence pa-
rameter value, which is not the case of IPR. The proximal method combined
with EPALM provides the smallest absolute average, which is an important375

property related to the so-called Babel function whose theory is well established
[7, 8, 9]. However, this algorithm cannot beat the one with MIQP for sparse
coding in terms of variance. INK-SVD outputs as well a dictionary with the
almost the target coherence value, but with a higher variance. Nevertheless,
INK-SVD updates the dictionary without considering the reconstruction error380

(see next paragraph). For the IPR algorithm, the target coherence parameter
value cannot be obtained even though it shows the least variance. Considering
the distribution of absolute inner products between each two atoms in learned
dictionary, as illustrated in Figure 3, it is hard to tell if the proximal method or
the MIQP is better to combine to EPALM. Next paragraph presents an analysis385

on the reconstruction error.
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Figure 3: The distribution of the coherence between each two atoms of the proposed algorithms
and its comparison to the INK-SVD and IPR algorithms

Table 3: The reconstruction errors in PSNR (in dB) by using the dictionary with different
coherence parameter values µc = cos(θc)

Largest angle θc between two atoms
5◦ 15◦ 30◦ 45◦ 60◦ 75◦ 83◦

INK-SVD 36.46 36.56 36.26 34,83 34.04 30.15 -
IPR 36.82 36.57 35.72 31.51 30.60 27.84 -
Proximal+EPALM 27.40 27.42 28.06 29.80 29.31 29.75 22.97
MIQP+EPALM 37.60 37.26 38.89 38.55 36.52 35.31 33.97

To analyze the reconstruction errors, we study seven different coher-
ence values, that is, the angle between any two atoms is bigger than
{5◦, 15◦, 30◦, 45◦, 60◦, 75◦, 83◦}, the corresponding coherence values being µc =
{0.996, 0.966, 0.866, 0.707, 0.500, 0.259, 0.122}. For each value, a dictionary with390

such target coherence value is learned, and the relation between the reconstruc-
tion performance and the coherence of the dictionary is illustrated next.

Table 3 and Figure 4 illustrate the reconstruction results. The visualization
results are showed in Figure 5. The combination of MIQP for sparse coding
and EPALM for dictionary update outperforms the other methods for all the395

coherence parameter values. Moreover, it is interesting to find that for our pro-
posed method, the reconstruction performance improve with the coherence of
dictionary decreasing, with the best results when µc = cos(45◦) with proximal
method for sparse coding and µc = cos(30◦) with MIQP; afterwards, the re-
construction performance begins to decrease. This is different from the results400

of INK-SVD and IPR algorithms whose performances monotonically decrease
with the coherence (i.e., the incoherence of the dictionary is increasing). Hence,
our algorithm increases the dictionary incoherence without the risk of loss of
reconstruction accuracy, which corroborates theoretical results proved in [9] but
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Figure 4: The figure of reconstruction results

not verified in real-world problem by algorithms such as INK-SVD or IPR. Fur-405

thermore, our method proves that an appropriate incoherent dictionary helps
to improve the performance. However, one point should be noticed, incoher-
ent dictionary learning algorithm with MIQP for sparse coding has the highest
computing complexity comparing to the other methods.

6. Conclusion410

This paper investigated the exact incoherent dictionary learning, where all
the constraints were explicitly solved. To this end, we proposed a new dictionary
update algorithm EPALM by combining the proximal alternating minimization
method and augmented Lagrangian method. This algorithm was used for dic-
tionary learning together with a sparse coding algorithm, such as the proximal415

method and MIQP. In this paper, we showed firstly the feasibility of the algo-
rithm on synthetic data, examining the performance of the dictionary learning
independently of the sparse coding algorithm. And then, the incoherent dictio-
nary algorithm was used for real image reconstruction. We studied the statistics
of the resulting dictionary, and the reconstruction performance for a large set420

of target coherence parameters. It was proven that the combination of EPALM
for dictionary updating and MIQP for sparse coding always outperformed the
other methods in terms of the reconstruction results. The relevance of having
an incoherent dictionary was also demonstrated.
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(a) INK-SVD (b) IPR

(c) Proximal+EPALM (d) MIQP+EPALM

Figure 5: Reconstructed images

Appendix A. Convergence Analysis425

In this part, we focus on the convergence analysis of our algorithm. In terms
of the subdifferential of the objective function in (21), as well as the choice of
the parameters, a view of convergence analysis can be described as follows.

Definition 1. ([46]) Let f : Rn → R∪{+∞} be a proper lower semicontinuous
function. For each x ∈ dom f (where dom f = {x ∈ Rn | F (x) < +∞} ), the
Fréchet subdifferential of f at x is

∂f =
⋂

z∈dom f

{g | f(z) ≥ f(x) + gT (z − x)}. (A.1)

A necessary but not sufficient condition for x ∈ Rn to be a minimizer
of f is 0 ∈ ∂f(x). Back to our optimization problem, the subdifferential of
L(ci1,c

i
2)

(D,G,λλλi, Hi) at (Di, Gi), denoted by Θi = (Θi
D,Θ

i
G) and expressed as

Θi = ∂L(ci1,c
i
2)

(Di, Gi,λλλi, Hi),

can be computed directly and the result can be written in form of:{
Θi
D = ∇Df(Di) +∇Dh(Di, Gi)

Θi
G = t2(Gi−1 −Gi).

(A.2)
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Thus a solution of the problem will be found when ‖Θi‖∞ → 0. According
to the formulation of Θi in (A.2), Di is exactly the local optimal solution of430

the subproblem with respect to D, and the sequence Gi,j is convergent, since
‖Gi −Gi−1‖F → 0.

Besides, it is noticed that to guarantee that every bounded sequence
generated by the proposed method converges to a critical point of the
L(ci1,c

i
2)

(Di, Gi,λλλi, Hi), the parameters c1, c2 and the steps t1, t2 need to be435

appropriately chosen. The following can be noted:

• c01 and c02 should be carefully chosen to avoid the ill-condition, i.e., the
initial positive penalty parameters c01 and c02 satisfy the second order suf-
ficient condition:

∇2
DDL(Di, Gi,λiλiλi, Hi) > 0;

Due to the complexity of the derivative of a matrix function with respect
to a matrix (the derivative of the function with respect to each element of
the matrix being a matrix), we do not give the detail here.

• The convergence of the algorithm requires that the descent steps, i.e.,440
1
t1

and 1
t2

should not be too much big, which satisfy that t1 > LD and
t2 > LG, where LD and LG are the globally Lipschitz constant of the
gradient of the functions D → h(D,G) and G→ h(D,G).

Proposition 1. To sum up, a sequence ((Di,j , Gi,j))j∈N is generated by using
the proposed method, then the following condition will be satisfied:445

• When j →∞, ‖Θi(Di,j , Gi,j)‖∞ → 0

• The sequence ((Di,j , Gi,j))j∈N has finite length, that is,

∞∑
j=1

‖(Di,j+1, Gi,j+1)− (Di,j , Gi,j)‖F <∞ (A.3)

In the following, we give the proof of the convergence of the proposed al-
gorithm. As aforementioned, our algorithm aims at tackling the constrained
optimization problem by transforming the problem into an unconstrained op-
timization problem via the augmented Lagrangian method. In each iteration450

of the augmented Lagrangian method, the minimization problem with respect
to the primal variables is solved by the EPALM algorithm. Thus, for prov-
ing the convergence of the algorithm, we need to prove the convergence of the
augmented Lagrangian method and that of the EPALM.

Appendix A.1. Convergence of the augmented Lagrangian method455

Before proceeding and for completeness, we give here the convergence of
the augmented Lagrangian method [21]. Consider the general expression of an
equality-constrained problem:

min q(x)
subject to p(x) = 0, ∀x ∈ X , (A.4)
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where X is a closed set, and q and p are continuous functions in X .

Proposition 2 (Proposition 4.2.1 in [21]). Assume q and p are continuous
functions, X is a closed set, and the constraint set {x ∈ X | p(x) = 0} is
nonempty. For k = 0, 1, · · · , let xk be a global minimum of the optimization
problem

min
x∈X

Lck(x, λk), (A.5)

where λk is bounded, 0 < ck < ck+1 for all k, and ck → ∞. Then every limit
point of the sequence (xk) is a global minimum of the original problem (A.4).

Furthermore, according to the Proposition 4.2.2 in [21], the limit of the
sequence {λk} can be reached by iteratively updating λk through λ̃k = λk +460

ckp(xk), and limk→∞ λk+ckp(xk) = λ∗. x∗ is the solution of ∂(q+λ∗p)(x∗) = 0.

Appendix A.2. Sufficient condition for well-defining the problem (22)
The problem (22) is well defined with f : Rn×p → (−∞,+∞], h : Rn×p ×

Rp×p → (−∞,+∞] being a C1 function (i.e., continuously differentiable), and
inf f(D) > −∞, inf h(D,G) > −∞, g : Rp×p → [0,∞] a proper and lower465

semicontinuous function.

Appendix A.3. Convergence of the EPALM algorithm
For guaranteeing the convergence of the EPALM method, the following as-

sumption should be satisfied:

(i) The functions D → h(D,G) and G → h(D,G) have their gradients glob-
ally Lipschitz continuous with module LD and LG, respectively. In other
words, the partial gradients of h with respect to D and G show the prop-
erty: {

‖∇Dh(D,G)−∇Dh(D̄,G)‖F ≤ LD‖D − D̄‖F
‖∇Gh(D,G)−∇Gh(D, Ḡ)‖F ≤ LG ‖G− Ḡ‖F ,

(A.6)

for all (D, D̄) and (G, Ḡ). with −∞ < L < LD, LG < L < +∞.470

(ii) L(ci1,c
i
2)

(D,G,λλλi, Hi) satisfies the Kurdyka-Łojasiewicz inequality [22].

The definition of the Kurdyka-Łojasiewicz (KL) equality [47] is:

Definition 2. (Kurdyka-Łojasiewicz function)

(a) The function f : Rn → R∪{+∞} is said to have the Kurdyka-Łojasiewicz
property at x∗ ∈ dom ∂f if there exist η ∈ (0,+∞], a neighborhood U of475

x∗ and a continuous concave function φ : [0, η)→ R+ such that:

(i) φ(0) = 0

(ii) φ is C1 on (0, η)

(iii) for all s ∈ (0, η), φ
′
(s) > 0
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(iv) for all x in U ∩ [f(x∗) < f < f(x∗) + η], the Kurdyka-Łojasiewicz
inequality holds:

φ
′
(f(x)− f(x∗))dist(0, ∂f(x)) ≥ 1 (A.7)

(b) The proper lower semicontinuous functions that satisfy the Kurdyka-480

Łojasiewicz inequality at each point of dom ∂f are called KL functions.

We now study the convergence property of the algorithm, that is, the con-
vergence of the sequence generated by the proposed algorithm in this paper.
We will prove that the proposed algorithm generates a sequence (xk)k∈N that
satisfies the following conditions:485

H1. (Sufficient decrease condition). For each k ∈ N,

f(xk+1) + a‖xk+1 − xk‖2 ≤ f(xk);

H2. (Relative error condition). For each k ∈ N, there exists wk+1 ∈
∂f(xk+1) such that

‖wk+1‖ ≤ b‖xk+1 − xk‖;

H3. (Continuity condition). There exists a subsequence (xkj )j∈N and x̃
such that

xkj → x̃ and f(xkj )→ f(x̃), when j →∞. (A.8)

Then the following theorem will be used to prove the convergence of the proposed
algorithm [47, Theorem 2.9].

Theorem 1. (Convergence to a critical point)
Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function. Consider
a sequence (xk)k∈N that satisfies the conditions H1, H2, H3.490

If f has the Kurdyka-Łojasiewicz property at the cluster point x̃ specified in
H3, then the sequence (xk)k∈N converges to x̄→ x̃ as k goes to infinity, and x̄
is a critical point of f .

Moreover the sequence (xk)k∈N has a finite length, i.e.,

+∞∑
k=0

‖xk+1 − xk‖ < +∞.

In the following, we begin with the proof of satisfaction of assumption on
functions.495

Proposition 3. The objective function L(ci1,c
i
2)

(D,G,λλλi, Hi) is a KL function.

Proof. The objective function L(ci1,c
i
2)

(D,G,λλλi, Hi) can be written in form of
(22), namely f(D)+h(D,G)+g(G). According to [24] and therein, it is easy to
prove that f and h are KL functions. Moreover, g is also a KL function because
it is the indicator function of a semi-algebraic set. Hence, the sum of the KL500

functions, i.e., L(ci1,c
i
2)

(D,G,λλλi, Hi), is a KL function.
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Proposition 4. In problem (A.4), if q(x) is a proper semicontinuous function
in a closed set X and p(x) is a proper lower continuous function in X , then
the augmented Lagrangian function Lck(x, λk) is a proper lower semicontinuous
function.505

Proof. Firstly, if p(x) is a continuous function in X , then {x | p(x) <∞} = X .
Moreover, q(x) is a proper function in X . Lck(x, λk) = q(x) + λkp(x) + ck

2 p
2(x)

is consequently a proper function in X .
Secondly, it is evident that if p(x) is a continuous function in X , then λkp(x)

and ck

2 p
2(x) are continuous functions in X . The sum of a semicontinuous func-510

tion in X , the function q(x) and a continuous function λkp(x) + ck

2 p
2(x), is still

a semicontinuous function, i.e., Lck(x, λk) is a semicontinuous function.
Finally, p and q are both lower-bounded functions in X , that is, ∀x ∈ X ,

p(x) > −∞ and q(x) > −∞. λkp(x) + ck

2 p
2(x) is a convex function because

c > 0, then, λkp(x) + ck

2 p
2(x) > −∞, ∀x ∈ X . Hence, Lck(x, λk) is the sum of515

two lower-bounded functions in X .
Therefore, Lck(x, λk) is a proper lower semicontinuous function.

In our optimization problem, q(x) is a proper lower semicontinuous function
dedicating here to an indicator term and p(x) is a set of linear functions and
quadratic functions, which are all proper lower continuous function. By applying520

the above Proposition 4, we can deduce that the augmented Lagrangian function
in our problem is a proper lower semicontinuous function.

Now, to prove the convergence of the algorithm, we still need to prove that
the generated sequence (Di,j , Gi,j) satisfies the conditions H1, H2 and H3.
The sequence is generated from the process{

Di,j+1 = arg minD∈Rn×p P1(D)
Gi,j+1 = arg minG∈Rp×p P2(G),

(A.9)

where the functions P1 and P2 are defined as:
P1(D)= f(Di,j) + h(Di,j , Gi,j)

+tr
(
(D −Di,j)T∇D(f(Di,j) + h(Di,j , Gi,j))

)
+
t1
2
‖D −Di,j‖2F

P2(G) = g(G) + h(Di,j+1, Gi,j)

+tr
(
(G−Gi,j)T∇Gh(D

i,j , Gi,j)
)
+
t2
2
‖G−Gi,j‖2F .

(A.10)

Proposition 5. The process P1 produces a sequence (Di,j) that respects the
conditions H1, H2 and H3.

Proof. The three functions ∇f : Rn×p → Rn×p, ∇Dh : Rn×p → Rn×p and
∇Gh : Rp×p → Rp×p are all Lipchitz continuous functions on their own domain.
Then, there exists a Lipchitz constant L1 = L + LD, where L is the Lipchitz
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constant for the function ∇f and LD defined in (A.6), that is

f(Di,j+1) + h(Di,j+1, Gi,j)

≤ f(Di,j) + h(Di,j , Gi,j) +
L1

2
‖Di,j+1 −Di,j‖2F

+tr
(
(Di,j+1 −D(i, j))T∇D(f(Di,j) + h(Di,j , Gi,j)

)
.

(A.11)

The minimization of the problem (A.9) requires that

tr
(
(D −Di,j)T∇D(f(Di,j) + h(Di,j , Gi,j)

)
+ t1

2 ‖D −D
i,j‖2F ≤ 0, (A.12)

which makes sure the descent of the objective function. By, combining the525

inequality (A.12) with the inequality (A.11), we obtain the following result:

f(Di,j+1) + h(Di,j+1, Gi,j) + t1−L1

2 ‖Di,j+1 −Di,j‖2F ≤ f(Di,j) + h(Di,j , Gi,j).(A.13)

The satisfaction of condition H1 can be easily proven by choosing a t1 greater
than L1.

We now begin to prove the condition H2. A big b can be found such that,

‖∇D(f(Di,j) + h(Di,j , Gi,j)‖ ≤ b ‖Dk+1 −Dk+1‖. (A.14)

By considering the Lipchitz continuity of the function D → ∇(f(D) +h(D,G))
and applying the triangle inequality, the following is deduced:

‖∇Df(Di,j+1) +∇Dh(Di,j+1, Gi,j)‖ ≤ ‖∇D
(
f(Di,j)− h(Di,j , Gi,j)

)
‖

+ ‖∇D
(
f(Di,j+1) + h(Di,j+1, Gi,j)

)
−∇D

(
f(Di,j)− h(Di,j , Gi,j)

)
‖

≤ (b+ L1)‖Di,j+1 −Di,j‖, (A.15)

which is the relative error condition H2.
The continuity condition H3 is satisfied because of the continuity of the530

functions f and h with respect to D.

Proposition 6. The process P2 produces a sequence (Gi,j) having the properties
introduced in conditions H1, H2 and H3.

Proof. The minimization of the second subproblem in (A.9) assures that,

g(Gi,j+1) + tr
(
(Gi,j+1 −Gi,j)T∇Gh(Di,j , Gi,j)

)
+
t2
2
‖Gi,j+1 −Gi,j‖2F ≤ g(Gi,j).

(A.16)

The function G → h(D,G) is a LD-Lipchitz continuous function. Here, for
simplification, let L2 = LG. Thus, the inequality (A.16) becomes

g(Gi,j+1) +
−L2 + t2

2
‖Gi,j+1 −Gi,j‖2F ≤ g(Gi,j). (A.17)

When t2 > L2, the condition H1 is satisfied.
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We prove the satisfaction of condition H2 by using its first order necessary
condition:

∂g(Gi,j+1) + t2(Gi,j+1 −Gi,j + 1
t2
∇Gh(Di,j+1, Gi,j)) = 0. (A.18)

By moving the term about Gi,j+1 −Gi,j to the right-hand-side, we have

∂g(Gi,j+1) +∇Gh(Di,j+1, Gi,j) = −t2(Gi,j+1 −Gi,j). (A.19)

Taking the norm of the left-hand-side and that of right-hand-side in equality
(A.19), the following equality holds:

‖∂g(Gi,j+1) +∇Gh(Di,j+1, Gi,j)‖ = t2‖Gi,j+1 −Gi,j‖. (A.20)

Then by applying the triangle inequality, the condition H2 can be proven:

‖∂g(Gi,j+1) +∇Gh(Di,j+1, Gi,j+1)‖ ≤ ‖∂g(Gi,j+1) +∇Gh(Di,j+1, Gi,j)‖
+ ‖∇Gh(Di,j+1, Gi,j+1)−∇Gh(Di,j+1, Gi,j)‖
≤ (t2 + L2)‖Gi,j+1 −Gi,j‖ (A.21)

H3 is satisfied for the continuous function h and the semicontinuous function535

g in SG.

Proposition 7. The iterative process P1 and P2 produces a sequence
((Di,j , Gi,j)) that satisfies the conditions H1, H2 and H3.

Proof. The Lipchitz continuity of the gradient of G→ h(D,G) and the inequal-
ity (A.21) infer that there exists an L′ < 0 that verifies

h(Di,j+1, Gi,j+1)− h(Di,j+1, Gi,j) ≤ L′‖Gi,j+1 −Gi,j‖2F . (A.22)

By summing the inequalities (A.13) and (A.17), we get:

f(Di,j+1) + h(Di,j+1, Gi,j) + g(Gi,j+1)

+ t1−L1

2 ‖Di,j+1 −Di,j‖2F + t2−L2

2 ‖Gi,j+1 −Gi,j‖2F
≤ f(Di,j) + h(Di,j , Gi,j) + g(Gi,j). (A.23)

Using the result of (A.22), the inequality becomes:

Lci1,ci2(Di,j+1, Gi,j+1,λλλi, Hi) + t1−L1

2 ‖Di,j+1 −Di,j‖2F
+ t2−L2−2L′

2 ‖Gi,j+1 −Gi,j‖2F ≤ Lci1,ci2(Di,j , Gi,j ,λλλi, Hi). (A.24)

Setting a = min
(
t1−L1

2 , t2−L2−2L′
2

)
, we obtain

Lci1,ci2(Di,j+1, Gi,j+1,λλλi, Hi) + a‖(Di,j+1, Gi,j+1)− (Di,j , Gi,j)‖2F
≤ Lci1,ci2(Di,j , Gi,j ,λλλi, Hi). (A.25)
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Thus, the sequence ((Di,j , Gi,j))j∈N satisfies the condition H1.
To prove the condition H2, it is necessary to compute the subdifferential of

problem (22) of the pair of matrix variables (Di,j+1, Gi,j+1), which is denoted
by ∂L(ci1,c

i
2)

(Di,j+1, Gi,j+1,λλλi, Hi). With the results obtained in (A.15) and
(A.21), we use again the triangle inequality, then

‖∂L(ci1,c
i
2)

(Di,j+1, Gi,j+1,λλλi, Hi)‖ = ‖∇f(Di,j+1) +∇h(Di,j+1, Gi,j+1) + ∂g(Gi,j+1)‖

≤ ‖∇Df(Di,j+1) +∇Dh(Di,j+1, Gi,j+1)‖
+ ‖∂g(Gi,j+1) +∇Gh(Di,j+1, Gi,j+1)‖
≤ ‖∇Df(Di,j+1) +∇Dh(Di,j+1, Gi,j)‖

+ ‖∂g(Gi,j+1) +∇Gh(Di,j+1, Gi,j+1)‖
+ ‖∇Dh(Di,j+1, Gi,j+1)−∇Dh(Di,j+1, Gi,j)‖.

Using the expressions of the partial derivatives in (27), then the following in-
equality holds

‖∇Dh(Di,j+1, Gi,j+1)−∇Dh(Di,j+1, Gi,j)‖ ≤ ‖∇h(Di,j+1, Gi,j+1)−∇h(Di,j+1, Gi,j)‖
≤ L‖(Di,j+1, Gi,j+1)− (Di,j , Gi,j)‖,

where L is the Lipchitz constant of the function h. Combining the inequalities
(A.15) and (A.20), the condition H2 of the global sequence (Di,j , Gi,j)j∈N is
obtained

‖∂L(ci1,c
i
2)

(Di,j+1, Gi,j+1,λλλi, Hi)‖ ≤ (L1 + b)‖Di,j+1 −Di,j‖+ (t2 + L2)‖Gi,j+1 −Gi,j‖

+ L‖(Di,j+1, Gi,j+1)− (Di,j , Gi,j)‖.

Let t = max(L1 + b+ L,L2 + t2 + L), then

‖∂L(ci1,c
i
2)

(Di,j+1, Gi,j+1,λλλi, Hi)‖

≤ t‖(Di,j+1, Gi,j+1)− (Di,j , Gi,j)‖

The condition H3 is straightforward by considering the continuity of the func-540

tion.
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