
HAL Id: hal-03042541
https://normandie-univ.hal.science/hal-03042541v1

Submitted on 6 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From discrete and iterative deconvolution operators to
machine learning for premixed turbulent combustion

modeling.
Pascale Domingo, Zacharias Nikolaou, Andréa Seltz, Luc Vervisch

To cite this version:
Pascale Domingo, Zacharias Nikolaou, Andréa Seltz, Luc Vervisch. From discrete and iterative de-
convolution operators to machine learning for premixed turbulent combustion modeling.. Data anal-
ysis for direct numerical simulation of turbulent combustion, pp.215-232, 2020, 978-3-030-44718-2.
�10.1007/978-3-030-44718-2_11�. �hal-03042541�

https://normandie-univ.hal.science/hal-03042541v1
https://hal.archives-ouvertes.fr


From discrete and iterative deconvolution
operators to machine learning for premixed
turbulent combustion modeling

P. Domingo, Z. Nikolaou, A. Seltz, L. Vervisch

Abstract Following the rapid and continuous progress of computing power allowing
for increasing the mesh resolution in large eddy simulation (LES), new modeling
strategies appear which are based on a direct treatment of the now well-resolved,
but still not fully-resolved scalar signals. Along this line, deconvolution or inverse
filtering, either based on discrete or iterative operators, is first discussed. Recent
results obtained from a direct numerical simulation (DNS) database and LES of a
premixed turbulent jet flame are presented. The analysis confirms the potential of
deconvolution to approximate the unclosed non-linear terms and the SGS fluxes.
Then, the introduction of machine learning in turbulent combustion modeling is
illustrated in the context of convolutional neural networks.

1 Introduction

Virtual prototyping has become an essential ingredient in the development and op-
timisation of combustion systems, as furnaces, boilers, internal combustion engines
and gas turbines [1, 2, 3, 4, 5]. Even relying on high performance computing, the
spatial resolutions reached by the grids do not allow for fully resolving the small-
est scales of the flow motions and scalar signals when simulating real combustion
chambers. The introduction of modeling is therefore mandatory to deal with unre-
solved sub-grid scale (SGS) fluctuations affecting the transport of mass, momentum
and energy. In addition, chemical reactions mechanisms are strongly non-linear and
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specific tools must also be developed to compute burning rates over grids which are
coarse at the scale of the thin reaction zones observed in flames [6, 7, 8, 9].

In large-eddy simulation (LES), a spatial filtering operation is applied to the first
principle equations of aerothermochemistry and any quantity φ(x, t) resolved by the
grid reads

φ(x, t) =

+∞∫
−∞

φ(x ′, t)G∆(x ′ − x)dx ′ , (1)

where G∆(x ′ − x) denotes a filtering operation of characteristic size ∆ and φ(x, t) is
the fully resolved signal i.e., the solution that would be observed in a direct numerical
simulation (DNS) resolving all the scales [10].

Because of unresolved SGS effects, the filtered value of any non-linear term T(φ)
differs from T(φ). So far, closures were developed in the literature in the form of
mathematical expressions, providing estimation of the sub-grid scale effects from
the knowledge of the quantities resolved by the grid, then T(φ) = T(φ), where T(φ)
denotes the physical model used to express T(φ) from the resolved field φ.

The application to turbulent flames of a different paradigm for modeling, which
is based on a direct data analysis, is discussed in this chapter. Two main points are
addressed:

• First, twomethods of signal reconstruction based, respectively, on approximate in-
verse filtering and iterative deconvolution are discussed. In these two approaches,
a tentative true signal φ?(x, t) = L−1

∆

[
φ(x, t)

]
is approximated from φ(x, t), the

resolved field, to compute the non-linear terms which are then explicitly filtered,

T(φ)(x, t) = T
(
L−1
∆

[
φ(x, t)

] )
. (2)

• Second, a neural network is trained to relate the filtered non-linear terms (i.e.,
T(φ)) to three-dimensional distributions of resolved quantities surrounding the
considered grid point (i.e., T(φ) or any function of φ). A mapping functionH is
then obtained so that

T(φ)(x, t) = H
[
T(φ(x1, t)), · · · ,T(φ(xN, t)

]
, (3)

with x j the N points selected around x to build an input image for a neural network
previously trained.

Both approaches are evaluated a priori from different DNS databases, for the pre-
diction of unresolved SGS convective and diffusive fluxes and for the modeling of
filtered chemical sources.
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2 Flame filtering and signal reconstruction

2.1 Filtered scalar balance equation

The budget equations for scalars describing flames (chemical species mass fractions,
energy, temperature) may be cast in the generic form,

∂ρφ

∂t
+ ∇ · (ρuφ) = ∇ · (ρDφ) + Ûω , (4)

where ρ is the density u the velocity vector, D a molecular diffusion coefficient and
Ûω a chemical source. Applying the filtering operation (1) leads to

∂ρφ̃

∂t
+ ∇ · (ρũφ̃) = ∇ · (ρD(φ̃)∇φ̃) + Ûω + ∇ · τ , (5)

where φ̃ = ρφ/ρ and

τ =
(
ρD∇φ − ρD(φ̃) ,∇φ̃

)
SGS diffusion

−

(
ρuφ − ρũφ̃

)
SGS convection

, (6)

are two unresolved SGS fluxes. The molecular diffusion coefficient usually depends
non-linearly on the flow thermochemical properties and the notation D(φ̃) denotes
D computed from the resolved fields.

2.2 Signal deconvolution

Two methodologies for signal reconstructions are now discussed after introducing a
relation useful to determine the filter size which should actually be applied according
to the mesh resolution and the number of points required within the flame.

2.2.1 Relation between flame thickness, filter size and mesh size

For a mesh of characteristic size h and a laminar premixed flame thickness δL , the
relation between the number of points within the filtered signal and the filter size ∆
may be approximated as [11]:

h
∆
=

1
n

√
π

6
+
δ2
L

∆2 , (7)

where a Gaussian filtering operation has been assumed

G(x) = (6/(π∆2))3/2 exp(−6x · x/∆2) , (8)
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Fig. 1 Temperature profiles across a one-dimensional premixed flame. Line: T (x); Square: T?(x)
from deconvolution (Eq. (10)); Dash: T (x); Circle: T̃ (x). Solving balance equation for filtered 1D
flame from deconvolution Triangle: T̃ (x). ∆/δ f l = 8. Reprinted with permission [13].

with a flame front modeled with an error function. This relation shows that for a LES
with ∆ = 5δL , the mesh size should verify h = 0.75∆/n. Since n > 1, h is therefore
expected smaller than the filter size applied to the scalar fields.

2.2.2 Approximate deconvolution and explicite filtering (ADEF)

Most filtering operations may be approximated as a diffusive process formulated
implicitly

φ(x, t) = φ(x, t) + d∇2φ(x, t) , (9)

with d = ∆2/24 for a Gaussian filter [12]. From this relation, an approximate
deconvolution operator is readily obtained in which all derivatives are resolved over
the coarse mesh (h < ∆):

φ?(x, t) = L−1
∆

[
φ(x, t)

]
= φ(x, t) − d∇2φ(x, t) . (10)

To illustrate these filtering/deconvolution operations, Fig. 1 shows T(x) (line), the
temperature signal through a one-dimensional unstrained stoichiometric methane/air
premixed flame, along with T(x) (dashed line) and T̃(x) (circle). The deconvoluted
signal T?(x) (square) perfectly matches T(x). Moreover, the solving of the bud-
get equations of the one-dimensional filtered flame with all the non-linear terms
computed from approximate deconvolution and filtering, returns the expected T̃(x)
(triangle). This was done here for ∆/δL = 8 with a second order interpolation of
the scalar signals inside computing cells (h = 0.5∆) [13]. Flame deconvolution with
an appropriate sub-grid interpolation or a regularisation procedure thus appears as a
robust tool [14, 15]. Sometimes deconvolution is also associated to a scale similarity
hypothesis [16].
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Fig. 2 Time sequence of iso-filtered source of progress variable, ∆t = 1.8 ms. Reprinted with
permission [13].

Approximate deconvolution is easily generalised to three-dimensional turbulent
flames. Figure 2 shows snapshots of the simulation of a stoichiometric methane/air
turbulent bunsen flame studied experimentally [17]. These simulations are performed
with the flow solver SiTCom [18], considering the Navier-Stokes equations in their
fully compressible form together with a balance equation for c̃, a filtered progress
variable (c = 0 in fresh gases and c = 1 in burnt gases [6]). Tabulated detailed
chemistry [19, 20] is coupled to deconvolution of this progress variable with Eq. (10)
to simulate the premixed turbulent jet flame. The tabulation is based on the GRI-
3.0 [21] detailed chemistry, with a progress variable defined from CO, CO2, H2O
and NOx as in [22]. The thermochemical quantities are then read from a lookup table
φ = φT (c) and the filtered quantities may be written from deconvolution and explicit
filtering,

ρφ̃ = ρ?φT (c?) = L−1
∆
[ρ]φT

(
L−1
∆
[ρc̃]

L−1
∆
[ρ]

)
. (11)

The convective terms are discretisedwith a fourth-order centered skew-symmetric-
like scheme [23] and the diffusive terms with a fourth-order centered scheme. Time
is advanced explicitly with a third order Runge-Kutta method and NSCBC bound-
ary conditions [24] are imposed at inlet and outlet, with the measured profiles with
synthetic turbulence [25] prescribed at inlet.

The time sequence (∆t = 1.8ms) of iso-burning rate (Fig. 2) illustrates the high
level of resolved flame wrinkling in this jet flame simulation featuring u′/SL = 5,
with u′ the characteristic velocity fluctuation and SL the laminar flame speed. The
formation of pockets at the flame tip is also observed. The mesh resolution1 is of
the order of 170 µm. The approximate deconvolution and explicit filtering approach
coupled with tabulated chemistry allows for simulating the flame and predicting
species mass fractions without resorting to any adjustment of model parameters.

1 A resolution of 50 µm would be necessary to fully resolve the flame (i.e., DNS) with tabulated
chemistry and between 10 µm and 80 µm to resolve the Kolmogorov scale.
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Fig. 3 Mass fractions in %. Symbol measurements [17]. Line: LES. In each subfigure: Left: Red:
CO×10. Black: H2×100. Blue: OH×75. Right: Blue: O2. Green: CH4. Red: H2O. Black: CO2.
Reprinted with permission [26].

Results are given in Fig. 3. The experimentalist reported a measurement error range
between 8% and 15% for major species concentration and up to 25% for minor
species [19, 20]. Themajor species O2, CH4, H2O andCO2 agree withmeasurements
within this range (Fig. 3-right). The chemistry tabulation limited to a progress
variable as input does not include strain rate as a parameter in these simulations,
explaining the higher departure for the minor species CO, H2 and OH.

2.2.3 Iterative deconvolution and explicit filtering (IDEF)

As an alternative to approximate deconvolution based on discretised inverse filter-
ing, the Van Cittert algorithm is another well-established iterative deconvolution
algorithm [27, 28]. The calculation of derivatives is avoided by expressing the de-
convoluted scalar field from

φ?n+1 = φ?n + b(φ − φ?n) . (12)

The initial condition of the iteration is φ?0 = φ and b is defined so that the decon-
voluted variable stays within specific bounds [11]. If φl and φh are the low and high
bounds, on option consists in writting:
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b =


φ?n − φl
φa − φl

if φ ≤ φa

φ?n − φh
φa − φh

otherwise

(13)

with the average value φa = (φl + φh)/2. The number of iterations is monitored
through a volume averaged error ev =

〈
|φ − φ? |

〉
, so that iterations can proceed as

long as ev decreases, in practice for well resolved premixed flames (∆ < 10δL), the
iterations never exceed a few decades.

Correlations between conditionally averaged progress variable obtained from
(12) compared to DNS values are shown in Fig. 4. The data are from a DNS of a
methane/air planar premixed flame interactingwith homogeneous turbulence [29]. In
this DNS, u′/SL = 14, the turbulent Reynolds number is ReT = 230, the Damköhler
number Da = 1.17, and the Karlovitz number Ka = 13.

These three-dimensional direct simulations have been performed using the
SENGA2 code [30], which solves the compressible reacting flow Navier-Stokes
equations using a 10th order finite difference scheme for interior points, and a 4th
order Runge-Kutta scheme for the time- stepping. The DNS-filtered variables were
sampled onto a LES (h/∆ = 0.25) mesh using high-order Lagrange polynomials,
values which are then used for the deconvolution [11]. The strong correlation be-
tween the prediction and the DNS reference (Fig. 4) confirms the potential of the
iterative procedure for signal reconstruction. The time-averaged Pearson correla-
tion coefficients are above 0.9850 for the three filter sizes (∆ = δL , 2δL and 3δL)
considered.

46 Flow Turbulence Combust (2018) 101:33–53

Fig. 7 Conditionally averaged
progress variable as obtained
from IDEF based on the actual
value as obtained from the DNS
for a case A, and b case B
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In order to better quantify the quality of the deconvolution process but also to circum-
vent any biases which may accompany correlation coefficients as defined above, mean
percentage errors are also calculated using,

e(x, y) = 1
Ns

∑

x,y,z,t

100 · |x − y|
|y| (22)

where Ns is the total number of sample points. The above error estimate includes contri-
butions both from under-predicting and over-predicting a target variable y using a model
variable x, and is therefore a stringent error measure. In addition, in order to avoid any

Table 4 Global time-averaged Pearson correlation coefficients

!+ R(c∗, c)-case A R(c̃∗, c̃)-case A R(c∗, c)-case B R(c̃∗, c̃)-case B

1 0.9996 1.0 0.9996 1.0

2 0.9961 1.0 0.9964 1.0

3 0.9904 1.0 0.9924 1.0

Fig. 4 Conditionally averaged progress variable as obtained from IDEF based on the actual value
as obtained from the DNS. ∆+ = ∆/δL Reprinted with permission [11].
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On this basis, the iterative deconvolution was further applied to compute unre-
solved SGS fluxes, as the convective one [31]

τu = ρuφ − ρũφ̃ = (ρu)?
(ρφ)?

ρ?
− ρũφ̃ . (14)

Evaluation against the same turbulent planar flame DNS configuration [29] of this
SGS flux projected in the direction normal to the mean flame front is shown in Fig. 5.
In this figure, comparisons against the well-established Clark model [32] are also
added, this physical model reads

f1x = τu · e1 = ρ
∆2

12
∂ũ1
∂xj

∂φ̃

∂xj
. (15)

As expected the transition from counter gradient SGS turbulent transport to the usual
gradient turbulent flux is found in the data by varying the turbulence intensity [33].
Indeed, f1x > 0 (counter gradient transport) is seen in Fig. 5(a) for the progress
variable larger than 0.3, and, f1x < 0 (gradient transport) is observed in Fig. 5(b).
The transport through the flame which was mainly driven by gas expansion for
u′/SL = 3.18 is rather governed by turbulent mixing for u′/SL = 9. Interestingly,
the deconvolution procedure perfectly reproduces this transition, while the physical
model given by the relation (15) misses this very basic, but essential, property of
SGS turbulent transport in premixed turbulent flame.

Following the same line, iterative deconvolution was also found effective to model
the SGS stress tensor in premixed turbulent V-flame [34].

3 Machine learning for turbulent combustion modeling

3.1 DNS embedded in LES database

An additional DNS databasewas obtained in the configuration of the premixed turbu-
lent bunsen flame discussed above in § 2.2.2 [17]. This DNS is located downstream
of the well-resolved LES of the first sections of the piloted premixed stoichiometric
fuel-air round jet (Fig. 6), LES that provides turbulent flame conditions for the DNS
inlet plane [26, 35, 36]. In this simulation, both LES andDNS are run simultaneously.

This dual simulation was achieved by embedding, inside the LES mesh, a zone
where the resolution is sufficiently high to fully resolve the thin reaction zones and
the smallest turbulent scales. The nozzle diameter is D = 12 mm, the jet Reynolds
number is 24,000 (bulk nozzle velocity of 30 m · s−1 and turbulent kinetic energy of
3.82 m2 · s−2). The pilot is composed of fully burnt gases at Tb = 2200 K. The LES
mesh contains 171 million nodes for a domain 16D×8D×8D, leading to a resolution
of the order of 150 µm. The resolution in the DNS zone is uniformed at 50 µm,
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SCALAR FLUX MODELING IN TURBULENT FLAMES …
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FIG. 6. Case C instantaneous scatterplot of the x component of the scalar flux term, f1, against the DNS
result for !+ = 3.0: (a) using IDEF and (b) using Clark’s model.

In order to benchmark the performance of the IDEF-based model against more established models
in the literature we also calculate scalar-flux predictions using the Clark model,

fi
Clark = ρ̄

!2

12
∂ ũi

∂xj

∂ c̃

∂xj

. (19)

This model was found in [27] to provide overall the highest correlations against the DNS data in
the case of a one-step chemistry premixed flame; hence, it is used here as a benchmark model. It
is important to note, however, that the evaluation of this model in [27] was conducted on the DNS
mesh, in contrast with the evaluation in this study, which is conducted on a much coarser simulated
LES mesh.

In order to quantify the performance of the above models we examine two different quantities:
(a) the actual flux in the (inhomogeneous) direction of mean flow x, i.e., f1, and (b) the divergence
of the flux, F = ∂fi/∂xi . The scalar flux in the mean direction of flow propagation, f1, is the
dominant term since this is also the mean direction of flame propagation and there are large gradients
in the progress variable c in this direction. The divergence of f , i.e., F , allows us to (a) examine
the collective ability of the model in modeling the scalar-flux terms in the two other homogeneous
directions y and z as well, and (b) determine whether the gradients of the scalar flux are accurately
recovered in addition to its actual local magnitude. Note that in an actual LES the term (−F ) would
be the one contributing to the right-hand side of the transport equation for the filtered progress
variable [23].
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FIG. 7. Averaged (in homogeneous directions y and z) flux term f1x for case A: (a) !+ = 1, (b) !+ = 2,
and (c) !+ = 3.
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FIG. 8. Averaged (in homogeneous directions y and z) flux term f1x for case B: (a) !+ = 1, (b) !+ = 2,
and (c) !+ = 3.

The data are averaged in the homogeneous directions y and z at every point in the direction of the
mean incoming turbulent velocity field x. For any variable v we have

vx(i) = 1
NyNz

∑

j,k

v(xi,yj ,zk), (20)

where Ny and Nz are the numbers of LES mesh points in the y and z directions, respectively, as given
in Tables II and III for the different filter widths. A correlation coefficient is also used in order to
quantify the local spatial agreement between the modeled variable and the actual variable as obtained
from the DNS. For any two variables x and y this is defined as

R(x,y) =
∑N

i=1(xi − x̄i)(yi − ȳi)√∑N
i=1 (xi − x̄i)2

√∑N
i=1 (yi − ȳi)2

, (21)

where the overbar in Eq. (21) denotes the sample mean and not filtering. The correlation coefficients
for any two quantities are calculated at every time step and are time averaged over successive instances
in order to increase the statistical accuracy of the results.

Figures 3(a) and 3(b) show instantaneous values of the scalar-flux component f1 as predicted using
the IDEF method and Clark’s model against the DNS values for the lowest turbulence level, case A,
for !+ = 1. Both the DNS values and the models’ predictions are normalized using the maximum
instantaneous f1 value as obtained from the DNS. It is clear that there is a strong correlation for both
the IDEF-based model and the Clark model. Figures 4(a) and 4(b) show the models’ predictions in
the case !+ = 3 instead. Both models again appear to retain strong correlations against the DNS
data despite the larger filter width.
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FIG. 9. Averaged (in homogeneous directions y and z) flux term f1x for case C: (a) !+ = 1, (b) !+ = 2,
and (c) !+ = 3.
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(b) u′/SL = 9, ReT = 150, Da = 1.8, Ka = 6.62.

Fig. 5 SGS convective flux in the direction normal to themean flame front averaged in the transverse
plane, plotted versus a progress variable (cx = 0 in fresh gases and cx = 1 in fully burnt gases).
◦: DNS. −: IDEF. −−: Clark model [32]. Left: ∆/δL = 1, Middle: 2, Right: 3. Reprinted with
permission [31].

to secure a full resolution of the flow and flame scales for the chosen operating
conditions [26].

Both LES and DNS rely on chemistry tabulation with a stoichiometric premixed
flamelet with fresh gases at To = 300 K (GRI-3.0 mechanism [21] and progress
variable defined as in [22]), without any SGS modeling in the DNS part. The flame
thermal thickness based on the progress variable field is of the order of δL ≈ 400 µm.
Themesh in the DNS zone is composed of 28.58million nodes (243×343×343), over
a physical domain of 12 mm×18 mm×18mm. The DNS starts at 4.5D downstream
of the nozzle, and at 5.5D the mesh is coarsened again to progressively evolve
toward LES resolution (Fig. 6). Modeling based on a progress variable presumed
pdf approach is used for the chemical sources and species in the LES zones [37] and
the SGS momentum fluxes are approximated with the Vreman model [38].

As for the jet flame LES of § 2.2.2, these simulations are performed using the
flow solver SiTCom [18]. A Gaussian filtering operation (Eq. (8)), with filter size
∆ = 0.3 mm = 0.75 δL , ∆ = 0.6 mm =1.50 δL and ∆ = 0.9 mm = 2.25 δL , is
applied to the DNS variables in order to generate a priori LES filtered quantities.
Thus the resolution of the a priori fields varies from well-resolved to coarse LES
from the reaction zone point of view (∆ = 0.9 mm is 18 times larger than the DNS
grid resolution).
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Fig. 5. Zoom iso- Q at 10,0 0 0 s −2 . Orange: iso-c at 0.8. 
are computed with a fourth-order centred skew-symmetric-like 
scheme [70] . The diffusive terms are approximated with a fourth- 
order centred scheme. Time is advanced explicitly with a third 
order Runge–Kutta method and the 3D-NSCBC boundary condi- 
tions [71] are imposed at inlet and outlet. To resolve eventual stiff
scalar gradients, in the LES zones an artificial dissipation scheme 
was added introducing fourth order dissipative terms [72] (turned 
off in the DNS part). The measured profiles are prescribed at the 
inlet of the jet, with an addition of synthetic turbulence [73] . 

The Q-criterion is defined as 2 Q = (!i j !i j − S i j S i j ) = 
−(∂ u j /∂ x i )(∂ u i /∂ x j ) , where !ij and S ij are the anti-symmetrical 
and the symmetrical parts of the velocity gradient tensor, respec- 
tively. Q >  0 indicates zones of flow rotation [74] . Figure 5 shows 
a zoom of the wrinkled flame surface interacting with the vortical 
structures. The progress variable iso-surface c = 0 . 8 , corresponding 
to the peak reaction zone, is seen in orange. In grey, an iso-Q is 
displayed for the locations where c >  0.8 (burnt gases). These 
iso-Q and iso-c surfaces show that the flame interacts, at the same 
time, with large flow scales generated in the fuel-jet shear layer 
and with turbulence inside the fresh gases. The flame surface in 
the DNS sub-zone is displayed in Fig. 6 , with the wrinkling of 
the flame over a quite large range of scales. A pocket of fresh 
gases detaching from the main flame surface appears, a pocket 
that will lead to an isolated island of fresh gases burning as they 
are convected downstream in the burnt products. At some other 
locations, the protruding parts of the iso-surface can merge and a 
pocket filled with burnt gases is formed at this particular instant 
in time ( Fig. 7 ). 

The one-dimensional flame assumption is supposedly valid 
when the local reaction zone is convected, and propagates, with 
the flow as a whole, thus keeping its inner structure unchanged. 
There has been much discussion in the literature concerning the 
exact impact of velocity fluctuations on local flame properties ac- 
cording to the ratio between u ′ , the amplitude of the velocity fluc- 
tuations, and S L , the flame speed and this particular point is out of 
the scope of the present work. However, some very basic proper- 
ties of the three-dimensional scalar field may be examined and re- 
lated to the behaviour of the error brought by the one-dimensional 
flame deconvolution. 

surface leading 
to burnt gases 

pocket

Pocket 
burning

Large scale 
wrinkling

Small scale 
wrinkling

Fig. 6. Iso-c at 0.8 in the DNS zone. 
In the DNS subzone, filtering and deconvolution operators 

discussed above are applied in an a priori manner and conditional 
statistics are collected, averaging over the DNS computational 
domain. Figure 8 shows snapshots of the progress variable source 
term filtered at different levels from # = 0 . 75 δL = 0 . 3 mm up 
to # = 3 . 00 δL = 1 . 2 mm. As expected, the filtering decreases the 
peak values and makes the reaction zones thicker. For large filter 
sizes, this is even followed by a change in flame topology, as 
observed in the merging of an isolated pocket, seen by comparing 
Fig. 8 (e) with other snapshots for smaller filter sizes down to DNS. 

The DNS field c ( x , t ) is filtered at a length scale #, applying 
the relation (13) , to obtain an a priori ˜ c ( x , t) field. Then, the 
one-dimensional flame deconvolution ˜ L −1 

#, L ( ̃  c ( x , t)) ( Eq. (17) ) is 
applied and the progress variable distribution is compared to 
the original DNS field c ( x , t ) ( Fig. 1 ). The result of this exercise 
is visible in Fig. 9 , displaying a transverse cut of the progress 
variable in the jet flame. Overall the flame structure is recovered, 
with however a tendency of ˜ L −1 

#, L ( ̃  c ( x , t)) to provide iso-contours 
of progress variable which stay mostly parallel, as expected with a 
one-dimensional flame model. In zones where the flame is highly 
wrinkled and where the local flame thickness features strong vari- 
ations, this implies that the one-dimensional flame deconvolution 
misses the local flame structure. 

A direct measure of the error introduced by the one- 
dimensional flame hypothesis is defined as: 
e ( x , t) = ∣∣c( x , t) − ˜ L −1 

#, L [ ̃  c ( x , t)] ∣∣
c( x , t) , (19) 

and statistical conditional mean of this error are computed within 
the DNS zone, 
E(φ) = ⟨ e ( x , t) | φ⟩ , (20) 
where φ denotes the variable used to condition the statistical 
mean. φ = ̃  c ( x , t) leads to E( ̃  c ) , the conditional mean of the error 
introduced by the one-dimensional flame deconvolution versus 
the filtered progress variable, which is shown in Fig. 10 . It is seen 
that the error peaks in the preheat zone, with a maximum that 
can reach up to 60% for # = 3 δL . The snapshot of e ( x , t ) illustrates 
in Fig. 15 (b) the development of the error on the fresh gas side, 
but also the fact that e ( x , t ) is larger where the curvature is more 
pronounced, with an amplitude that depends on the sign of 
the curvature, which is a quantity that has been the subject of 
numerous studies in premixed turbulent combustion [75–81] . 

Fig. 6 LES-DNS snapshot of the jet-flame simulation [26].Mesh and iso-progress variable c = 0.8.
h: resolution. Right: zoom of iso-c = 0.8 in the DNS zone (different angle view). Reprinted with
permission [26].
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Fig. 7 Thick-line: Ûω+(c̃) vs c̃ as obtained from a 1D laminar flame (tabulated chemistry).
〈
Ûω+ | c̃

〉
from DNS vs c̃ for filter sizes ×: 0.3 mm, �: 0.6 mm, ◦: 0.9 mm, (δL = 0.4 mm). Reprinted with
permission [39].

In the DNS zone, the flame surface is highly convoluted (Fig. 6-right), with
flame wrinkling covering a large spectrum of length scales, including complex flame
topological properties such as pockets of fresh or burnt gases.
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Figure 7 shows
〈
Ûω+ | c̃

〉
, the statistical mean over the DNS domain of the nor-

malised filtered progress variable source, conditioned on values of c̃. The subscript
‘+’ denotes source terms normalised by their maximum value in the reference freely-
propagating laminar premixed flame. The result obtained using a 1D laminar flame,
Ûω+(c̃), is also shown as a solid line. The maximum of

〈
Ûω+ | c̃

〉
decreases while

increasing the filter size and thus while increasing unresolved fluctuations [6]. Fol-
lowing the thickening of the filtered flame front, the response of this conditional
filtered source term also spreads in progress variable space for increasing filter sizes,
up to ∆ = 0.9 mm. Figure 7 clearly demonstrate that Ûω+ , Ûω+(c̃) and not only the
amplitude, but also the shape of the burning rate versus the progress variable, vary
with the filter size. A simple re-scaling by a factor would therefore not be sufficient
to properly model Ûω from Ûω(c̃). Similarly, Fig. 8 shows the conditional mean of
the sum of the SGS convective and diffusive fluxes (Eq. (6)), which also requires
modeling.
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Fig. 8 〈∇ ·τ | c̃〉 vs c̃. Filter size×: 0.3mm,�: 0.6mm, ◦: 0.9mm.Reprintedwith permission [39].

3.2 Machine learning for turbulent combustion modeling

The underlying idea discussed in this section consists of finding a mapping func-
tion G, so that the filtered chemical source Ûω(x, t) is constructed from the three
dimensional distribution surrounding x of the chemical sources computed from the
resolved field, i.e.,

Ûω(x, t) = G
[
Ûω(c̃(x1, t)), · · · , Ûω(c̃(xN, t))

]
, (16)

where N is the number of LES mesh cells involved in the mapping.
Similarly, a second mapping function F is sought to express ∇ · τ, the diver-

gence of the SGS fluxes (Eq. 6), from the three-dimensional distribution of resolved
diffusive budgets ∇ · (ρDc(c̃)∇c̃) surrounding the x location,
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Fig. 9 CNN training from DNS, sketch of the database construction. Reprinted with permis-
sion [39].

∇ · τ(x, t) = F
[
∇ ·

(
ρDc(c̃)∇c̃(x1, t)

)
, · · · ,∇ ·

(
ρDc(c̃)∇c̃(xN, t)

) ]
. (17)

These twomapping function are built from convolutional neural networks (CNN),
which conveniently allow for interpolating over a large number of reference values.
Typically, if a set of NL reference values of filtered chemical sources Ûω[i] and
divergence of the SGS fluxes ∇ · τ[i] are known and associated through the mappings
to well defined properties of the resolved field (here sources and diffusive budgets
computed form the resolved scalar fields), well trained neural networks will return
Ωi(x, t) and Ti(x, t) as the weights to be affected to the i-th values contributing to the
filtered quantities, i.e.,

Ûω(x, t) =
NL∑
i=1
Ωi(x, t) × Ûω[i] , (18)

∇ · τ(x, t) =
NL∑
i=1

Ti(x, t) × ∇ · τ[i] . (19)

The Ûω[i], ∇ · τ[i], Ωi and Ti are calibrated by training the neural network from the
DNS database. For a given filter size ∆, a three-dimensional test-box of size (2h)3
is built around every of the M = 28.58 million DNS nodes, where h is defined from
Eq. (7). Figure 9 illustrates this process. The test box is centered at x and contains
N = 27 points which hold the three-dimensional distributions of Ûω(c̃(x j, t)) and
∇ · (ρDc(c̃)∇c̃) (x j, t), for j = 1, · · · , N . These data are stored and constitute the
‘images’ that will be processed by the CNN. From the DNS, the ‘labels’ of each i-th
image are Ûω[i] = Ûω(x, t) and ∇ · τ[i] = ∇ · τ(x, t) for i = 1, · · · , NL . In the present
work NL = 2000.

Two networks of similar structures (same number of layers, convolution kernels,
etc.) are trained, one for the chemical source and one for the SGS fluxes. For each
value of ∆, the following procedure is applied:
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conv3d_1
input

output (None,  3, 3, 3, 32)

(None, 3, 3, 3, 1)

tf_non_relu_1
input

output (None,  3, 3, 3, 32)

(None,  3, 3, 3, 32) 

max_pool_2x2_1
input

output (None,  2, 2, 2, 32)

(None,  3, 3, 3, 32) 

conv3d_2
input

output (None, 2, 2, 2, 64)

(None, 2, 2, 2, 32)

tf_non_relu_2
input

output (None,  2, 2, 2, 64) 

(None,  2, 2, 2, 64) 

max_pool_2x2_2
input

output (None,  1, 1, 1, 64) 

(None,  2, 2, 2, 64) 

Flatten
input

output (None,  64) 

(None,  1, 1, 1, 64) 

Dense
input

output (None,  1) 

(None,  64) 

Fig. 10 Typical structure of a convolutional network for scalar deconvolution. More details on the
TensorFlow functions used may be found in [39]. Reprinted with permission [39].

• First, 1000 images with their associated Ûω[i] and ∇ · τ[i] values are drawn. 20
values of c∗ uniformly distributed between 0 and 1 (∆c∗ = 0.05) are defined.
For each value of c∗, 50 images are selected randomly such that c̃(x, t) ∈ [c∗ −
∆c∗/2; c∗ + ∆c∗/2] (x is at the center of the test box, see Fig. 9).

• To avoid overfitting, uncorrelated random perturbations are added to the images,
Ûω(c̃(x j, t)) and ∇ · (ρDc(c̃)∇c̃) (x j, t) for j = 1, · · · , N = 27, as 10% of their
maximum in the test box, thus a second image is available for each label. NL =

2000 images then exist for 1000 labels.

Using two filter sizes, the database to train the network contains 4000 images and
2000 labels and for every quantity learned, a set of 27×4000=108000 data ( Ûω(c̃(x j, t))
and ∇ · (ρDc(c̃)∇c̃) (x j, t)) is involved, data which are associated to the 2000 refer-
ence labels ( Ûω[i] and ∇ · τ[i] for i = 1, · · · , NL).
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(a) ∆ = 0.30 mm (trained)

-400

-300

-200

-100

 0

 100

 200

 300

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

D
iv

(S
G

S 
flu

xe
s)

Favre filtered progress variable

(b) ∆ = 0.45 mm (untrained)
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(c) ∆ = 0.90 mm (trained)

Fig. 11 〈∇ ·τ | c̃〉 vs c̃. Symbols: DNS reference. Line: CNN prediction. Reprinted with permis-
sion [40].

During the training phase, a series of convolution/sampling operations are per-
formed iteratively, in which the neural weights are adjusted until a satisfyingminimal
error is found between the value of the labels and the neural network prediction. A
series of convolution/sampling operations are applied to the database, to extract its
features using a number of different kernels [41, 42]:

• Each image is first convolutedwith 32 different filter kernels obtainedwith random
values from a truncated normal distribution. Meaningful values of the returned
features are extracted with a max pooling non-linear function to avoid excessive
computational costs.

• The process is repeated with 64 filters, decomposing the image into several most
meaningful features, needed for seeking out the inner properties of the fluxes and
sources.

• Two fully connected layers are built to process the 64 obtained features, and to
classify the image by giving the probability it belongs to each label.

The training of the networkwas conducted using theTensorFlow (www.tensorflow.org)
library and breakdown of the network structure is given in Fig. 10. The training error
function is based on cross entropy [43] and this training is controlled by the Adam
optimizer [44] for stochastic gradient descent, with a learning rate of 10−4.

In using the networks, the N = 27 values of the chemical sources and of the
divergence of the fluxes computed from the resolved progress variable field in the
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(a) Trained database. ∆ = 0.30 mm
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(b) Untrained database. ∆ = 0.40 mm
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(c) Untrained database. ∆ = 0.45 mm
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(d) Trained database. ∆ = 0.90 mm

Fig. 12
〈
Ûω+ | c̃

〉
vs c̃. Symbols: DNS reference. Line: CNN prediction.

test box surrounding the LES cell (Fig. 9), are the input. For each filter size, 1000
filtered DNS fields are used for a priori tests (the noised images of the training phase
do not enter these tests).

Figure 11 shows the comparison between the conditional means of the predicted
divergence of the fluxes and their DNS counterpart. For the trained filter size, the
CNN returns the expected value, for the untrained one some departure is observed,
but compared to what can be observed in some case using a physical model, results
are more than encouraging. (Compare for instance these results against those of
Fig. 5 with the Clark model.)

The filtered chemical source are also very well predicted both the shape and
the amplitudes are recovered by the CNN (Fig. 12). Interestingly, even the data
corresponding to the filter sizes that were not used for training (0.4 mm and 0.45
mm) are quite well reproduced.

4 Conclusion

Large datasets from direct numerical simulation have been mostly used so far to
explore reacting flow physics and to test well-established or novel modeling ideas.
With rapidly growing computing facilities, followed by the development of well-
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resolved large eddy simulations for real combustion systems, the possibility of relying
on modeling based on a direct analysis of the signals is now emerging.

Instead of expressing unclosed terms from algebraic relations involving quantities
resolved by the mesh, deconvolution may be used to directly reconstruct the non-
linear terms to close the scalar balance equations, then some form of sub-grid scale
interpolation is required. Both discretised and iterative deconvolutions have been
found valuable along these lines.

In addition, the capabilities of machine learning tools to estimate unclosed terms
from the resolved ones have been demonstrated, which opens many perspectives
such as the coupling between advanced computational flame dynamics tools and
artificial intelligence.

The deconvolution of scalar signals and the direct mapping form LES resolved
scales to unknown filtered terms from CNN do not operate at the same level (signal
reconstruction or direct prediction) and could thus be combined as complementary
tools.
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