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Abstract

A reduced mechanism for potassium chemistry under combustion conditions is derived from a de-

tailed chemical mechanism for alkali metal emissions (Glarborg and Marshall, 2005), which could

be useful for three-dimensional (3D) numerical simulations of potassium emissions by biomass

combustion furnaces. An automated chemistry reduction and optimization approach relying on

canonical micro-mixing problem is applied to develop the reduced mechanism, whose perfor-

mance is then evaluated in two-dimensional (2D) carrier-phase direct numerical simulation (DNS)

of pulverized-biomass combustion. Good agreements are achieved between predictions of the re-

duced and the detailed mechanisms on the four major potassium species, i.e., K, KOH, KCl and

K2SO4. The prediction capabilities of the reduced mechanism for various K/Cl/S ratios in the

volatiles are further investigated by a parametric study with 14 two-dimensional DNS cases. The

potassium chemistry under those various conditions are predicted well by the reduced potassium

mechanism with a CPU cost reduction reaching up to 71.3% compared to the detailed reference

mechanism.

Keywords: Pulverized-biomass combustion, Direct numerical simulation, Potassium, Chemistry

reduction, Genetic algorithm
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1. Introduction

As a carbon neutral fuel, biomass resource is attracting more attention recently due to the ur-

gent requirement of reducing CO2 emissions to control global warming [1–3]. Nowadays, biomass

and its thermal-conversion products, e.g. solid/liquid biofuels and biogases, already contribute

10% of the world total primary energy supply [4]. Biomass could substitute coal in most present

coal-fired power plants without reconstruction, with a maximum mass ratio of biomass about 20–

30% [5]. On the other hand, because of the relatively high alkali metal content in biomass, alkali-

induced slagging issue becomes one of the most challenging problems in the practical thermo-

utilization of biomass [6, 7], especially for herbaceous plants which are rich in potassium (K) [8].

During the combustion of biomass, alkali species can be released into gas phase and then condense

on heat exchange surfaces of the furnace, which generates an initial sticky layer and then captures

fly ash resulting in rapid ash deposition [9, 10]. Besides, fouling and corrosion issues are also

found due to high chemical activity of chlorine and sulfur compounds of alkali, e.g., KCl [11].

These alkali-induced issues severely limit the clean and efficient utilization of biomass resources.

Over the past decades, experimental measurements on alkali chemistry during biomass com-

bustion evolves from offline sampling to online laser diagnostics techniques [12–14]. The time-

resolved alkali release process during the combustion can be directly captured by using the online

laser techniques, e.g., tunable diode laser absorption spectroscopy (TDLAS) [15], and collinear

photofragmentation and atomic absorption spectroscopy (CPFAAS) [16]. Recently, Liu et al. [17]

applied planar laser-induced fluorescence (PLIF) and multi-point laser-induced breakdown spec-

troscopy (LIBS) methods to quantitatively measure the atomic and elemental potassium released

from a burning biomass pellet. Weng et al. [18] measured the spatial distribution of potassium

hydroxide (KOH) and potassium chloride (KCl) simultaneously around single burning pulverized

biomass char particles by employing laser-induced photofragmentation fluorescence (LIPF) tech-

nique.

On the modeling side, one-step and two-step Arrhenius potassium release models have been

developed for biomass pellet combustion by Zhang et al. [19] and Liu et al. [17], respectively.
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These models are suitable to describe potassium release of biomass in typical circulating fluidized

bed (CFB) combustion, as the diameter and burnout time of biomass in these studies are with the

same order of magnitude of biomass fuel in a typical CFB boiler [20].

To describe the post-release alkali reaction dynamics during combustion, the first detailed

alkali mechanisms were developed by Srinivasachar et al. [21] and Steinberg and Schofield [22].

Based on that, Glarborg and Marshall [23] proposed a detailed alkali mechanism encompassing

the elements Na, K, C, H, O, S and Cl, and it was carefully validated against the experimental

results of homogeneous sulfation of alkali chloride under combustion conditions [24]. However,

the complexity of this reference detailed alkali mechanism [23], which includes 48 Na/K/O/H/Cl/S

species and 202 elementary reactions, largely limits its application in computational fluid dynamic

(CFD) simulations. Hence, in the literature the reported CFD simulations of real combustion

systems with alkali reactions employed simplified versions of the detailed mechanism. Akbar

et al. [25] employed a K/O/H/Cl subset with 14 reactions to predict the potassium reactions in

a 0.5 MW pulverized-fuel combustion facility using Reynolds-Averaged Navier-Stokes (RANS)

simulations. Garba et al. [26] developed a reduced mechanism containing 36 K/O/H/Cl/S species

and 137 reactions using sensitivity analysis and applied it to RANS simulations of a 10 MW

biomass-fired furnace. However, to the best of our knowledge, a systematic reduction study of

the detailed alkali mechanism for biomass combustion has not been reported yet, which could

potentially benefit the CFD investigations of biomass furnaces.

Within this context and considering only one alkali metal, K, for biomass combustion, the

aim of the present study is twofold. First, a reduced potassium mechanism is developed from

the detailed one by Glarborg and Marshall [23] using systematic chemistry reduction and rate

optimization techniques [27, 28]. Second, the performance of the reduced mechanism is then

carefully examined in two-dimensional (2D) direct numerical simulations (DNS) of pulverized-

biomass combustion.

2. Automated reduction and optimization of potassium reaction kinetics

The potassium reaction dynamics during the combustion of biomass volatile is investigated.

The volatile of corn straw [17] is employed, for which the chemical properties are shown in Table
3



Table 1: Properties of corn straw [10]

Proximate analysis (wt%) Ultimate analysis (wt%)
Mad Aad Vad FCad Cdaf Hdaf Ndaf Sdaf Odaf

11.6 7.9 64.2 16.3 43.9 4.5 1.8 0.4 49.3
Ash analysis (wt%) Clad Kad

SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O (mg/g) (mg/g)
47.52 5.64 1.04 4.51 12.6 7.87 1.97 1.34 13.1

Table 2: Modeled volatile compositions of corn straw.

Hydrocarbon volatile compositions (mass fractions)
CH4 C2H2 CO H2 CO2 H2O
0.0322 0.1805 0.2536 0.0215 0.1853 0.3024
Non-hydrocarbon volatile compositions (mass fractions)
KOH HCl SO2

0.0147 0.0018 0.0080

1. The previously validated DRM22 mechanism proposed by Kazakov and Frenklach [29] is used

to describe the hydrocarbon combustion of the volatile, which contains 22 chemical species and

104 elementary reactions. The compositions of the hydrocarbon volatile are preliminary deter-

mined via the bio-chemical percolation devolatilization (bio-CPD) model [30–32], with the Tar

species replaced by C2H2 [33]. Then minor adjustments are applied to the compositions to fulfill

the elemental mass conservation and the lower heating value of the corn straw [34]. The final

volatile compositions are given in Table 2.

Following previous researches on sodium emissions by coal combustion [35], the initial potas-

sium species in the volatile is set to be KOH, while those of S and Cl are set to be SO2 and HCl,

respectively. According to the experimental results [17], 58.1% of the mass of potassium present

in the biomass is released during pyrolysis. However, no experimental information is available

for the release of chlorine and sulfur. Here, they are assumed to follow the ratio of volatile yields

during pyrolysis as predicted by the bio-CPD model, i.e., 87.3% of the mass of chlorine and sulfur

is released along with the volatiles. The mass fractions of KOH, HCl and SO2 in the volatile can

then be computed, as summarized in Table 2.

The reactions of K/S/Cl species are simulated using the detailed mechanism by Glarborg and
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Marshall [23] containing the elements Na, K, C, H, O, S and Cl. In this work, the element Na is

not considered, which leads to a reference detailed mechanism of potassium reactions involving

35 species and 153 elementary reactions.

2.1. Stochastic micro-mixing problem

To develop a reduced potassium mechanism which can be applied under a wide range of condi-

tions, a turbulent non-premixed micro-mixing based canonical problem is introduced as a reference

problem for the reduction of the reference detailed mechanism. This approach has been detailed

in Jaouen et al. [27], and only the core idea is given here.

Within a Lagrangian framework, the time evolution of the composition and energy of a trav-

eling fluid particle can be computed with the diffusive budget described by a deterministic micro-

mixing closure, as the linear relaxation model (IEM or LMSE) [36, 37]:

dϕL(t)
dt

=
〈ϕ〉 (t) − ϕL(t)

τT
+ ω̇ϕ, (1)

where ϕ is a thermochemical variable, i.e., species mass fractions and temperature, while 〈ϕ〉 is the

mean flow condition seen by the traveling particles at a given time. ω̇ϕ is the chemical source of ϕ

and τT is a characteristic turbulent mixing time. Solving for Eq. (1) starting from initial conditions,

e.g., pure fuel, oxidizer or burnt gases, a trajectory ϕL(t) can be obtained. The average mixture

environment seen during the trajectory is characterized by [27]

〈ϕ〉 (t) =
1

Np

Np∑
p=1

ϕp(t) , (2)

where ϕp(t) (p = 1, · · · ,Np) is a set of stochastic particles whose thermochemical properties evolve

according to chemical reactions and a micro-mixing closure, here the well-known Curl closure [38]

is employed. The time evolutions of those stochastic particles are solved aside from any simulation

in physical space, to cover the range of the representative composition space of the flow problem

under investigation. Initially, the Np stochastic particles are divided into nI groups, with nI the

number of inlets. The number of particles for each inlet is determined according to the relative

5



contribution of the inlet to the total mass flow rate of the flow problem. The particles assigned

to a given inlet take the species composition and temperature of that inlet. In addition, some

particles may be set with burnt gases conditions to secure ignition and/or mimic dilution by burnt

gases. Then a deterministic trajectory ϕL(t) can be computed from every inlet (Eq. 1). This micro-

mixing based canonical approach of analyzing the response of reduced chemical mechanisms

has been previously applied to a four inlets methane/vitiated-air/hydrogen-air/steam combustion

system [27].

The operating conditions of the micro-mixing problem in the present study are those of the

pulverized-biomass jet flame studied in [39], which are also adopted thereafter for DNS. Three

inlet streams are involved, i.e., the oxidizer air, the fuel volatile and a high-temperature third inlet.

The volatile composition (see Table 2) of corn straw is employed and the third inlet is the burnout

gas of the volatile and air at φ = 0.45. The mass flow rate of the three inlets, i.e., the number of

particles per inlet, is chosen so that the overall system operates under the stoichiometric condition.

In total 500 particles is employed, and 4% of them are initially set to the chemical equilibrium

condition at φ = 1, to secure ignition. The micro-mixing time τt is set to 0.2 ms, with a weak

sensitivity of the obtained reduced mechanism to this parameter, as soon as its value allows for

ignition (see [27] for a sensitivity analysis on τt).

The ORCh (Optimized and Reduced Chemistry) method, reported in detail in [27, 28] and pre-

viously employed for modeling meso-scale combustion [40] and selective non-catalytic reduction

[41], is coupled with the CANTERA [42] chemical kinetics solver. ORCh consists of a combina-

tion of Directed Relation Graph with Error Propagation (DRGEP) [43, 44] analyses, to which a

Genetic Algorithm (GA) [45] is added to optimize the chemical rates parameters of the reduced

mechanism.

2.2. DRGEP

First, the species and elementary reactions which make a minor contribution to the stochastic

micro-mixing problem are removed by the DRGEP approach. The details of DRGEP can be found

in the seminal papers by Lu and Law [43] and Pepiot and Pitsch [44]. Here, only the main lines

are given as follows.
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First, a set of target species is defined, from the species which need to be predicted accurately

by the reduced mechanism. Here, it includes the four major potassium species K, KOH, KCl and

K2SO4. Then, species and reactions are automatically ordered according to their relative influence

on the evolution of the target species listed above, which is obtained by comparing the variation

rate of a target species when a non-target species or elementary reaction is involved against the

total variation rate of that target species [44].

Starting from the least important one, the species and reactions are progressively removed from

the detailed mechanism and the deterministic trajectory ϕL
k (t`; n) (Eq. 1) is re-computed after each

removing operation. k denotes the k-th targeted thermochemical property (k = 1, · · · ,Nt = 4), t` is

the `-th point (` = 1, · · · ,N` = 1000) of a chemical trajectory versus time, n denotes the n-th inlet

(n = 1, · · · ,NI = 3). The obtained distributions of ϕL
k (t`; n) of the target species mass fractions are

compared against ϕRef
k (t`; n), and the error measure is calculated as:

E =
1

NI ·Nt ·N`

NI∑
n=1

Nt∑
k=1

N∑̀
`=1

∣∣∣∣∣∣ϕRef
k (t`; n) − ϕL

k (t`; n)

ϕRef
k (t`; n)

∣∣∣∣∣∣ . (3)

With the error threshold E = 0.1%, 20 K/S/Cl species are removed during the DRGEP reduc-

tion, resulting in 15 K/S/Cl species. Then, the number of reactions is further downsized to 24 with

E = 0.96% (Table 3, but using the original rates parameters from [23]).

During DRGEP, 7 elementary reactions are chosen as the most important ones over the original

23 reactions of the detailed mechanism for the K/C/H/O subsystem:

K + O2 (+M) 
 KO2 (+M) (R1)

H2O + KO 
 KOH + OH (R2)

CO + KO 
 CO2 + K (R3)

H + KOH 
 H2O + K (R4)

2 KOH 
 K2O2H2 (R5)

H + KO2 
 HO2 + K (R6)

CO + KO2 
 CO2 + KO (R7)

In this subsystem, the reactions between KOH and the radicals OH and H (R2, R4) are kept along

with the equilibrium between KOH and K2O2H2 (R5). KO2 is formed via the three-body reaction
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(R1) and reacts with radical H and CO (R6, R7). The reduction reaction of KO by CO is also

kept (R3). In the K/H/O/Cl subsystem, 4 elementary reactions over the 10 original ones enter the

reduced mechanism, which produce KCl from HCl and K (R8), KOH (R9) and KO2 (R10) and

secure the equilibrium between KCl and K2Cl2 (R11):

HCl + K 
 H + KCl (R8)

HCl + KOH 
 H2O + KCl (R9)

HCl + KO2 
 HO2 + KCl (R10)

2 KCl 
 K2Cl2 (R11)

Over the 17 reactions of K/H/O/Cl/S subsystem, 7 are required by the reduced mechanism: 2

three-body reactions producing KSO3 (R12, R13) and one producing KHSO4 (R14); 3 reactions

contribute to the formation of K2SO4 (R16, R17, R18); the reaction between KSO3 and radical

OH (R15).

K + SO3 (+M) 
 KSO3 (+M) (R12)

KO + SO2 (+M) 
 KSO3 (+M) (R13)

KOH + SO3 (+M) 
 KHSO4 (+M) (R14)

KSO3 + OH 
 KOH + SO3 (R15)

KO + KSO3 
 K2SO4 (R16)

KHSO4 + KOH 
 H2O + K2SO4 (R17)

KCl + KHSO4 
 HCl + K2SO4 (R18)

4 elementary reactions driving the oxidation of sulfur containing species (R19 to R22) are included

in the SO2/SO3 interconversion subsystem of the reduced mechanism:

HOSO2 + O2 
 HO2 + SO3 (R19)

O + SO2 (+M) 
 SO3 (+M) (R20)

OH + SO2 (+M) 
 HOSO2 (+M) (R21)

OH + SO2 
 H + SO3 (R22)

Finally, the H/O/Cl subsystem requires only one three-body (R23) and one replacement reactions

(R24) in the reduced mechanism:

HCl + M 
 Cl + H + M (R23)

HCl + OH 
 Cl + H2O (R24)
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Table 3: The 15 K/S/Cl species and 24 reactions mechanism reduced by DRGEP and kinetic rates optimized by genetic
algorithm over a stochastic micro-mixing problem. Units are mol, s, cm3, cal and K. The Chaperon efficiencies of the
reference mechanism [23] are preserved for both three-body and fall-off reactions. Electronic format available in the
supplementary material.

Reaction A β E
1 K + O2 (+M) 
 KO2 (+M) 5.84e+13 0 0
2 H2O + KO 
 KOH + OH 1.85e+14 0 0
3 CO + KO 
 CO2 + K 2.81e+13 0 0
4 H + KOH 
 H2O + K 5.17e+13 0 0
5 2 KOH 
 K2O2H2 8.00e+13 0 0
6 H + KO2 
 HO2 + K 3.92e+14 0 0
7 CO + KO2 
 CO2 + KO 1.96e+14 0 0
8 HCl + K 
 H + KCl 1.02e+14 0 3717
9 HCl + KOH 
 H2O + KCl 1.72e+14 0 0
10 HCl + KO2 
 HO2 + KCl 1.12e+14 0 0
11 2 KCl 
 K2Cl2 8.00e+13 0 0
12 K + SO3 (+M) 
 KSO3 (+M) 8.32e+13 0 0
13 KO + SO2 (+M) 
 KSO3 (+M) 7.91e+14 0 0
14 KOH + SO3 (+M) 
 KHSO4 (+M) 1.13e+14 0 0
15 KSO3 + OH 
 KOH + SO3 1.18e+13 0 0
16 KO + KSO3 
 K2SO4 7.25e+14 0 0
17 KHSO4 + KOH 
 H2O + K2SO4 1.19e+14 0 0
18 KCl + KHSO4 
 HCl + K2SO4 4.83e+13 0 0
19 HOSO2 + O2 
 HO2 + SO3 1.32e+12 0 615
20 O + SO2 (+M) 
 SO3 (+M) 1.34e+10 0 1563
21 OH + SO2 (+M) 
 HOSO2 (+M) 7.63e+12 0 691
22 OH + SO2 
 H + SO3 4.90e+02 2.54 23681
23 HCl + M 
 Cl + H + M 8.36e+13 0 82417
24 HCl + OH 
 Cl + H2O 4.83e+07 1.60 −214

2.3. Genetic algorithm

A genetic algorithm searches for the optimal solution of a problem by applying the principles

of natural selection and evolution to an initialized population of potential solutions [45]. In the

present work, genetic algorithm is employed to optimize the kinetic parameters of the reduced

mechanism obtained via DRGEP, i.e., the pre-exponential factor A j, the temperature exponent β j,

and the activation energy E j. Here, a j = logA j is introduced to eliminate the effects of high values

associated to A j. A chromosome is constituted of a set of the three parameter values (a j, β j, E j),
9



while each parameter value is a gene. A set of 48 chromosomes, i.e., the population of the genetic

algorithm problem M = 48, is applied with an allowed variation of ±8% for each of the three

chemical parameters. The kinetic rates of the resulting optimal reduced mechanism are given

in Table 3. The corresponding relative variations of the chemical parameters of the elementary

reactions are shown in % in Fig. 1.
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Figure 1: Variation of the rate parameters of the reduced mechanism in % measured from the detailed reference
mechanism [23]. Reactions are ordered as in Table 3.

Figures 2 and 3 show the evolutions of temperature and mass fractions of major species for

the detailed mechanism [23], the optimized reduced mechanism of Table 3 and the preliminary

reduced mechanism (DRGEP, Table 3 but with original rates parameters). The trajectories issued

from fuel, oxidizer and the third coflow inlets are displayed. It can be observed that the hydro-

carbon combustion is perfectly reproduced by the reduced mechanism (either with the optimized

or the original rates parameters) and the ignition occurring around 0.5 ms is also well captured

(Fig. 2). Indeed, the same DRM22 mechanism is employed to describe the hydrocarbon oxida-

tion, combined with the detailed or the reduced mechanisms for potassium chemistry. Since the

non-hydrocarbon components, i.e., K/Cl/S species, are minor in the volatile gas, the influence of
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the potassium chemistry on the hydrocarbon combustion should be marginal.

For the dynamics of potassium chemistry, all the four major potassium species reach their peak

mass fractions around the ignition time, especially for the fuel trajectory (Fig. 3). This should

be attributed to the production of radicals from the actively combustion process, which activates

the potassium chemistry (see Table 3). Subject to random mixing, the radicals quench and the

concentration of potassium species drops, to then slowly evolves towards the equilibrium. Com-

paring the results from the preliminary reduced mechanism based on the original rates parameters,

the reduced mechanism with rates parameters optimized by the genetic algorithm shows a better

agreement with the detailed reference, especially for the trajectories of K2SO4. As shown in Figs.

3(d) and 4, the predictions of reduced mechanism on K2SO4 are significantly improved when the

optimized rates parameters are employed. It confirms the advantage in adding the optimization of

the rate parameters by the genetic algorithm to better predict minor pollutant species, specifically

considering the fact that the number of sulfur containing species has been heavily reduced by 73%

from 22 to 6 by DRGEP.

Note that the presence of KCl in gaseous form at the beginning of fuel stream trajectory (Fig.

3(c)), is justified by the fact that once the chemical reactions are activated for the volatile fuel, KCl

is produced at 300 K. First, K2O2H2 is produced via 2 KOH 
 K2O2H2. Second, KOH reacts with

HCl in the volatile fuel by KOH + HCl 
 KCl + H2O, and KCl subsequently forms K2Cl2 through

2 KCl 
 K2Cl2. In real biomass combustion, the potassium species should be in condensed form

at low temperature and therefore the results in the unburned region of the canonical micro-mixing

problem are questionable. However, this artifact hopefully disappears in the pulverized-biomass

flames discussed thereafter, since the potassium is released along with volatile at a much higher

temperature.

3. Evaluation of the reduced mechanism in 2D pulverized-biomass flame

3.1. DNS flow configuration

A two-dimensional direct numerical simulation (DNS) of a temporally evolving pulverized-

biomass jet flame with potassium emission is now performed with the reduced mechanism (Fig.
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Figure 2: Time evolution of the deterministic mixing trajectories (Eq. 1). Temperature and species mass fractions.
Green: from oxidizer stream. Pink: fuel stream. Orange: coflow stream. Thick solid lines: detailed mechanism [23].
Thin solid lines: reduced mechanism (Table 3). Dashed lines: preliminary reduced mechanism (DRGEP, Table 3 but
with original rates parameters)
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Figure 4: Time evolution of the deterministic mixing trajectories (Eq. 1). K2SO4 mass fractions. Green: from oxidizer
stream. Pink: fuel stream. Thick solid lines: detailed mechanism [23]. Thin solid lines: reduced mechanism (Table 3).
Dashed lines: preliminary reduced mechanism (DRGEP, Table 3 but with original rates parameters)

5). The biomass flame operating conditions are those of [39], where the detailed configurations

and numerical methods could be found. The computational domain has physical dimensions of

Lx = Ly = 51.2 mm. A uniform mesh of ∆ = 100 µm is employed, which has been shown to be

able to properly resolve the flame structure[46]. Primary air (bulk velocity: 10 m/s, 300 K) laden

with 902 pulverized-biomass particles is introduced for |y| < 2.5 mm initially, with a hot coflow

gas (3 m/s, 1519 K) surrounded. The properties of corn straw (Table 1) is used. The coflow is

the burnout gas of corn straw volatile and air at φ = 0.45. Biomass particles’ location follows a

random uniform distribution and initial particle density is 550 kg/m3. The particles have a uniform

diameter of 25 µm, to fulfill the point-particle assumption and the grid resolution required by DNS.

This fine diameter could be achieved with torrefied biomass [47]. Periodic boundary conditions are

introduced in all directions. Turbulent fluctuations of 0.05 m/s (0.5% of the primary air velocity)

are initially set within the shear layers between the primary jet and the coflow.

The simulations are performed in the Eulerian and Lagrangian frameworks with a low-Mach

number in-house code specialized in turbulent solid fuel combustion [34, 39, 46, 48, 49]. The

governing equations for the gas and particle phases are those of Wan et al. [39]. Biomass pyrol-

ysis with K/Cl/S release, homogeneous volatile combustion and K/Cl/S reactions are simulated.

Heterogeneous char reaction is not considered since its contribution has been shown to be minor in

such a small-scale solid fuel flame [33, 49, 50]. The pyrolysis rate of a pulverized-biomass parti-
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Figure 5: Schematic diagram of computational configuration of the two-dimensional DNS of pulverized-biomass
flame.

cle is determined by the single first-order reaction model (SFOM) [51] with its kinetic parameters,

i.e., Av (2.5 × 109 s−1), Ev (11 × 104 J/mol) and Qv (1.1), calibrated by the bio-CPD model[30], as

in [34].

The hydrocarbon volatile combustion is described by the DRM22 skeleton mechanism [29],

while the K/Cl/S reactions are simulated with both the detailed [23] and reduced (Table 3) mech-

anisms. As in previous works[39, 46, 49], the potassium release rate of a biomass particle is set

to be proportional to its volatile release rate, because the potassium vapor generated inside the

porous structure of a biomass particle will be transported outward by the volatile yielded and the

experiments have shown that the alkali release is proportional to the burnout of solid fuel parti-

cles during the early combustion stage [20]. Similarly, the release rates of sulfur and chlorine are

also set to be proportional to that of the volatile. The detailed composition of the volatile gas is

summarized in Table 2.

3.2. Global flame characteristics

The performance of the reduced mechanism in the 2D pulverized-biomass flame is now ex-

amined. Figures 6 and 7 show the instantaneous distribution of the gas temperature and particle

burnout, and K2SO4 mass fraction at five subsequent times. At the early stage of t = 10–15 ms,
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t = 10 ms t = 15 ms t = 20 ms t = 25 ms t = 30 ms

Figure 6: Instantaneous distribution of the gas temperature and particle burnout at subsequent times. Upper: detailed
potassium mechanism [23]. Lower: reduced potassium mechanism (Table 3).

biomass particles in the shear layers are firstly heated up by the coflow and then yield volatiles

including K/Cl/S species during the pyrolysis process. At t = 20 ms, the heat release from the

volatile oxidation is strong enough to ignite adjacent biomass particles, resulting in a rapid spread-

ing flame. The flame in turn heats up surrounding particles and promotes the release of volatile

and potassium species KOH, which through potassium reactions forms the zones with a high con-

centration of K2SO4 in Fig. 7. Finally, at t = 30 ms, the flame tends to be weak since most of the

biomass particles burn out, while the flame region becomes wider because the turbulent mixing

continues. A wide region of high concentration K2SO4 can be observed, which means the produc-

tion of K2SO4 is significant. The predictions of the detailed and reduced potassium mechanisms

are quite close to each other. Please note although the same DRM22 mechanism is employed

for hydrocarbon combustion in both cases, the K/Cl/S reactions interact with the combustion via

major species, e.g. O2, and radicals, e.g., OH.

Figure 8 shows the comparisons between the DNS predictions using the detailed and reduced

potassium mechanisms for OH, C2H2 and CO2, and the three major potassium species, KOH, K

and KCl at t = 20 ms. The prediction of the reduced potassium mechanism agrees well with that

of the detailed mechanism. The good agreement on OH, C2H2 and CO2 between the two cases

16



t = 10 ms t = 15 ms t = 20 ms t = 25 ms t = 30 ms

Figure 7: Instantaneous distribution of Na2SO4 at subsequent times. Upper: detailed potassium mechanism [23].
Lower: reduced potassium mechanism (Table 3).

indicates the reduction of potassium chemistry does not jeopardize the accuracy of combustion

prediction. For the potassium species, it can be observed that the distribution of atomic K closely

follows the OH radical distribution, which means the production of atomic K is favored in the

regime with strong heat release. High concentration of KOH appears in the region where C2H2

accumulates, since both of them are released together during the pyrolysis of biomass particles.

KCl also features a high concentration in this region, which can be explained by the reaction

between KOH and HCl producing KCl (Reaction R9 in Table 3).

3.3. Quantitative analysis

Figure 9 shows the scatter plots of instantaneous mass fractions of the four major potassium

species against the mixture fraction Z predicted by both the detailed and reduced potassium mech-

anisms at t = 20 ms. The data is obtained from every grid point of the entire domain. See also

Fig. 10 with
(
Yi|Z∗

)
showing the conditional mixture fraction average and conditional root-mean-

square (RMS),
[ (

Yi|Z∗
)
− Yi | Z∗

]2
1/2

, of species mass fractions. It can be observed the four major

potassium species show different distribution characteristics. YKOH and YKCl are increase almost

linearly with Z. The distribution of YK is more subtle. YK stays close to zero for the range of

Z < 0.1, to then increase rapidly until Z = 0.22, and then keeps an overall increase trend with
17



Detailed Reduced Detailed Reduced

Figure 8: Mass fractions of OH, KOH, C2H2, K, CO2 and KCl at t = 20 ms. Left columns: detailed potassium
mechanism [23]. Right columns: reduced potassium mechanism (Table 3)
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Figure 9: Scatter plots of mass fractions of KOH, K, KCl, K2SO4 against mixture fractions at t = 20 ms. Left: detailed
potassium mechanism [23]. Right: reduced potassium mechanism (Table 3).
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Figure 10: Conditional mixture fraction averages of mass fractions of KOH, K, KCl, K2SO4 at t = 20 ms. Range of
conditional average ± fluctuation. Orange bands: detailed potassium mechanism [23]. Symbols: reduced potassium
mechanism (Table 3).
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wide fluctuations in the mixture fraction space. The sulfurous potassium product K2SO4 features

a single-peak distribution in the fuel-lean regime of Z < Zst = 0.189. Due to the influence of the

coflow stream (equivalence ratio of 0.45 and Z = 0.093) which does not carry potassium species,

mass fractions of the four potassium species could reach zero at Z = 0.093. The comparison

on conditional average and RMS of the potassium species mass fractions (Fig. 10) confirms the

accuracy of the reduced potassium mechanism.

Figure 11 shows the time evolutions of the mass fractions of OH, HCl, SO2, Zvol, of the four

major potassium species and of gas temperature, all of which are averaged over the entire computa-

tional domain. Zvol is the volatile mixture fraction, which is a transported scalar with a source term

representing the volatile mass released from biomass particles. It can be observed that both the gas

temperature and Zvol start to increase around t = 5 ms, indicating the first ignition of the biomass

jet. During t ∈ [15, 20] ms, the mass fractions of all the species as well as the gas temperature

increase rapidly, which should be attributed to the actively burning of the biomass flame. Both the

averaged gas temperature and Zvol become constant after t = 30 ms, which means the combustion

is completed. Nevertheless, the variance of gas temperature is further decreasing because of the

turbulent mixing between the burnout gases and the surroundings, which therefore explains the

decreasing of YOH and YHCl after t = 30 ms. Toward the end of the simulation at t = 50 ms, the

mass fraction of KCl is higher than that of K2SO4. However, the concentration of HCl is an order

of magnitude lower than that of SO2, which indicates that HCl has a much stronger ability to react

with potassium species than SO2. A close agreement between the detailed and reduced potassium

mechanisms is reached.

4. Evaluation of the reduced mechanism under different K/Cl/S concentrations

To illustrate the adaptability of of the reduced mechanism to various molar ratio of K/Cl/S in

the volatile compositions, a parametric study is performed with different K/Cl/S concentration.

As summarized in Table 4, Case A is the original condition employed in the previous Section 3,

which is used as the baseline. Cases B, C and D remove the HCl or SO2, or both of them, from

the volatile to explore the performance of the reduced mechanism in the absence of Cl and/or S.

Since the content of K in the basline Case A is high for securing the combination with Cl and S to
21
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Figure 11: Time evolutions of the mass fraction of species and volatiles (Zvol) and gas temperature averaged over the
computational domain. Symbols: detailed potassium mechanism [23]. Lines: reduced potassium mechanism (Table
3).
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Table 4: Simulation cases with different mass fractions of HCl and SO2 in the volatile compositions. The corre-
sponding molar ratio of K/Cl/S of each case is also illustrated. The reduced part of KOH/HCl/SO2 is balanced by
N2.

Case KOH HCl SO2 K/Cl/S molar ratio
A (baseline) 14.7E-3 1.8E-3 8.0E-3 1 / 0.19 / 0.48
B 14.7E-3 0 8.0E-3 1 / 0 / 0.48
C 14.7E-3 1.8E-3 0 1 / 0.19 / 0
D 14.7E-3 0 0 1 / 0 / 0
E 2.76E-3 1.8E-3 1.58E-3 1 / 1 / 0.5
F 2.76E-3 0.9E-3 1.58E-3 1 / 0.5 / 0.5
G 2.76E-3 0.9E-3 8.0E-3 1 / 0.5 / 2.53

form KCl and K2SO4, Cases E, F and G are set up to study the response of the reduced mechanism

under a lower concentration of potassium.

Each case in Table 4 is simulated twice with both the detailed and reduced potassium mech-

anisms. Figure 12 shows the time evolutions of the averaged mass fractions of the four major

potassium species among Cases A–D of Table 4. It can be observed that the profiles of K are sim-

ilar among the four cases, which reach a peak value around t = 22 ms and then gradually decrease

to negligible concentrations at the end of simulations. When both HCl and SO2 are removed from

the volatile, KOH becomes the only major sodium product at the end of t = 50 ms (Case D). If

HCl is removed but SO2 remains, KOH is then partly transformed to K2SO4, with both of them

being main potassium products (Case B). Similarly, if SO2 gets removed but HCl remains, KOH is

partly consumed by HCl to generate KCl as another main potassium product (Case C). In all of the

Cases A–D, KOH keeps to be the potassium product with highest mass fraction, which indicates

the excessive part of potassium tends to form KOH in the post-combustion gases after reacting

with Cl and S.

The averaged responses of the four major potassium species in Cases E–G of Table 4 are

compared in Fig. 13. The profiles of K are again similar among Cases E–G, which indicates the

production of K is barely influenced by Cl and S in the volatiles. In Case E (K:Cl:S = 1:1:0.5),

most of the potassium is transformed to KCl while the production of K2SO4 is negligible. When

the molar ratio of Cl/K decreases to 0.5 in Case F, the formation of KCl is reduced almost by half,

with a marginal amount of potassium transformed to K2SO4 at the S/K ratio of 0.5. Even though
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Figure 12: Time evolution of the species mass fractions averaged over the computational domain. Grey: Case A
of Table 4. Green: Case B. Orange: Case C. Blue: Case D. Symbols: detailed potassium mechanism [23]. Lines:
reduced potassium mechanism (Table 3).
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Figure 13: Time evolution of the species mass fractions averaged over the computational domain. Green: Case E of
Table 4. Orange: Case F. Blue: Case G. Symbols: detailed potassium mechanism [23]. Lines: reduced potassium
mechanism (Table 3).

the S/K ratio is increased to 2.53 in Case G, the formation of K2SO4 is still limited (YK2SO4 < 10−5

at t = 50 ms). It should be partly attributed to the lower concentration of potassium in Cases E–G

than that in the baseline Case A.

The predictions of the reduced potassium mechanism agree well with that of the detailed one

under all different K/Cl/S configurations (Table 4) in the volatile.
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These 2D DNS simulations were run over 28 Intel Boardwell cores at 2.4 GHz. The computa-

tional cost for the detailed and reduced potassium mechanisms are shown in Fig. 14. To facilitate

the comparison, another 2D DNS case was performed without potassium species and reactions,

which reflects the CPU cost of hydrocarbon combustion computation. After subtracting this part

of CPU cost, the reduced mechanism of Table 3 saves 71.3% of the CPU cost compared to the

detailed one.
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Figure 14: CPU core hours cost of running a 2D DNS case. DRM22: only hydrocarbon combustion is considered with
the DRM22 mechanism [29]. Detailed: detailed potassium mechanism [23] is added to simulate potassium chemistry.
Reduced: reduced potassium mechanism (Table 3) is added to simulate potassium chemistry.

5. Conclusions

Starting from the detailed potassium mechanism proposed by Glarborg and Marshall [23], an

automated reduction and optimization strategy has been employed to develop a reduced mech-

anism for potassium chemistry during biomass combustion. The reduced mechanism involves

15 K/S/Cl species and 24 elementary reactions. A turbulent non-premixed micro-mixing based

canonical problem has been introduced as a reference problem for the mechanism reduction and

rates parameters optimization. Then, two-dimensional direct numerical simulations of turbulent

pulverized-biomass flames have been performed with both the detailed and the reduced potassium

mechanisms. The reduced one achieves a satisfactory prediction on potassium chemistry with a

CPU cost reduction reaching up to 71.3%.
25



The strength of the approach discussed relies on the development of reduced mechanisms

in a pre-processing manner, for given operating conditions. In the present work, the reduced

potassium mechanism has been developed and validated with the detailed reference mechanism

under atmospheric pressure for various K/Cl/S ratio of the volatiles in a non-premixed mixing

layer featuring a piloted flame (about 1500 K).

The chemistry reduction focus on the gaseous phase released from the biomass particles. The

particle size is chosen according to DNS requirements and it is at the low end of a true particle-size

distribution (PSD) for biomass particles. Once the reduced mechanism developed and validated,

it should be applicable to a gaseous phase released from biomass particles with a real PSD.
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