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Abstract

Interactions between premixed and non-premixed reaction zones can lead to complex mixed
combustion regimes, here denoted as multi-regime combustion, which pose challenges to
many conventional combustion modeling approaches. Such conditions occur in most practical
combustors and can originate from partial premixing, mixture inhomogeneities/stratification,
hot product recirculation, or local flame extinction and re-ignition. Therefore, novel equations
are derived for modeling multi-regime combustion which are formulated with respect to a two-
dimensional composition space spanned by mixture fraction and reaction progress variable.
Contrary to previous works, the dependency of the progress variable on the mixture fraction
is considered in the new model. This is achieved by splitting the progress variable gradient
into an aligned and an orthogonal component with respect to the mixture fraction gradient
and the latter is used to define the second coordinate. In the theory that follows, a balance
equation for the progress variable on mixture fraction iso-surfaces is formulated. Using this
balance equation together with the orthogonal coordinate system, the transformation of
species and temperature equations to the 2D composition space yields a novel set of equation
without so-called cross-terms. This is advantageous since cross-terms obtained with previous
approaches lack a general closure and it is uncertain if it exists at all. Furthermore, the
approach allows to naturally distinguish between non-premixed and premixed combustion
regimes, auto ignition, and it covers multi-regime combustion characteristics. The theory is
validated and discussed by means of a fully resolved solution of a laminar triple flame using
detailed chemistry. At first, regions which exhibit premixed, non-premixed or multi-regime
combustion characteristics are identified. The triple flame solution then serves as a database
from which all relevant theoretical relations are post-processed and validated. In comparison
to budgets of conventional 1D flamelet equations for premixed and non-premixed combustion
it is shown that only the full set of transport terms considered in the 2D equations accurately
balances chemical source terms everywhere in the triple flame, especially in regions where
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multi-regime combustion prevails.

1. Introduction

The distinction between the premixed and non-premixed combustion regime has been
essential in the development of combustion theory and modeling. However, practical combus-
tion systems often exhibit, sometimes by design, complex flame structures which cannot be
characterized as purely premixed or purely non-premixed [1–4]. Instead, effects such as partial
premixing, mixture inhomogeneities/stratification, hot product recirculation, entrainment of
oxidizer, and local flame extinction can lead to mixed combustion regimes which are denoted
as multi-regime combustion in this work. For the last decade, multi-regime combustion
has been a topical research area resulting in a broad range of experimental and numerical
works as reviewed by Masri [2]. To date, modeling of multi-regime combustion still poses a
major challenge since many combustion models employed in CFD simulations of practical
combustors rely on restrictive assumptions regarding the structure of reaction zones.

The identification of combustion regimes with respect to premixed, non-premixed or multi-
regime characteristics is non-trivial and multiple works exist regarding this topic. Yamashita
et al. [5] suggested the flame index, a scalar which considers the alignment of fuel and oxidizer
gradients. The flame index characterizes a flame as premixed if the scalar product of the local
fuel and oxidizer gradient is positive and as non-premixed if it is negative. This criterion was
later used for analyzing well-resolved numerical data and also extended by other groups [6–
10]. Another combustion regime indicator was proposed by Knudsen and Pitsch [11] who
assessed flame structures based on a balance of the local chemical source term, molecular
mixing, and unsteady effects. In comparison to the flame index, their combustion regime
index showed comparable predictions, but differences were found for regions where premixed
and non-premixed flame structures occur in close proximity. While the aforementioned
combustion regime identifiers rely on scalar gradient information, which is only accessible
from well-resolved numerical simulations, Hartl et al. [12] developed a gradient free regime
identification (GFRI) approach. The method can also be applied to experimental data and
allows distinguishing combustion regimes based on the local thermochemical state obtained
from Raman/Rayleigh spectroscopy. Since, the GFRI approach has been refined to identify
the relative importance of combustion regimes [3] and to differentiate local combustion regime
characteristics [4].

Besides the analytical tools for combustion regime identification, different modeling
approaches exist to describe multi-regime combustion characteristics. Here, a composition
space modeling approach is used and related previous works are briefly revisited in the
following. Well-established composition space models, such as the classical non-premixed
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flamelet model [13], Flamelet Generated Manifolds (FGM) [14] and Flame Prolongation of
ILDM (FPI) [15] rely on a one-dimensional representation of the reaction layer (non-premixed
or premixed, respectively). It has been shown that these modeling approaches can capture
multi-regime/partially premixed combustion characteristics to a certain extent [6, 8, 10, 14, 16–
19]. However, as stated initially, these models rely on restrictive a-priori assumptions and
can exhibit substantial modeling errors for multi-regime combustion characteristics. A
computationally inexpensive, albeit non-generic, approach to remedy these shortcomings
is the blending between premixed and non-premixed 1D flamelet solutions, e.g. based on
some sort of modified flame index [6, 10, 11, 20]. While this approach naturally recovers the
limiting cases of premixed and non-premixed combustion, it ignores complex interactions
between premixed and non-premixed reaction zones (i.e. multi-regime characteristics) which
are essential for the accurate prediction of certain flame structures [2–4].

A first attempt to describe this sort of interaction in a two-dimensional composition space
was published by Domingo et al. [21] who derived flamelet-like equations with respect to
the conditioning variables mixture fraction and progress variable. They showed that the
modeling approach can distinguish between auto ignition, premixed, partially-premixed,
and non-premixed combustion based on a series of Damköhler numbers. The approach was
extended and generalized in the subsequent work by Nguyen et al. [22] further including the
numerical solution of 2D composition space equations. A slightly different approach was
presented by Knudsen and Pitsch [1, 11] who derived 2D composition space equations with
respect to the mixture fraction and the reaction progress parameter Λ, a scalar quantity which
is set to the value of progress variable at stoichiometry and held fixed across iso-mixture
fraction surfaces. Using the progress-variable-like scalar Λ as a conditioning variable instead
of the progress variable itself has the advantage that it is statistically independent from the
mixture fraction. Nevertheless, other difficulties arise: it is unfeasible to transport Λ in a
CFD context since its transport equation is too complex and it is not straight-forward to
recover the premixed and non-premixed mode of combustion from the equations [11]. For
the sake of completeness other two-dimensional composition space models are mentioned
here: equation sets were published utilizing two mixture fractions as conditioning variables
to model multiple fuel injections in Diesel engines [23, 24], and utilizing mixture fraction
and enthalpy to capture mixing and thermal stratification in HCCI engines [25, 26]. Similar
approaches have also been presented for Conditional Moment Closure (CMC) [27].

Despite the more advanced representation of reaction zones, 2D composition space
modeling has not been widely adopted, yet. This has several reasons: first, 2D composition
space models rely on closure strategies for the scalar dissipation rates (or gradients) of
the conditioning variables and the so-called cross-terms which additionally appear in the
equations. Only recently it has been shown that a closure for the progress variable gradient
(or its scalar dissipation rate) requires an additional equation to be solved [28, 29], since
no general model exists for this quantity. Second, while the classical flamelet equations are
simple to solve and implement, 2D composition space models are significantly more complex.
Third, the aspect of the statistical independence of the conditioning variables, as addressed
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by Knudsen and Pitsch [1, 11], is not always rigorously incorporated in the composition
space transformation.

The main motivation of this work is to advance the multi-dimensional composition space
theory to overcome the aforementioned shortcomings. More specifically, the objective of this
paper is twofold: (1) develop a consistent theory in a two-dimensional composition space to
describe multi-regime combustion (c.f. Sec. 2) and (2) analyze and validate the approach
in terms of a well-known laminar triple flame setup (c.f. Sec. 3). Thereby, this work shall
provide a conceptual basis for modeling multi-regime combustion in CFD simulations with
tabulated chemistry methods.

2. General formulation

In this section composition space equations for termochemical scalars are derived and
discussed. The derivation consists of three steps: in Sec. 2.1, the evolution of thermochemical
quantities is expressed in terms of mixture fraction isosurfaces serving as a Lagrangian frame
of reference. Thereafter, an orthogonal coordinate system is introduced and used to project
thermochemical scalars into composition space (Sec. 2.2). The composition space equations
are presented and examined in Sec. 2.3.

It is then demonstrated how the composition space equations recover the limiting cases of
combustion (Sec. 2.4), which is followed by a discussion of conceivable closures, cross-terms
and differential diffusion (Sec. 2.5).

2.1. Lagrangian reference frame
Let us introduce the mixture fraction Z(x, t), a passive scalar (Z = 1 in fuel feeding

stream and Z = 0 in oxidiser stream), whose balance equation reads (unity Schmidt and
Lewis numbers) [30]

ρ
∂Z

∂t
+ ρu · ∇Z = ∇ · (ρD∇Z) , (1)

where ρ is the density, u is the velocity vector and D is the diffusion coefficient. The motion
of an arbitrary Z-isosurface is described by the kinematic condition [31]

DZ

Dt
=
∂Z

∂t
+ up · ∇Z = 0 , (2)

where up can be interpreted as the velocity of a mass-less particle p attached to the
Z-isosurface. Using Eq. (2) to replace the transient term in Eq. (1) yields [32]

up = u−
[

1

ρ|∇Z|
∇ · (ρD∇Z)

]
n , (3)

where the unit vector n = ∇Z/|∇Z| is the normalized mixture fraction gradient.
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Let us now consider the chemical species Yi(x, t) (analogously other thermochemical
scalars) verifying a balance equation of the usual form (unity Lewis numbers)

ρ
∂Yi
∂t

+ ρu · ∇Yi = ∇ · (ρD∇Yi) + ω̇i , (4)

where ω̇i is the chemical source. The evolution of the the species Yi at the particle position
is defined by the material derivative

DYi
Dt

=
∂Yi
∂τ

=
∂Yi
∂t

+ up · ∇Yi , (5)

where τ is a time-like variable which is independent from the coordinate variables attached
to the particle p (i.e. on a Z-isosurface). Using Eq. (4) to replace the transient term ∂Yi/∂t
we can rewrite Eq. (5)

∂Yi
∂τ

=
1

ρ
∇ · (ρD∇Yi) +

ω̇i

ρ
− 1

ρ
∇ · (ρD∇Z)

∂Yi
∂Z

, (6)

where the partial derivative of Yi with respect to Z is given by

∂Yi
∂Z

=
1

|∇Z|
n · ∇Yi =

∇Z · ∇Yi
|∇Z|2

. (7)

Equation 6 represents a species balance equation valid for any Z-isosurface and forms the
basis for the following derivation. In case important physics occur along the normal n only,
i.e. as for a thin non-premixed flame, a one-dimensional structure can be assumed and the
composition space transformation of Eq. 6 leads to the unsteady flamelet equations [13]. For
multi-regime combustion however, at least a second conditioning variable is required, which
is considered next.

2.2. Orthogonal scalar coordinates
An orthogonal composition-space system of coordinates (n1,n2,n3) may be constructed

from Z and any reactive scalar Yc(x, t) described by

ρ
∂Yc
∂t

+ ρu · ∇Yc = ∇ · (ρD∇Yc) + ω̇c , (8)
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Figure 1: Sketch of the orthogonal scalar coordinate system in the physical space.

using the corresponding vector coordinates (Fig. 1)

n1 =
∇Z
|∇Z|

, (9)

n2 =
∇Yc − (n1 · ∇Yc)n1

|∇Yc − (n1 · ∇Yc)n1|
=
∇⊥Yc
|∇⊥Yc|

, (10)

n3 = n1 × n2 =
∇e
|∇e|

. (11)

Here, the reactive scalar Yc is defined as a weighted sum of species

Yc =
ns∑
i

αiYi , (12)

a common definition in the literature [14, 33, 34] and it will be denoted as reaction progress
variable in the following. The gradient

∇⊥Yc = ∇Yc − (n1 · ∇Yc)n1
(7)
= ∇Yc −

∂Yc
∂Z
∇Z , (13)

is the orthogonal component of ∇Yc with respect to ∇Z and e is a coordinate along of which
changes of thermochemical quantities are assumed small (similar as in [11]). The definition
of the second coordinate, Eq. (10), ensures orthogonality, i.e. n1 · n2 = 0. In this (n1,n2,n3)
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Figure 2: In the physical space (left), two mixture fraction gradient trajectories (GT) and two Z-isolines
intersect at four points. The same points are mapped into the composition space parametrized by Z and
Yc (right). Traversing points along the gradient trajectories and Z-isolines in the physical space leads to a
corresponding motion in composition space in the direction of the red and blue arrows, respectively.

orthogonal coordinate system, usual projection rules apply and ∇Yi reads

∇Yi = (n1 · ∇Yi)n1 + (n2 · ∇Yi)n2 + (n3 · ∇Yi)n3 , (14)

=
∂Yi
∂Z
|∇Z|n1 +

∂Yi
∂Yc

∣∣∣∣
Z

|∇⊥Yc|n2 +
∂Yi
∂e
|∇e|n3 (15)

=
∂Yi
∂Z
∇Z +

∂Yi
∂Yc

∣∣∣∣
Z

∇⊥Yc +
∂Yi
∂e
∇e . (16)

where the definition
∂Yi
∂Yc

∣∣∣∣
Z

=
∇Yi · ∇⊥Yc
|∇⊥Yc|2

, (17)

is used to represent the derivative of the thermochemical quantity Yi projected into com-
position space along ∇⊥Yc. Note that this derivative of Yi with respect to Yc is defined for
constant mixture fractions, which is indicated by the notation (·)|Z and directly follows from
the construction of the orthogonal coordinate system (c.f. Fig. 1). As previously stated,
derivatives of thermochemical variables with respect to e are assumed small and are therefore
omitted in the following.

Before further usage, it is useful to examine the mapping from physical to composition
space by the orthogonal coordinates. Although Z and Yc are generally non-orthogonal, these
coordinates are often used to parametrize the composition space for reaction zone analyses
and we also adopt this representation here. Figure 2 schematically shows intersections of two
exemplary mixture fraction gradient trajectories (GT) and two Z-isolines in a two-dimensional
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plane. It is assumed that the shaded region is located in the vicinity of a reaction zone,
i.e. an area with significant chemical activity and heat release. Traversing points along a
gradient trajectory in the physical space (i.e. constructing a trajectory following ∇Z), both
mixture fraction and progress variable change, which results in a corresponding motion
in composition space (red arrow). In case there are no progress variable gradients along
Z-isolines (i.e. ∇⊥Yc = 0) this motion is analogous to the traversal of a non-premixed flame.
On the contrary, traversing points along Z-isolines (i.e. along ∇⊥Yc) results in a motion in
composition space along Yc only (blue arrow), while Z remains constant. If mixture gradients
are sufficiently small this motion corresponds to the traversal of a one-dimensional premixed
flame (neglecting differential diffusion).

2.3. Composition space equations for species and temperature
Introducing Eq. 161 into Eq. 6 and multiplying by the density yields

ρ
∂Yi
∂τ

= ρD∇Z · ∇
(
∂Yi
∂Z

)
+ ρD∇⊥Yc · ∇

(
∂Yi
∂Yc

∣∣∣∣
Z

)
+∇ · (ρD∇⊥Yc)

∂Yi
∂Yc

∣∣∣∣
Z

+ ω̇i ,

= ρD|∇Z|2∂
2Yi
∂Z2

+ ρD|∇⊥Yc|2
∂2Yi

∂Yc
2

∣∣∣∣
Z

+∇ · (ρD∇⊥Yc)
∂Yi
∂Yc

∣∣∣∣
Z

+ ω̇i , (18)

In the expression above, Eq. (15) was used to reformulate the first and second term on the
right hand side according to

ρD∇Z · ∇
(
∂Yi
∂Z

)
= ρD|∇Z| (n1 · n1) |∇Z| ∂

∂Z

(
∂Yi
∂Z

)
+ ρD|∇Z| (n1 · n2) |∇⊥Yc|

∂

∂Yc

∣∣∣∣
Z

(
∂Yi
∂Z

)
= ρD|∇Z|2∂

2Yi
∂Z2

, (19)

where n1 · n1 = 1 and n1 · n2 = 0 (orthogonality) was used.
With the intention to replace the third term on the right hand side of Eq. (18), a

summation analogous to Eq. (12) is applied to Eq. (18)

ρ
∂Yc
∂τ

= ρD|∇Z|2∂
2Yc
∂Z2

+ ρD|∇⊥Yc|2
∂2Yc

∂Yc
2

∣∣∣∣
Z︸ ︷︷ ︸

=0

+∇ · (ρD∇⊥Yc)
∂Yc
∂Yc

∣∣∣∣
Z︸ ︷︷ ︸

=1

+ ω̇c , (20)

1As stated below Eq. (17), partial derivatives with respect to e are assumed small and omitted.
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Thus, Eq. (20) simplifies to

ρ
∂Yc
∂τ

= ∇ · (ρD∇⊥Yc) + ω̇c⊥ , (21)

with the source
ω̇c⊥ = ρD|∇Z|2∂

2Yc
∂Z2

+ ω̇c . (22)

Equation (21) balances the progress variable Yc on Z-isosurfaces. Therefore, transport along
the direction of Z-gradients (i.e. between different Z-isosurfaces) is attributed to the source
term in Eq. (22). This term can also be interpreted as a correction term which ensures
orthogonality between ∇Z and the newly introduced ∇⊥Yc. From another perspective,
the above expression for the source term is equivalent to the equation for an unsteady,
non-premixed laminar flamelet [13] and in this context ω̇c⊥ corresponds to the transient term.
This already indicates a suitable mapping between time and reaction progress variable, which
has already been utilized for unsteady flamelet modeling [35] and modeling of homogeneous
reacting mixtures [21, 29] in previous works. This aspect is revisited and discussed further
below.

In a CFD simulation, it would be impractical to solve Eq. (21) since this would require
Z-isosurfaces to be tracked in time and space. However, the equation is used to replace the
third term on the right hand side of Eq. (18) which yields

ρ
∂Yi
∂τ

= ρD|∇Z|2∂
2Yi
∂Z2

+ ρD|∇⊥Yc|2
∂2Yi

∂Yc
2

∣∣∣∣
Z

+ ρ
∂Yc
∂τ

∂Yi
∂Yc

∣∣∣∣
Z

− ω̇c⊥

∂Yi
∂Yc

∣∣∣∣
Z

+ ω̇i . (23)

This equation is simplified assuming that the thermochemical state can be approximated by
a reduced order manifold, which is parametrized by mixture fraction and progress variable.
Then, a first order taylor series expansion of the first term in Eq. (23) can be written as

∂Yi
∂τ
≈ ∂Z

∂τ︸︷︷︸
=0

∂Yi
∂Z

+
∂Yc
∂τ

∂Yi
∂Yc

∣∣∣∣
Z

=
∂Yc
∂τ

∂Yi
∂Yc

∣∣∣∣
Z

, (24)

which states that the transient evolution of the thermochemical state at the particle position
(i.e. at constant mixture fraction) is related to the transient evolution of the progress variable
at this point. Introducing the expression into Eq. (23) the transient terms compensate each
other and vanish. It has been shown in previous works [28, 29] that composition space models
can accurately recover characteristics of transient combustion processes (e.g. auto-ignition,
spherical expanding flames) based on this approximation. This also applies to complex
transient processes such as two-stage ignition [29]. Equation (24) is based on the fact
that chemical reaction mechanisms propagate the change in one species through a network
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of chemical reactions to many others. Thereby, only few species, which are directly or
indirectly affected by the most relevant reaction pathways, are required in the definition of
Yc (c.f. Eq. (12)). Nevertheless, it is noted that Eq. (24) can lead to modeling errors for very
large transients experienced by certain intermediate species, such as radicals.

Introducing Eq. (24) into Eq. (23) and performing an analogous transformation for the
temperature, which is subject to the transport equation (unity Lewis numbers)

ρ
∂T

∂t
+ ρu · ∇T =

1

cp
∇ · (λ∇T ) +

ns∑
k

cp,k
cp

ρD∇Yk · ∇T + ω̇T , (25)

yields the two-dimensional composition space equations

ω̇c⊥

∂T

∂Yc

∣∣∣∣
Z

= ρD|∇Z|2 ∂
2T

∂Z2
+ ρD|∇⊥Yc|2

∂2T

∂Yc
2

∣∣∣∣
Z

+
ρD

cp

(
|∇Z|2∂cp

∂Z

∂T

∂Z
+ |∇⊥Yc|2

∂cp
∂Yc

∣∣∣∣
Z

∂T

∂Yc

∣∣∣∣
Z

)
+ ρD

ns∑
k

cp,k
cp

(
|∇Z|2∂Yk

∂Z

∂T

∂Z
+ |∇⊥Yc|2

∂Yk
∂Yc

∣∣∣∣
Z

∂T

∂Yc

∣∣∣∣
Z

)
+ ω̇T , (26)

ω̇c⊥

∂Yi
∂Yc

∣∣∣∣
Z︸ ︷︷ ︸

Yc−drift

= ρD|∇Z|2∂
2Yi
∂Z2︸ ︷︷ ︸

Z−diffusion

+ ρD|∇⊥Yc|2
∂2Yi

∂Yc
2

∣∣∣∣
Z︸ ︷︷ ︸

Yc−diffusion

+ ω̇i︸︷︷︸
source

. (27)

Considering the species equation above, it consists of a drift term, two diffusive transport
terms along the directions of Z and (orthogonal) Yc, respectively, and a chemical source
term. The drift term, formally a convective term in composition space, incorporates the
evolution of the reaction progress variable itself. An equivalent term does not exist for the
mixture fraction since it is a passive scalar. Opposed to similar previous works [11, 22, 36],
Eqs. (26) and (27) do not contain so-called cross-terms due to orthogonality of the employed
coordinate system. Comparing the equation set to the one presented by Nguyen et al. [22]
(c.f. Eqs. (21) and (22) of their work), who conditioned temperature and species on (Z, Yc)
without explicitly incorporating orthogonality, the two main differences besides the removal
of cross-terms are: (1) the correction for the progress variable source term ω̇c⊥ (c.f. Eq. (22)),
and (2) the modified gradient |∇⊥Yc| scaling diffusion along the Yc-dimension (keeping Z
fixed). The absence of cross-terms is examined further in Sec. 2.5. Before, it is demonstrated
that the equations recover the asymptotic limits of combustion.

2.4. Recovery of limiting cases of combustion
The composition space equations describing (i) a homogeneous reacting mixture, (ii) a

premixed flamelet, and (iii) a non-premixed flamelet can be readily obtained as a subset of

10



Eqs. (26) and (27).

Homogeneous reacting mixture. In the absence of spatial gradients (|∇Z| = |∇⊥Yc| = 0),
the mixture fraction is uniform (Z = const.). In this case, the balance equation for Yc on
Z-isosurfaces, Eq. 21, becomes equivalent to the Yc-equation, Eq. (8), and the homogeneous
reactive mixture only evolves in time. Equations (26) and (27) simplify to

ω̇c
∂T

∂Yc
= ω̇T and ω̇c

∂Yi
∂Yc

= ω̇i . (28)

It has been shown [21, 29] that these equations accurately describe the evolution of a constant
pressure homogeneous reacting mixture (ignition problem) in composition space. Note
that a time-like coordinate in composition space is not required since the unsteadiness of
thermochemical variables in the physical space is inherently captured through the transient
evolution of the conditioning variables (here only of Yc), c.f. Eq. (24).

Premixed flamelet. In the limit of a premixed flame (assuming Le = 1), the mixture fraction
gradient is zero, ∇Z = 0. From Eq. (13) it is obvious that ∇⊥Yc = ∇Yc. Furthermore, the
correction term vanishes in Eq. (22) and ω̇c⊥ = ω̇c.

In composition space, the Eqs. (26) and (27) consistently simplify to the 1D premixed
flamelet equations [28, 34, 37]:

ω̇c
∂T

∂Yc
= ρD|∇Yc|2

∂2T

∂Yc
2 +

ρD

cp
|∇Yc|2

∂cp
∂Yc

∂T

∂Yc

+ ρD

ns∑
k

cp,k
cp
|∇Yc|2

∂Yk
∂Yc

∂T

∂Yc
+ ω̇T , (29)

ω̇c
∂Yi
∂Yc

= ρD|∇Yc|2
∂2Yi

∂Yc
2 + ω̇i . (30)

Non-premixed flamelet. For a purely non-premixed flame, Yc can be expressed as a function
of Z which implies that gradients ∇Z and ∇Yc are aligned. It follows for Eq. (13)

∇⊥Yc = ∇Yc −
∂Yc
∂Z
∇Z = 0 . (31)

Equation 16 then reduces to the conventional flamelet transformation rule ∇T = ∇Z ∂T
∂Z

and the balance equation for Yc on Z-isosurfaces, Eq. 21, simplifies to

ρ
∂Yc
∂τ

= ω̇c⊥ = ρD|∇Z|2∂
2Yc
∂Z2

+ ω̇c . (32)
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Accordingly, one obtains from Eqs. (26) and (27)

ω̇c⊥

∂T

∂Yc

∣∣∣∣
Z

= ρD|∇Z|2 ∂
2T

∂Z2
+
ρD

cp
|∇Z|2∂cp

∂Z

∂T

∂Z

+ ρD
ns∑
k

cp,k
cp
|∇Z|2∂Yk

∂Z

∂T

∂Z
+ ω̇T , (33)

ω̇c⊥

∂Yi
∂Yc

∣∣∣∣
Z

= ρD|∇Z|2∂
2Yi
∂Z2

+ ω̇i . (34)

It is readily shown that the above equation set is equivalent to the unsteady 1D flamelet
equations for non-premixed combustion [13] by replacing the drift term on the left hand side
according to

ω̇c⊥

∂Yk
∂Yc

∣∣∣∣
Z

(32)
= ρ

∂Yc
∂τ

∂Yk
∂Yc

∣∣∣∣
Z

(24)
= ρ

∂Yk
∂τ

. (35)

This illustrates again the relationship between time and the reaction progress variable. Note
that if only the mixture fraction Z was chosen as a conditioning variable (without a suitable
coordinate capturing reaction progress), the transient term remains in the equations during
the derivation presented in Sec. 2.3.

2.5. Discussion of conceivable closures, cross-terms and differential diffusion
The composition space theory presented so far can be used for analyses of fully resolved

numerical datasets (c.f. Sec. 3). Further, an algorithm for the numerical solution of Eqs. (26)
and (27) would be very valuable for modeling multi-regime combustion. A reduced order
manifold could thereby be constructed directly in composition space and tabulated as a
function of a reduced set of scalars (mixture fraction, progress variable and others). While
such an algorithm is subject to future research, three key issues for this effort are briefly
discussed here: (i) closures for the gradients |∇Z| and |∇⊥Yc|, (ii) cross-terms, and (iii) an
extension to capture differential diffusion (non-unity Lewis numbers).

As stated above, a numerical solution algorithm for Eqs. (26) and (27) requires closures for
|∇Z| and |∇⊥Yc|. From the analytical solution of mixing layers [38] promising closures exist
for |∇Z| (or the scalar dissipation rate χZ = 2D|∇Z|2). On the contrary, |∇⊥Yc| depends
on the progress variable gradient |∇Yc| which substantially changes with the fuel-oxidizer
combination or the specific progress variable definition (c.f. Eq. (12)) [28] and no generic
analytical closure exists. In our previous works [28, 29], a separate equation for the progress
variable gradient has been utilized and it is likely that this approach can be extended to
complement the composition space equations presented here. This aspect should be explored
in future work.

Further, comparing Eqs. (26) and (27) to the equations derived by Nguyen et al.
[22], it is apparent that thermochemical quantities are evolving in four dimensions here,
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i.e. Yi(Z, Yc|Z , |∇Z|, |∇⊥Yc|), opposed to five dimensions in [22], i.e. Yi(Z, Yc, χZ , χYc , χZ,Yc).
While |∇Z| is readily related to the scalar dissipation rate χZ = 2D|∇Z|2, |∇⊥Yc| is linked
to both χYc = 2D|∇Yc|2 and the cross-scalar dissipation rate χZ,Yc = 2D∇Z · ∇Yc. Without
orthogonal coordinates, cross-terms appear in composition space equations [11, 22, 36] with
χZ,Yc as a scaling factor. Cross-terms require a closure and are difficult to handle from a
modeling perspective. So far no general closure strategy has been presented and sometimes
these terms are neglected accepting a certain modeling error. The cross-scalar dissipation
rate χZ,Yc is defined based on the scalar product

∇Z · ∇Yc =
χZ,Yc

2D
= |∇Z|2∂Yc

∂Z
= |∇Z| |∇Yc| cosϕ , (36)

where ϕ is the enclosed angle between the gradients ∇Z and ∇Yc. Furthermore, |∇⊥Yc| is
related to |∇Yc| through ϕ

|∇⊥Yc|2 = ∇⊥Yc · ∇⊥Yc = ∇⊥Yc ·
(
∇Yc −∇Z

∂Yc
∂Z

)
= ∇⊥Yc · ∇Yc = |∇Yc|2 −∇Z · ∇Yc

∂Yc
∂Z

= |∇Yc|2 (1− cos2ϕ) , (37)

which is linked to the definition of the second coordinate n2 of the orthogonal coordinate
system introduced with Eq. (10). Hence, the absence of cross-terms in Eqs. (26) and (27)
is achieved by incorporating the interdependence between progress variable and mixture
fraction into the construction of the orthogonal coordinates.

As previously stated, Z and Yc are generally non-orthogonal coordinates. This affects the
numerical solution of Eqs. (26) and (27): if the composition space equations (26) and (27) are
discretized on a (Z, Yc)-grid, which is for that purpose made orthogonal, partial derivatives
with respect to Z have to be split into a component keeping Yc constant and cross-terms are
re-introduced as correction terms to account for the non-orthogonality of (Z, Yc). This issue
remains beyond the scope of this paper, but it should be noted that the numerical solution
of the composition space equations is therefore not trivial.

Nevertheless, the combination of Z and Yc as conditioning variables for thermochemical
scalars is a natural choice for combustion processes and these quantities should be kept to
parametrize numerical solutions of Eqs. (26) and (27). In the context of tabulated chemistry
approaches, already existing turbulence-chemistry interaction models, as required for Large-
Eddy Simulations, can be used with minor modifications. Even if the composition space
equations are eventually solved in a different reference frame, mixture fraction and progress
variable can be reconstructed for tabulation and look-up.

A worthwhile extension of the present composition space theory is the consistent represen-
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tation of differential diffusion (non-unity Lewis numbers). Previous works on one-dimensional
composition space modeling for premixed [28, 29, 34] and non-premixed combustion [39, 40]
have shown that this can be realized conditioning on either mixture fraction or progress
variable. The extension of the two-dimensional composition space equations for differential
diffusion requires a careful incorporation of detailed diffusion modeling leading to additional
terms and transport effects, such as curvature-induced differential diffusion [41]. This exten-
sion for the Eqs. (26) and (27) is therefore non-trivial, but highly important for describing
multi-regime combustion without restrictive assumptions regarding diffusive transport.

3. Analysis of a laminar triple flame

The composition space equations presented in the previous section are validated with the
fully resolved, detailed chemistry solution of a laminar methane-air triple flame. Figure 3
shows a schematic of the triple flame setup. It consists of a lean and a rich premixed flame
branch which enclose a non-premixed flame. The three different flame structures merge at the
characteristic triple point, which plays an important role for the flame stabilization. The triple
flame is established by defining an inflow of premixed fresh gases (T0 = 300 K, p = 1 atm)
with a mixture stratification in the cross-flow direction. The stoichiometric mixture fraction
is Zst = 0.055 (methane-air), and the boundary conditions are chosen as Zmin = 0 (pure air)
and Zmax = 0.42. The boundary conditions in the cross-flow direction are implemented as
slip walls. The imposed mixture fraction gradient at the inlet is 50 m−1 which results in
an edge-flame aspect ratio of f = 0.024. The latter expresses a ratio between a diffusion
length measured along the stoichiometric surface (premixed kernel) and a diffusion length
across the stoichiometric surface (diffusion flame) [42]. With f = 0.024, the laminar triple
flame corresponds to a weakly curved partially premixed flame according the classification
introduced in [42]. The GRI-MECH 3.0 reaction mechanism [43] is used for describing
chemical kinetics and unity Lewis numbers are assumed for all species. Further information
on the numerical setup of the triple flame can be found in [12]. From the fully resolved scalar

non-premixed flame

rich premixed flame

stratification computational domain

lean premixed flame

triple point

inlet outlet

Figure 3: Schematic of the laminar triple flame. The flame is established by a mixture stratification (imposed
mixture fraction gradient) of the fresh gases at the inlet boundary.
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fields of this flame all terms which appear in the 2D composition space equations, Eqs. (26)
and (27), are reconstructed and evaluated.

3.1. Triple flame characteristics
Simulation results obtained for the scalar fields of temperature, heat release rate (HRR)

and four species mass fractions of the laminar triple flame are displayed in Fig. 4. The largest
heat release rate is found in the vicinity of the triple point, where the conversion of reactants
(c.f. O2) to hot products (c.f. CO2) and the maximum heat release occur in a thin reactive
layer. Further, radical species, such as OH, are found to reach a maximum there. The
thickness of the reactive layer, which can be assessed from the transition region of reactants to
products, increases downstream of the triple point marking the two premixed flame branches.
The upper rich premixed flame appears stronger than the lower lean premixed flame since its
contribution to the overall heat release is larger. The heat release by the non-premixed flame
remains at least one order of magnitude smaller than that of the premixed flames which
is why it remains hardly visible in the HRR plot. As expected, considerably more CO is
formed in the rich premixed flame compared to the lean side of the triple flame. The overall
maximum of temperature and reaction products (such as CO2) is eventually reached at the
position of the non-premixed flame, where conditions approach the chemical equilibrium.

Figure 4: Scalar fields of temperature, heat release rate (HRR) and mass fractions of the species CO2, O2,
OH and CO for the triple flame.

Figure 5 shows the scalar fields of the conditioning variables Z and Yc. The scalar mixture
fraction field illustrates the stratification along the y-direction which remains effective over
the whole domain. The reaction progress has a very similar structure as a chemical product
species, which is readily anticipated from its definition Yc = YH2O + YCO2

. In the top right
plot, the source term ω̇c⊥ is shown. Furthermore, the figure displays the gradients |∇Z|,
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Figure 5: Scalar fields of the conditioning variables Z and Yc, the source term ω̇c⊥ (top row) together with
the gradients |∇Z|, |∇Yc| and |∇⊥Yc| (bottom row). The progress variable is defined as Yc = YH2O

+ YCO2
.

|∇Yc| and |∇⊥Yc| in the bottom row. The mixture fraction gradient |∇Z| indicates intense
mixing for the rich premixed flame branch and in the vicinity of the triple point, where also
the highest chemical activity is perceived (c.f. HRR in Fig. 4). From the gradient |∇Yc|,
which assumes large magnitudes at premixed flame fronts, both premixed flame branches can
be identified. Additionally, zero values of |∇Yc|, which appear mid-domain as a dark blue
stripe, indicate the non-premixed flame. These flame fronts are less pronounced in the plot
of |∇⊥Yc|, which represents the gradient component perpendicular to the mixture fraction
gradient. It shows values of the same magnitude as |∇Yc| in the vicinity of the triple point
and along a portion of the premixed flame branches but it assumes small values everywhere
else. This is also reflected for the source term ω̇c⊥ which exhibits large values close to the
triple point.

Similar characteristics are found from Fig. 6, which shows the angle between ∇Z and
∇Yc (left) and gradient trajectories of ∇Z, ∇Yc, and ∇⊥Yc, respectively (middle and right).
Note that the definition of the angle is slightly modified here

ϕ∗ = arccos

(∣∣∣∣ ∇Z · ∇Yc|∇Z| |∇Yc|

∣∣∣∣) , (38)

such that ϕ∗ = 0◦ indicates a full alignment between ∇Z and ∇Yc and ϕ∗ = 90◦ indicates
orthogonality. From both, Figs. 6 (left) and 6 (middle), it is apparent that ∇Z and ∇Yc are
strongly misaligned (ϕ∗ = 50 . . . 90◦) upstream from and also directly at the position of the
triple point. On the other hand, ∇Z and ∇Yc become almost perfectly aligned (ϕ∗ ≈ 0◦)
for the downstream region x > 5 mm. These characteristics suggest that Z-Yc cross-terms,
corresponding to non-negligible values for 0◦ < ϕ∗ < 90◦ and significant gradients of |∇Z|
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Figure 6: Left: angle between ∇Z and ∇Yc (with overlay of white Yc-isolines). Middle: Yc-scalar field with
an overlay of gradient trajectories for ∇Z (red) and ∇Yc (white). Gradient trajectories are defined for a
gradient field analogously to streamlines for a velocity vector field. Right: Yc-scalar field with an overlay of
gradient trajectories for ∇Z (red) and ∇⊥Yc (white).

and |∇Yc|, play an important role for the stabilization mechanism and the most reactive
region of the triple flame. According to the considerations in Sec. 2.4, these characteristics
further imply multi-regime combustion due to deviations from the premixed (negligible |∇Z|)
and the non-premixed (ϕ∗ ≈ 0◦) burning mode. On the other hand, gradient alignment in
the downstream region (x > 5 mm) suggests that only one conditioning variable is necessary
to describe local reaction zones as either the progress variable can be expressed as a function
of the mixture fraction (non-premixed limit) or the mixture fraction gradient tends to zero
(premixed limit). Additionally, the right plot displays gradient trajectories for ∇Z and ∇⊥Yc
confirming that both gradients are perpendicular throughout the computational domain.

3.2. Gradient-free regime analysis
The gradient-free regime identification (GFRI) approach [3, 12] allows the identification

of the local combustion regime based on experimental and numerical data. Starting from
the fully resolved numerical solution of the triple flame, the mixture fraction Z, the heat
release rate (HRR), and the chemical mode (CM) are calculated and used to detect and
characterize reaction zones. It was shown that strong correlations between the magnitude
of change in the CM zero-crossing, the mixture fraction at the CM zero-crossing, and the
local HRR at the CM zero-crossing exist [3]. Hence, the combination of Z, HRR, and CM
allows the identification of dominantly premixed, dominantly non-premixed, and intermediate
structures in which both premixed and non-premixed reaction zones contribute to the overall
heat release rate. Further, the approach was extended and an automated classification of
local reaction zone structures in complex multi-regime flames was derived [4]. Based on the
ratio of local HRR peaks associated with premixed (HRRP) and non-premixed (HRRNP)
regions located in close spatial proximity, a classification into premixed, dominantly premixed,
multi-regime, dominantly non-premixed, and non-premixed flame zones is possible by using
the flame structure index η:

η =
HRRP − HRRNP

HRRmax

, (39)
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where HRRmax is the HRR maximum in close spatial proximity of the local reaction zones.
The criteria for the classification of reaction zones are summarized in Table 1.

Table 1: Criteria for the classification of reaction zones.

Premixed P 1 ≥ η > 0.99
Dominantly premixed DP 0.99 ≥ η > 0.8
Multi-regime MR 0.8 ≥ η > −0.8
Dominantly non-premixed DNP −0.8 ≥ η > −1
Non-premixed NP η = −1

(no CM zero-crossing)

Premixed

Non-Premixed

Dominantly Premixed
Multi-Regime

GFRI

Flame Index

lo
g
(H
RR
)[
J/
(k
gs
)]

10

Figure 7: Top: Contour plot of the heat release rate (grey scales) and the distribution of local reaction zones
according to the GFRI analysis. Bottom: normalized flame index ξ evaluated from Eq. (40).

Figure 7 shows the distribution of the aforementioned combustion regimes for the laminar
triple flame as a contour plot (top). From this figure the complex flame structure consisting
of lean and rich premixed flame branches with an embedded non-premixed flame is visible.
It is found that the intense HRR in the vicinity of the triple point is mainly driven by
premixed, and multi-regime regions. Premixed and multi-regime structures exists until an
axial position of x = 4 mm and are followed by dominantly premixed flame branches. These
dominantly premixed flame zones are characterized by a maximum HRR which is shifted to
the position of the CM zero-crossing, an indicator for slightly weakened premixed flames.
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Starting from x = 3 mm, additionally non-premixed characteristics arise along the flame
centerline until the end of the computational domain. It is emphasized that non-premixed
structures also exist between the triple point and x = 3 mm, however, the elevated local
HRR values cannot be explicitly attributed to one specific flame zone due to the strong
interaction between premixed, multi-regime and non-premixed zones. The lower premixed
flame branch is characterized by the premixed and dominantly premixed flame region and
the upper premixed flame branch by multi-regime and dominantly-premixed flame zones.
Note, that multi-regime structures can only exist in rich to slightly rich regions, allowing
premixed and non-premixed flame zones to exist in close proximity.

For reference, the normalized flame index is shown at the bottom of Fig. 7. It is evaluated
from [10]

ξ =
∇Yfuel · ∇Yoxid

|∇Yfuel · ∇Yoxid|
, (40)

where Yfuel = YCH4
and Yoxid = YO2

denote the fuel and oxidizer mass fractions, respectively.
From the flame index, premixed flames are identified by ξ = 1 and non-premixed flames by
ξ = −1. Overall, it agrees well with the results obtained from the GFRI approach, although
it is evident that the latter yields more refined information on the individual flame zones.

The findings from the extended GFRI approach are in agreement with the analysis of the
triple flame characteristics above and existing flame zone analyses from literature [11, 44]. It
provides a more detailed understanding of the complex flame structures close to the triple
point and serves as an orientation for the budget analysis of the 2D composition space
equations in the following.

3.3. Budget analysis of the 2D composition space equations
A detailed analysis of the single terms of Eq. (27) for the species CO is performed. CO

is chosen since it has been challenging to model this intermediate species in the context of
tabulated chemistry approaches [4]. All terms which appear in the two-dimensional species
equation are computed from the solution of the laminar triple flame using detailed chemistry.
Such an analysis allows to quantify: (1) the local importance of the individual terms, and
(2) confirms that all relevant transport effects are considered in the equations, i.e. that the
transport terms balance the local chemical source term. It will be shown further below that
this is not the case for conventional flamelet models relying on the assumption of a 1D flame
structure. Figure 8 shows all terms of the species equation for CO along five different vertical
slices in the vicinity of the triple point. For a perfectly balanced equation the sum of these
terms is zero, which can be inspected in Fig. 8 by the term balance.

Slightly upstream of the triple point ( 1©), the chemical source term for CO is small and
the dominant Z-diffusion (influence of stratification) is balanced by the Yc-drift term. Closer
to the triple point ( 2©), this characteristic prevails while the chemical source term and the
Yc-transport term both increase. Directly at the triple point ( 3©), the region with the highest
chemical reactivity, the chemical source term becomes large and is compensated by all other
terms, with the largest contribution from the Yc-transport term. This observation agrees with
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Figure 8: Normalized budgets of the species equation, Eq. (27), for YCO along five x-slices (vertical red lines
in contour plot). All terms which appear in the 2D composition space equations were post-processed from
the detailed chemistry solution of the triple flame.

the combustion regime identification which shows premixed and multi-regime characteristics
close to the triple point. Further downstream ( 4© and 5©), two peaks of the chemical source
terms form, which are related to the premixed flame branches. The chemical source term
for the rich premixed flame is larger which reconfirms that this flame branch is stronger
compared to the lean premixed flame. Notably, in the budgets of the composition space
equations for slices 4© and 5© all terms are relevant and non-negligible. With this, Fig. 8
suggests that none of the terms in the equations is negligible for the triple flame and that
the premixed flame branches downstream of the triple point are also significantly affected by
stratification effects.

Figure 9 shows budgets of the 2D composition space equation for CO along horizontal
slices of the triple flame. Five slices are extracted along the y-direction from upstream to
downstream of the triple point. Slice 1 passes the lean premixed flame branch. It is found
that at first the Z-diffusion and the Yc-drift term balance each other upstream of the flame.
Moving along the x-direction a positive peak in the chemical source term (CO-production
region) is found and at that position additionally the Yc-diffusion term gains relevance.
The chemical source term then changes sign (CO-oxidation region) where the Yc-diffusion
becomes negligible small. Throughout this whole flame structure Z-diffusion and Yc-drift
are important. Considering the slices 2© and 3©, which are located closer to the triple
point, similar flame structures can be identified. Nevertheless, the structure becomes notably
thinner, moves further upstream and the relative influence of Z-diffusion declines, while
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Figure 9: Normalized budgets of the species equation, Eq. (27), for YCO along several y-slices (horizontal red
lines in contour plot). All terms which appear in the 2D composition space equations were post-processed
from the detailed chemistry solution of the triple flame.

Yc-diffusion becomes a dominant term. Hence, according to the budgets the flame exhibits
distinct premixed characteristics, which is in accordance with the previous findings. Above
the triple point ( 4© and 5©), the Z-diffusion becomes more relevant again while Yc-diffusion
declines. Due to the rich conditions in the upper premixed flame branch (c.f. 5©) the chemical
source term remains positive and there is no further CO-oxidation to CO2.

Both, Figs. 8 and 9 show that the budgets of the 2D composition space equations closely
reflect the regime characteristics also found from the GFRI analysis in Sec. 3.2. It becomes
evident that different complex burning modes co-exist in the vicinity of the triple point
which cannot solely be attributed to either premixed or non-premixed burning mode. Along
these lines, Fig. 10 shows a comparison of the balance error of the 1D non-premixed flamelet
equations (Eq. (34)), the 1D premixed flamelet equations (Eq. (30)) and the 2D composition
space equations for multi-regime combustion (Eq. (27)). The equation balances are obtained
from the summation of all terms which are post-processed from the detailed solution of the
triple flame. Non-zero values indicate that the transport terms contained in the respective
model do not fully balance the chemical source term. Note that the equation balances are
normalized with the absolute value of the local chemical source term and they are only shown
for points where chemical activity can be detected, i.e. where the source term exceeds 0.1% of
its global maximum value. The left column in Fig. 10 shows that the non-premixed flamelet
equations (Z-flamelet) cannot capture the characteristics of the lean and rich premixed flame
branches. On the other hand, the premixed flamelet equations (Yc-flamelet) in the middle
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column show substantial balance errors for H2O, CO and OH downstream of the triple point.
As indicated by the color scheme, these balance errors can become of the same order of
magnitude as the chemical source term. While the conventional 1D flamelet models show
large balance errors in certain regions, the 2D composition space equations are accurate
everywhere throughout the triple flame. Hence, both asymptotic modes of burning as well as
their complex interactions are recovered by the 2D composition space model.

4. Summary and conclusions

In this work, a new set of two-dimensional composition space equations for modeling
multi-regime combustion is derived. Thermochemical variables are conditioned on the mixture
fraction Z and the reaction progress variable Yc. While the orientation of the first coordinate
is defined by the mixture fraction gradient, the second coordinate direction is based on
the gradient component of the progress variable that is perpendicular to ∇Z. This way,
the interdependence between mixture fraction and progress variable is accounted for. The
orthogonal set of coordinates is then used in the transformation of species and temperature
equations to the two-dimensional composition space. Given certain simplifications, it is
shown that the equations naturally reduce to conventional one-dimensional composition space
equations for premixed and non-premixed combustion, and a homogeneous reacting mixture.
Previous works have used non-orthogonal coordinates which lead to so-called cross-terms in
the corresponding multi-dimensional composition space equations. These cross-terms require
a closure, but to the authors’ knowledge no general closure has been presented yet, if it exists
at all. When using the orthogonal coordinates, cross-terms formally disappear.

In the second part of the paper, the two-dimensional composition space equations are
validated with the detailed chemistry solution of a laminar methane-air triple flame. Post-
processing of this dataset allows the evaluation and examination of all terms appearing in
the composition space equations. Together with a suitable combustion regime identification,
it is shown that the novel equations accurately recover the balance of temperature and
species everywhere in the triple flame. While conventional one-dimensional composition space
equations fail particularly in the vicinity of the triple point, where multi-regime characteristics
are detected, the novel two-dimensional equation set balances the chemical source term
accurately. Moreover, the misalignment between mixture fraction and progress variable
gradients suggest that Z-Yc cross-terms play a role in the stabilization mechanism and the
flame structure around the triple point of the flame. This indicates that cross-terms are most
likely non-negligible for modeling the multi-regime characteristics of the triple flame.

The theory presented in this work can be used for the analysis of fully-resolved numerical
datasets of multi-regime combustion phenomena. However, for the method to reach its full
potential, a numerical algorithm for solving the two-dimensional composition space equations
is required. Therefore, two aspects should be investigated in future works: (1) closures for the
gradients of the conditioning variables, which properly incorporate the orthogonality of the
coordinates, and (2) identification of a robust numerical solution algorithm for the composition
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Figure 10: Normalized balances of composition space equations for the species H2O, CO2, CO and OH. Left
column: balance of the flamelet equations for non-premixed (Z-)flamelets, Eq. (34). Middle: balance of
the flamelet equations for premixed (Yc-)flamelets, Eq. (30). Right: balance of the 2D composition space
equations, Eq. (27). All terms were post-processed from the detailed chemistry solution of the triple flame
and then summed up to yield the respective equation balance. Then, the balance values were normalized
with the local chemical source term. Points are shown for which the chemical source term of the respective
species is larger than 0.1% of its maximum value in the computational domain.
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space equations avoiding cross-terms. Besides this, an extension of the composition space
equations to incorporate differential diffusion and curvature effects would represent a valuable
addition.
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