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Abstract

A combustion regime identification based on convolutional neural networks (CNNs) is developed

using the recently proposed gradient-free regime identification (GFRI) approach applied to two

turbulent CH4/air jet flames featuring multi-regime characteristics. The training and the subse-

quent application of the CNN rely on the processing of one-dimensional Raman/Rayleigh line

measurements of species mass fractions and temperature (CNN input). The combustion regime

index is then readily predicted at every point along the measured line (CNN output). For training

the neural network, the combustion regime index is first determined using the GFRI method (Hartl

et al., 2018) based on the chemical explosive mode analysis (CEMA). Six classes of combus-

tion regimes, including premixed (P), dominantly premixed (DP), multi-regime (MR), dominantly

non-premixed (DNP), non-premixed (NP), and lean back-supported (LBS), are well detected by

the trained CNN, with a pixel-wise accuracy of more than 85% for burner operating conditions

unseen during training (different free-stream equivalence ratios). The quasi instantaneous neural

network response provides a perspective towards real-time global combustion regime identifica-

tion for pollutants emission control. From the results, it is also concluded that introducing physical

insight, by combining advanced experimental (Raman/Rayleigh line measurements) and numeri-

cal analysis (GFRI), allows for reducing the amount of data needed to train neural networks.

Keywords: Convolutional neural network, Combustion regime, Raman/Rayleigh, Flame regime

marker, Gradient-free regime identification
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1. Introduction

Complex multi-regime combustion scenarios, including premixed, partially premixed and non-

premixed flames, are commonly reported in combustion systems due to partial premixing of the

reactants before they enter the reaction zones, or because of strong finite rate chemistry effects,

or even local quenching. The so-called Takeno’s flame index [1] is the most popular identifier of

local combustion regimes. This flame index exploits information on the degree of alignment be-

tween fuel and oxidiser gradients, to determine the nature of the local combustion regime ranging

between the two canonical ones, premixed flame (fuel and oxidizer gradients pointing in the same

direction) and diffusion flame (gradients in opposite directions). This indicator and its slightly

modified versions have been popularised by the analysis of the topological properties of reaction

zones in direct numerical simulation (DNS) [2–4] and large-eddy simulation (LES) [5–7]. Because

they require the knowledge of three-dimensional gradients of multiple scalars, these combustion

regimes identifiers, and others based on molecular diffusive fluxes estimations [6, 8, 9], have sel-

dom been extended to experimental measurements [10].

Recently, Hartl et al. [11, 12] proposed a novel combustion regime characterization solely

relying on spatial one-dimensional Raman/Rayleigh line measurements of major species concen-

trations and temperature. In this approach, to complement the knowledge of the Raman/Rayleigh

accessible major species and temperature, the full thermochemical state is first approximated by

simulating a homogeneous constant-pressure and constant-temperature reactor. After the radicals

and minor species have built up, the heat release rate (HRR) is calculated and the chemical explo-

sive mode analysis (CEMA) is performed [13]. These two key flame markers are then combined

with the mixture fraction (or local equivalence ratio), to identify different combustion regimes,

thanks to a gradient-free regime identification (GFRI) strategy [11, 12]. It was evaluated using

DNS of stratified flames [14] and applied to a lifted flame experiment [15] and to the Darmstadt

multi-regime burner configuration [12]. In the latter work, GFRI was extended by an automated

procedure to characterize local flame structures based on the relative HRR from premixed and

non-premixed reaction zones in close proximity.

∗Corresponding author
Email address: kaidi.wan@coria.fr (Kaidi Wan)

2



This gradient-free combustion regime identification has been shown to be robust and accu-

rate. Nonetheless, a quite large amount of CPU time is required to process the measurements and

predict the corresponding combustion regime. Indeed, the pointwise approximation of the full

thermochemical state, is obtained by numerically converging solutions of homogeneous reactors

with a detailed chemical scheme. In addition, the CEMA analysis requires computing the eigen-

values of the chemical Jacobian matrix to get the chemical explosive mode for every point of the

one-dimensional line. In the end to fully analyse turbulent jet flame measurements, the overall

procedure usually take hours on a regular workstation

Machine learning technologies are based on learning from a database to then make predic-

tions. These methods belongs to a rapidly growing field [16–18]. One of the machine learning

technologies based on convolutional neural networks (CNNs), which was originally developed

for analyzing visual representations [19, 20], has been recently introduced in combustion model-

ing [21–23] and flame control [24]. In the present study, the gradient-free identification regime is

combined with CNN, to provide an ultra-fast and reliable combustion regime determination based

on thermochemical properties.

The experimental database is detailed in the subsequent section along with the proposed ma-

chine learning procedure trained from the GFRI automated classification. Then, the developed

approach is tested over two different databases to examine its capability of combustion regime

identification.

2. Methodology

2.1. 1D Raman/Rayleigh measurement database

One-dimensional Raman/Rayleigh/CO-LIF line imaging has been collected on the multi-regime

burner (MRB) configuration with the experimental apparatus detailed in [12]. The burner consists

of three co-flowing inlet streams, a central jet and two slots (Table 1). The ensemble is protected

from the environment by an additional air coflow at 1 m/s. To facilitate laser measurements in

the vicinity of the burner, the three inlet streams are inclined by 26◦ from each other. The central

jet tube, with an inner and outer diameters of 3.0 mm and 3.3 mm, respectively, is surrounded
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by the first annular slot of 7.0 mm diameter, followed by a second annular slot between 40 mm

and 60 mm from the burner centerline. The outer diameter of the burner is 80 mm. Varying the

equivalence ratios of the jets, numerous combustion regimes have already been reported [12].

Two cases summarized in Table 1 are considered thereafter. Flame MRB18b lies slightly

outside the rich flammability limit, while MRB26b includes a large region of mixtures beyond the

flammability limit, to promote non-premixed and multi-regime combustion scenarios.

Table 1: Multi-regime burner operating conditions [12]. ub (m · s−1) is the bulk velocity and φ the equivalence ratio.
Case Central jet Slot 1 Slot 2

ub φ ub φ ub φ

MRB18b 105 1.8 15 0 20 0.8
MRB26b 105 2.6 15 0 20 0.8

Single-shot distributions along 6 mm sample lines of species mass fractions, i.e., H2, O2, CO,

CO2, CH4, H2O, and N2, and temperature are available with a data spacing of 20 µm for five

downstream locations (h = 15, 22.5, 30, 60 and 90 mm) [12]. They have been obtained using

spontaneous Raman scattering, Rayleigh scattering, and two-photon CO-LIF diagnostics, leading

to more than 1000 samples for most measurement locations. These radial profiles were collected

by traversing the burner in the direction of the laser axis.

The combustion regimes are first determined at every point of the sampled instantaneous

lines via GFRI [11, 12]. In total six classes are considered: premixed (P), dominantly premixed

(DP), multi-regime (MR), dominantly non-premixed (DNP), non-premixed (NP), and lean back-

supported (LBS). These are obtained first defining regions of interest from the zero crossing of

the chemical mode, then three reference values of the heat release rate within these regions are

collected to build a normalized parameter η, used to delineate between the combustion regimes,

see [12] for all the details on previously published GFRI method.

2.2. CNN regime identification approach

While traditional machine learning methods could address this problem point by point, CNN

offers the possibility of analyzing the full profile in a single inference. In this so-called “image

segmentation” approach, the input line is seen as a whole while the output classifies each pixel,

thus preserving the locality of the information.
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The CNN input is composed of the one-dimensional profiles, T , of temperature, and Yi, of

species mass fractions, H2, O2, CO, CO2, CH4, H2O and N2. The output is the one-dimensional

distribution of combustion regime index ξ. The raw one-dimensional profiles have a non-uniform

length ranging between 126 and 247 pixels. Various procedures have been tested to secure a

uniform CNN input. Better results are obtained by filling the raw profiles with a fixed dummy

value, to reach a uniform length of 256 = 28 pixels. The dummy value used for the CNN input

is zero, i.e., for species mass fractions and temperature, while it is 7 for the corresponding target

combustion regime index. The combustion index ξ used here is an integer in the range [0, 7],

corresponding to the six regimes, an additional not burning (NB) state and the dummy value, as

summarized in Table 2. The samples without combustion over the entire line are not considered.

The resulting numbers of sample lines used for each location of the two flames are summarized in

Table 3.

The raw database contains 0.0001% of outlier values, which were dropped out. Then, the

CNN operates with normalized quantities, thereby the seven species mass fractions and the tem-

perature are normalized by their respective maximum values over the whole database. These max-

imum values are CO2/0.205, O2/0.233, CO/0.329, N2/0.767, CH4/0.074, H2O/0.235, H2/0.005, T

(K)/2293.3.

In recent years, several architectures have been introduced for the image segmentation tasks,

as fully convolutional network (FCN) [25], SegNet [26], U-Net [27] and fully convolutional

DenseNet [28]. In the present study, a U-net inspired architecture is adopted because it provides

good performance with a relatively simple network structure.

Originally the U-net is optimized for dealing with two-dimensional images, it is here adapted

to one-dimensional information. As shown in Fig. 1, the CNN contains a downsampling (left

side) and an upsampling path (right side). One downsampling step consists of two padded one-

dimensional convolutions with a kernel of 3 (the dimension of the filter is the number of channels

of the incoming layer × 3, e.g., at the first downsamping step following the input layer the dimen-

sion of the filter for the first convolution is 8 × 3, while that for the second convolution becomes

64 × 3), each followed by a rectified linear unit (ReLU) and a maxpooling operation with stride 2.

The number of feature channels are doubled at each downsampling step. In practice, the number of
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Table 2: Values of the combustion regime index ξ and corresponding regime.

ξ Combustion regime
0 Not burning NB
1 Premixed P
2 Dominantly premixed DP
3 Multi-regime MR
4 Dominantly non-premixed DNP
5 Non-premixed NP
6 Lean back-supported LBS
7 Dummy value

Table 3: Number of line samples for the Flames MRB18b and MRB26b at five downstream locations (h) from the
nozzle.

h (mm) MRB18b MRB26b
15 5646 3514
22.5 4313 4434
30 4790 3927
60 2907 1682
90 1019 1040

kernels in each filter is the number of channels of the incoming layer. Then, the number of filters

for each convolution is the number of channels of the outcoming layer. Hence, the total number

of kernels for each convolution is the product of the number of channels at the incoming layer by

the number of channels at the outcoming layer (e.g., at the first downsampling step following the

input layer 8 × 64 kernels are used for the first convolution, while 64 × 64 kernels are used for the

second convolution).

The upsampling path is a mirrored version of the downsampling path: it includes an upsam-

pling operation which halves the number of feature channels, a concatenation operation which

merges the corresponding feature map from the downsampling path, and two padded one-dimensional

convolutions, each followed by a ReLU. At the final layer, a convolution with a kernel of 1 is

used, with a Softmax activation to classify each 64-component feature vector to one of the eight

combusion regimes. Tests have been performed with a single or three convolutions for each down-

sampling and upsampling step applied to the database, but as usual for the U-Net [27] architecture,
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the best results are obtained with two convolutions.1

Figure 1: Structure of the CNN for combustion regime identification.

The resulting neural network contains 10,826,504 weights, which need to be trained. Three of

the five locations (h = 15, 30 and 90 mm) of the MRB26b dataset are used for training the CNN.

The remaining location of MRB26b (h = 22.5 and 60 mm) and all the 5 locations of MRB18b form

the testing dataset to assess the performance of the CNN. (The corresponding codes are available

as supplementary material.)

The training of the CNN is performed using the TensorFlow Python library with GPU support

(www.tensorflow.org). A series of convolution, maxpooling and upsampling operations are

performed iteratively, in which the neural weights are modified until a satisfying minimal depar-

ture is obtained between the “target” combustion regime index ξ and the CNNs predictions. The

Adam optimizer [29] is applied with a sparse-categorical-crossentropy loss function comparing

the prediction against the target.

To relieve overfitting, a drop-out rate of 50% is applied before the last maxpooling and the

first upsampling operations (See Fig. 1). Data augmentation is also employed during training, to

1A more complex and advanced structure inspired by the fully convolutional DenseNet [28] has also been tested,
without much improvement in prediction accuracy, but with a significantly higher computational cost.
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increase the quality of the results. A mirror operation is first applied to each training sample line,

to avoid the emergence of a preferential direction, then each original line now appears twice, in its

original form and mirrored. Additionally, an uncorrelated random perturbation of 5% is added to

each of these training sample lines, to build a new version of each original and mirrored lines with

noise added. The “target” of the noise-added versions remains the same, thus mitigating the risk of

overfitting. The final training dataset is the combination of the original, mirrored and noise-added

versions, leading to a total of 33924 sample lines feeding the CNN for training.

The training is performed on a batch of 1024 lines, leading to 34 steps per “epoch”/iteration.

The learning rate [20] is initially set to 0.0003 and decays versus the steps (n) according to

lr =
0.0003

1.0 + 0.0001 · n
. (1)

The network is trained for 200 epochs to reach convergence, this requires about 45 minutes on an

Nvidia GeForce GTX 1080 Ti GPU. The trained CNN reaches a prediction accuracy of 99.3% for

the training database. Once trained, returning the combustion regime from an input line is almost

instantaneous.

3. Results and discussion

3.1. CNN testing on the remaining location of MRB26b

After being trained on three of the five locations (h = 15, 30 and 90 mm) of the MRB26b

dataset (Table 1), the CNN is tested at first on the remaining locations, h = 22.5 and 60 mm, of

the same flame, which contains in total 6116 sample lines (Table 3), each with 256 pixels. By

comparing, ξcnn(x), the combustion regime index predicted by the CNN to ξref(x), the reference

combustion regime index obtained from GFRI [11, 12], the CNN prediction is found to be 94.3%

and 95.0% accurate2 for h = 22.5 and 60 mm, respectively, which is satisfactory considering the

complexity of the problem.

Figure 2 shows representative results for three sample lines from h = 22.5 mm and one from 60

mm of this MRB26b case. For the sample line 1 of h = 22.5 mm (Fig. 2(a)), a first premixed zone

2The dummy pixels are removed when calculating the accuracy.
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(a) h = 22.5 mm, sample 1
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(b) h = 22.5 mm, sample 2
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(c) h = 22.5 mm, sample 3
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(d) h = 60 mm

Figure 2: Sample 1D lines at two h streamwise positions of MRB26b (Table 1). Left axis: Normalized mass fractions
and temperature. Right axis: combustion regime index (Table 2). Circle: GFRI, one of every three pixels is plotted.
Line: CNN.

(ξ = 1) around x = 75 pixels and a second one around x = 128 pixels followed by a multi-regime

zone (ξ = 3) are well detected by the CNN. The profiles at the end of the sample line (x between

233 and 256 pixels) are dummy values to keep a uniform CNN input, which is indicated by ξ =

7 and is also well captured by the CNN. For the sample lines 2 (Fig. 2(b)) and 3 (Fig. 2(c)) of h

= 22.5 mm, one lean back-supported zone (ξ = 6) and one dominatly premixed zone (ξ = 2) are

well detected on each of the two sample lines, respectively. For the sample line of h = 60 mm

(Fig. 2(d)), the prediction of CNN agrees well with the GFRI result, which detects a dominantly

non-premixed zone (ξ = 4), a non-premixed zone (ξ = 5) and a multi-regime zone (ξ = 3) along

the line.
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(a) h = 22.5 mm
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Figure 3: Averaged distributions over sample lines of premixed (P), dominantly premixed (DP), multi-regime (MR),
dominantly non-premixed (DNP), non-premixed (NP), and lean back-supported (LBS). (a) At the streamwise position
h = 22.5 mm and (b) h = 60 mm of MRB26b. The predictions of CNN are compared to the reference results by the
GFRI approach [11, 12]. Red: GFRI. Green: CNN.

Figure 3 compares the relative populations of combustion regimes over the locations h =

22.5 mm and 60 mm of MRB26b predicted by the CNN and the reference GFRI. The relative

population of a combustion regime is computed as the number of pixels in this regime divided

by the total number of pixels where combustion occurs, in other words the non burning (NB) and

dummy pixels have been removed. At the location h = 22.5 mm (Fig. 3(a)), more than 60% of the

reaction zones are identified with premixed characteristics, indicating that the flame is dominated

by premixed combustion at this location which is not far from the nozzle. Further downstream,

up to h = 60 mm (Fig. 3(b)), the multi-regime characteristics become the most significant with

a relative population higher than 70%. This is in agreement with the MRB26b flame featuring a

large region of mixtures above the rich flammability limit, thus promoting multi-regime combus-

tion events. The lean back-supported regime is not found at this location (h = 60 mm), because it

requires support from hot recirculating products, which is more likely to appear in the near-field

region close to the nozzle, e.g., h = 22.5 mm (Fig. 3(a)). The predictions of the CNN on the

distribution of various combustion regimes agree well with the reference GFRI calculations.
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Figure 4: Averaged distributions over sample lines of premixed (P), dominantly premixed (DP), multi-regime (MR),
dominantly non-premixed (DNP), non-premixed (NP), and lean back-supported (LBS) characteristics over all loca-
tions of MRB18b. The predictions of CNN are compared to the reference results by the GFRI approach [11, 12]. Red:
GFRI. Green: CNN.

3.2. CNN testing on the unseen MRB18b dataset

The reliability of the CNN is now evaluated over all locations of the MRB18b dataset, which

contains 18675 sample lines, each with 256 pixels. No location of this flame has been used for

training. The predictions of the CNN on the relative populations of P, DP, MR, DNP, NP and

LBS characteristics (Table 2) are summarized in Fig. 4. The flame structures of MRB18b are

driven by lean back-supported, multi-regime, and premixed regimes. The CNN predictions achieve

an overall good agreement against the GFRI results, with a good representation of the relative

distribution of the combustion regimes over the six possibilities.

Figure 5 shows representative results for three sample lines from four different streamwise

positions of the MRB18b case. The lean back-supported zone (ξ = 6) at h = 15 mm (Fig. 5(a)),

two premixed zones (ξ = 1) at h = 30 mm (Fig. 5(b)), and one multi-regime zone (ξ = 3) and

one non-premixed zone (ξ = 5) at h = 90 mm (Fig. 5(d)) are well captured by the CNN. At h =

60 mm (Fig. 5(c)), the CNN predicts a large entire dominatly premixed zone (ξ = 2) instead of

two separate ones indicated by the GFRI, but this should be acceptable since the two separte ones

are closely adjacent. These profiles have been chosen to illustrate the limitation of the approach

observed for a few points. A mismatch is seen at h = 15 mm (Fig. 5(a)), where around x =
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(a) h = 15 mm
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(b) h = 30 mm
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(c) h = 60 mm
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(d) h = 90 mm

Figure 5: Sample 1D lines at four h streamwise positions of MRB18b (Table 1). Left axis: Normalized mass fractions
and temperature. Right axis: combustion regime index (Table 2). Circle: GFRI, one of every three pixels is plotted.
Line: CNN.

85 pixels of the line sample, the GFRI indicates a multi-regime zone, which is not detected by

the CNN. Besides, at the x = 139 pixels of the line sample at h = 30 mm (Fig. 5(b)), the CNN

predicts a premixed zone but the GFRI indicates a lean back-supported zone. Nevertheless, those

mismatches contribute only a minor proportion to the overall combustion regime characteristics of

an entire sample line.

By comparing the combustion regime index predicted by the CNN, ξcnn(x), to the reference

combustion regime index, ξref(x), determined by the GFRI approach [11, 12] at every pixel of

the 18675 sample lines, 86.1% of prediction accuracy is found for this quite challenging complex

multi-regime MRB18b dataset unseen during training. The CPU time required for CNN prediction

12



is of 2 s for the entire MRB18b dataset. Figure 6 displays the accuracy of the CNN over each of

the five downstream locations of the MRB18b case. A precision of more than 85% is achieved for

every location, which confirms the CNN accuracy.
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Figure 6: Prediction accuracy of the CNN over the five downstream locations of h = 15, 22.5, 30, 60 and 90 mm of
the MRB18b dataset.The horizontal dashed line represents an accuracy of 85%.

4. Conclusions

A convolutional neural network (CNN) has been trained to determine combustion regimes

in a methane-air turbulent flame from Raman/Rayleigh one-dimensional measurements of major

species (H2, O2, CO, CO2, CH4, H2O, and N2) and temperature. The experimental data from a

recently investigated multi-regime laboratory scale burner [12] are first processed with the gradient

free regime identification (GFRI) method [11, 12], to generate a pixel-wise combustion regime

database.

The CNN is trained at various heights along the burner axis for one operating condition and

tested at two locations not included in the training. Then, the CNN is applied to a different burner

operating condition, for which the free-stream equivalence ratios have been modified. Six classes

of combustion regimes, including premixed (P), dominantly premixed (DP), multi-regime (MR),

dominantly non-premixed (DNP), non-premixed (NP), and lean back-supported (LBS), are well

13



detected by the machine learning approach, with an accuracy of more than 85% for a dataset un-

seen during training. This accuracy needs to be put in perspective with the level of detail included

in the analysis, which lead to consider six combustion sub-regimes, hence with a refinement that is

not possible by most combustion regime identification procedures available so far. Indeed, usually

three regimes (premixed, diffusion and partially premixed) only are distinguished by gradient or

flux-based regime identification methods. Also, the combustion regime prediction in this study is

pixel-wise, while most combustion regime identification methods usually operate over flow zones.

In practice, the CNN can also be used to determine the dominant combustion regime observed

in a single shot, or a series of shots defining a flow zone, still benefiting from the high level of

confidence provided by GFRI initially used for training.

The training dataset of the present work is much smaller than typical deep learning datasets,

even though returning quite accurate predictions. Compared to the most advanced combustion

regime identification, as GFRI, the CNN is ultra-fast, making it possible to envision real-time

combustion regime identification for advanced flame control, in order to mitigate pollutant emis-

sions occurring under given local combustion regimes.

Once trained for a given range of fuel/air mixtures, it is expected that the neural network can

be applied to different burner geometries. However, so far it cannot be expected very precise for

free-stream equivalence ratios that would be far from those seen during the training phase.
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