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ABSTRACT
The hepatitis C virus is a communicable disease that gradually harms the liver leading to cirrhosis and
hepatocellular carcinoma. Important therapeutic interventions have been reached since the discovery
of the disease. However, its resurgence urges the need for new approaches against this malady. The
NS4B receptor is one of the important proteins for Hepatitis C Virus RNA replication that acts by medi-
ating different viral properties. In this work, we opt to explore the relationships between the molecular
structures of biologically tested NS4B inhibitors and their corresponding inhibitory activities to assist
the design of novel and potent NS4B inhibitors. For that, a set of 115 indol-2-ylpyridine-3-sulfonamides
(IPSA) compounds with inhibitory activity against NS4B is used. A hybrid genetic algorithm combined
with multiple linear regressions (GA-MLR) was implemented to construct a predictive model. This
model was further used and applied to a set of compounds that were generated based on a pharma-
cophore modeling study combined with virtual screening to identify structurally similar lead com-
pounds. Multiple filtrations were implemented for selecting potent hits. The selected hits exhibited
advantageous molecular features, allowing for favorable inhibitory activity against HCV. The results
showed that 7 out of 1285 screened compounds, were selected as potent candidate hits where
Zinc14822482 exhibits the best predicted potency and pharmacophore features. The predictive phar-
macokinetic analysis further justified the compounds as potential hit molecules, prompting their rec-
ommendation for a confirmatory biological evaluation. We believe that our strategy could help in the
design and screening of potential inhibitors in drug discovery.
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1. Introduction

Over the past century, hepatitis C virus (HCV) is considered
as a world-wide serious health-care issue with at least
400,000 deaths annually and almost 185 million afflicted
people (�3% of the world’s population) all over the world
(Bartenschlager et al., 2018). HCV is an enveloped single-
stranded positive sense RNA virus of 9.4 kb belonging to the
Hepacivirus genus of the Flaviviridae family (Cox, 2015).
Approximately 80% of HCV infections develop into chronic
hepatitis that can ultimately lead to liver fibrosis, cirrhosis,
and hepatocellular carcinoma (Baumert & Hoshida, 2019).
Following the discovery of the virus, significant attempts
have been made in order to reduce the burden of the global
HCV epidemic. However, the development of antivirals
against HCV has still been dominated by inhibitors of the
HCV targets NS3 genotype 4A protease, RNA-dependent
RNA polymerase, and NS5 leading to major adverse effects
(De Clercq, 2014; El-Hasab et al., 2018; Lin et al., 2006; Pelosi
et al., 2012; Wang et al., 2020). For instance, in recent years,
two NS3-4A protease inhibitors (telaprevir and boceprevir)
have been approved for the treatment of hepatitis C in com-
bination with standard of care (pegylated interferon and

Ribavirin). Direct-acting antivirals (DAAs) therapy has signifi-
cantly enhanced the sustained virologic response (De Clercq,
2014). Nevertheless, the use of these therapies has been
associated with important side events, especially those
related to tolerability and safety profile (Berman & Kwo,
2009; Zeuzem et al., 2011). Therefore, the quest for novel,
safer, and highly-effective drugs along with new antiviral tar-
gets must be continually conducted (Kanwal et al., 2017).
One such underdeveloped target is non-structural membrane
bound NS4B protein.

NS4B is a 27 KDa protein with 261 amino acid residues
that plays an essential role in HCV replication (Dvory-Sobol
et al., 2010; Gouttenoire et al., 2010; Lundin et al., 2003; Yu
et al., 2006; Zając et al., 2019). It has two alpha helices each
in its N and C terminal domains and 4 transmembrane
domains in its central region. N-terminal domain resides in
the ER-lumen while the C-terminal domain resides in the
cytoplasm. The NS4B has recently emerged as a potential
drug target for the treatment of chronic HCV infection.
Initially, small molecules inhibiting the anti-apoptotic effect
of NS4B have been identified by ViroPharma Inc. using the
NS4B-expressing cell line (Chunduru et al., n.d.). A growing
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number of publications have been disclosed focusing on
novel chemotypes targeting HCV NS4B. (Manfroni &
Cannalire, 2019; Tao et al., 2019) The last decade has high-
lighted that NS4B represents an appealing target in HCV
drug discovery (Manfroni & Cannalire, 2019). Many hit com-
pounds and effective inhibitors, belonging to different chem-
ical families, have been reported (Bryson et al., 2010; Cho
et al., 2010; Dufner-Beattie et al., 2014; Rai & Deval, 2011).
Among them, to our knowledge, there are few modeling
investigations of indole-based derivatives as HCV-NS4B
enzyme inhibitors. Therefore, we have performed QSAR stud-
ies associated with principal pharmacophore features investi-
gations on a set of 115 indol-2-ylpyridine-3-sulfonamides
(IPSA) analogs in order to design new safer and potent inhib-
itors of this target protein.

Over last decades, computer-aided drug discovery/design
(CADD) techniques have played a crucial role in the develop-
ment of important therapeutic small molecules due to their
marked pros of time-consuming, cost-reducing, and high effi-
ciency in the in silico screening and prediction of drug candi-
dates (Podlogar et al., 2001) QSAR models have been widely
used in some aspects such as biological chemistry and related
sciences (Ancuceanu et al., 2019; Hdoufane et al., 2019).
Though, in the development of novel and effective indole-
based inhibitors of the HCV NS4B protein, innovative protocols
need to be considered and explored. In this study, QSAR models
were established based on the structural features of com-
pounds with potent inhibitory activity against the NS4B protein.
A systemic external validation was employed to assess the pre-
dictive ability of the developed models. Thereafter, a pharmaco-
phore model was also created in order to screen for new
indole-based inhibitors with enhanced pharmacological profiles.
Hence, this work could serve as a valuable platform in the devel-
opment of novel and potent drugs for HCV inhibition.

2. Materials and methods

2.1. Data collection and preparation

We have collected a series of 6-(indol-2-yl)pyridine-3-sulfona-
mides (IPSA) derivatives. This family of molecules was synthe-
sized and assessed for its NS4B inhibitory activity (Chen et al.,
2015; Zhang et al., 2014; Zhang et al., 2013). All ISPA analogs
of this research work along with their NS4B inhibitory activities
in terms of pEC50 (i.e. -log10 (EC50)) are summarized in Table 1.
The chemical structures were drawn using the GaussView pro-
gram and their geometries were optimized using the
Gaussian09 program package (Frisch et al., 2009). The geom-
etry of the compounds was optimized using the DFT/B3LYP/6-
31G method. All structures were optimized in the gas phase.
The energy minima for the optimized samples were verified by
frequency analysis. Compounds were randomly split into a
training set of 81 compounds (70%) and a test set of 34 com-
pounds (30%). The training set was used to choose the best
modeling approach and obtain the final model. The test set
served only to validate and test the performance of the con-
structed model. The test set compounds are indicated in Table
1 by a superscript ‘t’.

2.2. Molecular descriptors calculation

Molecular descriptors are at the core of QSAR modeling.
They are commonly used to encode certain information
related to chemicals in order to create cheminformatics mod-
els. In this current study, the descriptors have been com-
puted using Dragon 7.1 software (Talete srl, n.d.), including
a: constitutional descriptors; b: 1D-functional group counts,
atom-centered fragments; c: 2 D-topological descriptors, walk
and path counts, connectivity indices, information indices,
2 D-autocorrelations, edge adjacency indices, Burden eigen-
values, topological charge indices, eigenvalue-based indices,
2 D-binary fingerprints, 2 D-frequency fingerprints; d: 3D-
Randic molecular profiles, geometrical descriptors, WHIM
descriptors, GETAWAY descriptors; e: charge descriptors, and
f: molecular properties.

To optimize the information content of the descriptors
pool, the descriptors were initially screened by eliminating
the constant and almost constant descriptors. Then, the
descriptor pool was reduced by examining the pairwise cor-
relations. If the pairwise correlation of two descriptors is very
high, the one showing the highest pair correlation with all
other descriptors is automatically excluded (K correlation
coefficient greater than 0.95 was used in our study). Finally,
among the 5225 descriptors that were computed, Table 2
lists only 10 descriptors that were found to be important
and govern the potency of the studied compounds.

2.3. Models construction

In order to establish a possible relationship between the
studied biological activity and the molecular descriptors, the
selected parameters were utilized to build QSAR models
using the Genetic Algorithm (GA) procedure combined with
a multiple linear regression (MLR) method. This technique is
implemented in the QSARINS software (Gramatica et al.,
2013; 2014). The parameters used to build the models are as
follows: all subset until 2, maximum generations: 10000 and
mutation probability of 0.05. All other parameters were set
as default values. The schematic flowchart of the method-
ology used in this work is depicted in Figure 1.

2.4. Model validation and applicability
domain evaluation

Model validation, including internal and external verifications,
plays a crucial role in detecting the stability and reliability of
the constructed model. In the internal validation, leave-one-
out (LOO) cross-validation is performed to verify the reliabil-
ity of the model. The correlation coefficient (R2tr), cross-vali-
dated Q2

LOO and the root mean squared error (RMSE) metrics
were computed. Additionally, Y-randomization, which is a
commonly used method to ensure model robustness and
exclude randomness of the constructed model, was applied
by calculating Y-scrambling (R2) parameter as well. The
Y-scramble procedure is repeated for 2000 times. In the
external validation, the predictive ability was verified by com-
puting the R2test along with the concordance correlation



Table 1. Molecular structure and the studied biological activity data.

Compound R pEC50 Publication

1 6.41 (Zhang et al., 2013)

2 7.00 ,,

3t 7.48 ,,

4 6.25 ,,

5 6.62 ,,

6t 5.00 ,,

Compound R1 R2 pEC50 Publication
7 6-OCHF2 n-Pr 7.14 (Zhang et al., 2013)
8 t 6-OCHF2 i-Pr 7.21 ,,
9 6-OCHF2 c-Bu 7.92 ,,
10 t 6-OCHF2 c-Pentyl 7.82 ,,
11 t 6-OCHF2 c-Hexyl 7.66 ,,
12 6-OCF3 c-Bu 7.17 ,,
13 6-c-Pr c-Bu 7.68 ,,
14 t 6-c-Bu c-Bu 6.26 ,,
15 t 6-OCF2 c-Bu 7.89 ,,
16 6-OCH2CHF2 c-Bu 5.72 ,,
17 6-i-PrS c-Bu 5.88 ,,
18 5-OCHF2 c-Bu 6.27 ,,
19 5-OCF3 c-Bu 5.96 ,,
20 t 5-c-Pr c-Bu 6.24 ,,
21 5-F c-Bu 7.59 ,,
22 t 5-Cl c-Bu 7.55 ,,

(continued)



Compound R1 R2 pEC50 Publication
23 -OCHF2 2-methyl-2-propane 7.57 (Zhang et al., 2013)
24 -OCHF2 (S)-ethyl-cyclopropane 7.64 ,,
25 -OCHF2 1,3-difluoro-2-propane 8.40 ,,
26 -OCHF2 2-propane-1,3-diol 6.03 ,,
27 -OCHF2 1-fluoro-2-methyl-2-propane 6.28 ,,
28 -OCHF2 1,1-difluoro-3-cyclobutane 5.57 ,,
29 -OCHF2 (R)-trifluoro-2-propane 7.17 ,,
30 -OCHF2 (S)-trifluoro-2-propane 8.70 ,,
31 -OCHF2 trifluoromethyl-1-cyclopropane 6.74 ,,
32 -OCHF2 (trifluoromethyl)-1-cyclobutane 7.52 ,,
33 -OCHF2 1,1,1-trifluoro-2-methyl-2-propane 7.26 ,,
34 -OCHF2 1,1,1-trifluoro-2-ethane 6.38 ,,
35 -OCHF2 2-propanenitrile 6.66 ,,
36 -OCHF2 H 5.89 ,,
37 c-Pr 1,3-difluoro-2-propane 8.40 ,,
38 c-Pr trifluoromethyl-1-cyclopropane 7.13 ,,
39 c-Pr (R)-trifluoro-2-propane 6.90 ,,
40 c-Pr (S)-trifluoro-2-propane 7.92 ,,

Compound R1 R2 R3 pEC50 Publication
41 -H -F -CHF2O 8.15 (Zhang et al., 2014 )
42 t -H -OH -CHF2O 7.20 ,,
43 -H -Me -CHF2O 6.97 ,,
44 t -H -Et -CHF2O 5.85 ,,
45 -H -F -Me 8.15 ,,
46 t -H -F -Et 8.40 ,,
47 -H -F c-Pr 7.55 ,,
48 -H -F -OH 6.39 ,,
49 t -H -F -Cl 6.34 ,,
50 -H -F -OMe 7.13 ,,
51 -H -F -SMe 7.46 ,,
52 -F -H -CHF2O 7.74 ,,
53 t -F -H -Me 6.82 ,,
54 6.48 ,,

Compound Ar R pEC50 Publication
55 t 2-pyrimidine 5-H, 6-OCHF2 8.15 (Zhang et al., 2014)
56 2-pyrimidine 5-H, 6-Me 8.52 ,,
57 t 2-pyrimidine 5-F, 6-OCHF2 7.80 ,,
58 2-pyrimidine 5-F, 6-Me 8.22 ,,
59 t 2-pyridine 5-F, 6-Me 7.74 ,,

(continued)



60 3-pyridine 5-F, 6-Me 7.96 ,,
61 4-pyridine 5-F, 6-Me 7.96 ,,
62 2-pyrazine 5-F, 6-Me 8.05 ,,
63 3-pyridazine 5-F, 6-Me 7.89 ,,
64 t 2-thiazole 5-F, 6-Me 8.52 ,,
65 4-thiazole 5-F, 6-Me 7.70 ,,
66 5-thiazole 5-F, 6-Me 8.15 ,,
67 2-thiophene 5-F, 6-Me 8.70 ,,
68 t 5-methyl-2-pyrimidine 5-F, 6-Me 7.49 ,,
69 5-fluoro-2-pyrimidine 5-F, 6-Me 8.40 ,,
70 3-fluoro-6-pyridine 5-F, 6-Me 8.10 ,,
71 t 3-methyl-6-pyridine 5-F, 6-Me 7.60 ,,
72 3-fluoro-2-pyridine 5-F, 6-Me 8.52 ,,
73 3-methyl-2-pyridine 5-F, 6-Me 6.40 ,,
74 2-pyrimidine 5-F, 6-Et 8.70 ,,
75 t 2-pyridine 5-F, 6-Et 8.30 ,,
76 4-pyridine 5-F, 6-Et 8.05 ,,
77 2-pyrazine 5-F, 6-Et 8.40 ,,
78 2-thiazole 5-F, 6-Et 8.70 ,,
79 t 5-fluoro-2-pyrimidine 5-F, 6-Et 8.52 ,,
80 5-methyl-2-pyrimidine 5-F, 6-Et 7.64 ,,
81 t 3-fluoro-6-pyridine 5-F, 6-Et 7.89 ,,
82 2-pyrimidine c-Pr 8.22 ,,
83 2-pyridine c-Pr 7.80 ,,
84 t 3-fluoro-6-pyridine c-Pr 7.92 ,,
85 2-pyrimidine 5-F, 6-ethan-1-ol 7.17 ,,

Compound R X, Y Azaindole pEC50 Publication
86 5-OMe N, CH 4- 6.64 (Chen et al., 2015)
87 t 6-Me N, CH 4- 6.92 ,,
88 6-Cl N, CH 4- 7.03 ,,
89 6-Me N, CH 5- 6.64 ,,
90 6-Cl N, CH 5- 6.59 ,,
91 5-Cl N, CH 6- 6.28 ,,
92 t 5-Me N, CH 6- 5.85 ,,
93 6-OMe N, CH 5,7-di 6.62 ,,
94 6-OCHF2 N, CH 5,7-di 6.01 ,,
95 t 5-OMe N, CH 7- 7.57 ,,
96 6-OMe N, CH 7- 6.02 ,,
97 t 5-Cl N, CH 7- 7.77 ,,
98 t 6-Cl N, CH 7- 6.15 ,,
99 5-Me N, CH 7- 7.89 ,,
100 6-Me N, CH 7- 7.06 ,,
101 5-Me CH, CH 7- 7.06 ,,
102 5-Me N, N 7- 6.80 ,,

Compound R1 R2 pEC50 Publication
103 t -OMe c-CH2Pr 6.52 (Chen et al., 2015)
104 t -OMe c-Pent 6.82 ,,
105 -OEt c-Bu 6.70 ,,
106 n-OPr c-Bu 5.67 ,,
107 i-OPr c-Bu 5.12 ,,
108 -OCHF2 c-Bu 7.30 ,,
109 -Cl c-CH2Pr 7.41 ,,
110 -Cl c-Pent 7.57 ,,
111 -Et c-Bu 7.82 ,,
112 t c-Pr c-Bu 7.40 ,,
113 t -F c-Bu 7.34 ,,
114 t -CF3 c-Bu 8.70 ,,
115 -H c-Bu 6.66 ,,

“t” test molecules.



coefficient CCC (Tropsha et al., 2003), Q2
F1 (Chirico &

Gramatica, 2012), Q2
F2 (Shi et al., 2001), and Q2

F3 (Sch€u€urmann
et al., 2008).

Each model has its own scope of application. Only sam-
ples that fall within the scope of the model are likely to be
accurately predicted. In this study, leverage method (Eriksson
et al., 2003) is adopted to analyze the model’s applicability
domain (AD), defined as follows:

hi ¼ xTi ðXTXÞ�1xi, i ¼ 1, . . . , n

where hi and xi are the leverage value and the descriptor
vector of the considered compound, respectively. X is the
descriptor matrix derived from the training set descriptor val-
ues. T stands for ‘transposed’. The delimited domain of the
model is defined by the leverage cut-off (h�), set as 3(pþ 1)/
n, (p is the number of model descriptors and n is the

number of training set samples). A leverage greater than h�
indicates that the prediction of the model is unreliable.

All these research works regarding the GA-MLR model
were executed using QSARINS software, which is free for aca-
demia and research groups. This program implements vari-
ous tools for rigorous external validation of the established
models, based on different validation criteria, as well as for
the check of the model AD.

2.5. Pharmacophore modeling and virtual screening

Ligand-based pharmacophore modeling is one of the most
significant procedures to classify and identify the key chem-
ical features from a group of ligand compounds such as
active molecules (Cruz et al., 2019; da Costa et al., 2019;
Pinto et al., 2019; Ramos et al., 2020). However, virtual

Table 2. List of the selected molecular descriptors and their physical-chemical meaning.

Abbreviation Descriptor

MATS5p Moran autocorrelation of lag 5 weighted by polarizability
VE1_B(m) Coefficient sum of the last eigenvector (absolute values) from Burden matrix weighted by mass
CATS3D_07_AL CATS3D Acceptor-Lipophilic BIN 07 (7.000� 8.000 Å)
P_VSA_p_2 P_VSA-like on polarizability, bin 2
R6v1 R maximal autocorrelation of lag 6 / weighted by van der Waals volume a

Mor23v Signal 23 / weighted by van der Waals volume b

SpPosA_X Normalized spectral positive sum from chi matrix
RDF090s Radial Distribution Function � 090 / weighted by I-state
H6s H autocorrelation of lag 6 / weighted by I-state a

TIC1 Total Information Content index (neighborhood symmetry of 1-order)
aGATEWAY class: Geometry, Topology and Atom-Weights Assembly.
bMoRSE class: Molecule Representation of Structure based on Electron diffraction.

Figure 1. Schematic workflow illustrating the complete hierarchy involved in the development of QSAR models of IPSA derivatives.



screening is the technique used to filter the available
chemo-libraries and databases of active molecules by map-
ping them on the generated pharmacophore model.
Combining these techniques might contribute to the design
of novel lead molecules that can enhance the expression of
the target molecules. In the current work, chemical features
from the general scaffold of the active compounds were used
to create a preliminary pharmacophore model using the
ZincPharmer online tool (Figure 2) (Ascher et al., 2014). This
model was used to screen for new compounds from the Zinc
database (a free database of commercially-available com-
pounds for virtual screening). The retrieved lead compounds
were subject to two filtration procedures. In the first step, we
employed the established GA-MLR model as described above
in order to select the most active from the pool of the
retrieved ones. The second step aims to apply the pharmaco-
phore fit model to evaluate the features fitting of each hit
compound by means of the pharmacophore model features to
rank the hit molecules screened using the GA-MLR QSAR
model. The pharmacophore fit model was generated based on
the initial 115 chemical structures using LigandScout software
(“LigandScout, Version 4.3; Inte:Ligand GmbH, Clemesn-Maria-
Hofbaurer-G. 6, 2344, Maria Enzersdorf, Austria. HYPERLINK,
http://www.inteligand.com,” n.d.).

Among the chemical features described above, it was
observed that four types including hydrogen-bond acceptor
(HBA), hydrogen-bond donor (HBD), hydrophobic (H), and aro-
matic ring (AR) could effectively map the chemical features of
all used compounds in the training set (Figure 3). These chem-
ical features were generated in order to stay close to the com-
mon scaffold of the studied IPSA analogs and then were used
to set up a series of lead molecules. For this reason, the Zinc
database was screened out and as a result 1285 molecules
were received as leads. The retrieved 1285 molecules were
subjected to the constructed GA-MLR model. Subsequently,
the top 220 compounds were selected for the eventual
pharmacophore fit model. Finally, 7 hits with the higher
pharmacophore fit score were subjected to the ADME analysis.

2.6. Pharmacological and metabolic properties

Complementary and interesting results, concerning the poten-
tial use of the selected hit molecules as a drug, are the predic-
tion of its absorption, distribution, metabolic and excretion
(ADME) properties in humans (C. B. R. Santos et al., 2020; K. L.
B. dos Santos et al., 2020). These properties of the potent hit
compounds were calculated using the SWISSADME online
tool, which predicts about 50 ADMET endpoints (Daina et al.,
2017). This analysis provides a criterion to eliminate potentially
harmful molecules during the selection phases, for the synthe-
sis of compounds and future experimental tests.

3. Results and discussion

3.1. GA-MLR modeling

QSAR strategies have been established based on a variety of
mathematical methods to predict activities and properties of

untested molecules. The major differences between them are
related to the molecular descriptors and the applied mathem-
atical methodologies. In the present work, the hybrid GA-MLR
technique was employed and several mathematical parame-
ters were considered for QSAR validation. The ten molecular
descriptors in the selection process were considered to
develop QSAR models. Several models with low multicollinear-
ity between descriptors and good correlation with the mod-
eled response were developed using the QSARINS software.
The best constructed GA-MLR model using the selected
descriptors along with its statistical metrics is as follows:

pEC50 ¼ 16:72 þ 10:02 � ðMATS5pÞ– 1:85 � ðVE1BðmÞÞ– 0:16�
ðCATS3D07ALÞ– 0:02 � ðPVSAp2Þ– 203:06 � ðR6vþÞ þ 3:33�
ðMor23vÞ þ 32:28 � ðSpPosAXÞ þ 0:001 � ðRDF090sÞ þ 0:26�
ðH6sÞ– 0:03 � ðTIC1Þ

(1)

Ntr ¼ 81, R2tr ¼ 0:74, R2adj ¼ 0:71,Q2
LOO ¼ 0:67, R2test ¼ 0:64,Q2

F1

¼ 0:64, Q2
F2 ¼ 0:64,Q2

F3 ¼ 0:65, CCC ¼ 0:86, RMSEtr

¼ 0:44, S ¼ 0:48, F ¼ 20:12:

In this equation, Ntr is the number of training compounds,
R2tr is the correlation coefficient of the training set, R2adj is
the adjusted R2tr , Q2

LOO is the square of the cross-validated
correlation coefficient obtained from leave-one-out (LOO)
procedure, R2test is the square of correlation coefficient
obtained from the test set, S is the standard error of esti-
mate, and F is Fischer-ratio between the variances of calcu-
lated and observed activities.

From the above results, the model presented an R2tr of
0.74, so it manifests a proper fit for modeling the anti-HCV
inhibition. As can be seen, the fitness and robustness of the
model are both acceptable according to the standard valid-
ation metrics (Golbraikh & Tropsha, 2002; Gramatica, 2007).
These metrics (i.e. Q2

LOO > 0.6 and R2test > 0.5) are based on
the regression through origin. We have adopted these meth-
ods to validate the established model using the external test
set of molecules that were not used for the model construc-
tion (Table 1). Moreover, Chirico and Gramatica had recom-
mend the thresholds for other external validation
parameters, including Q2

F1, Q2
F2 and Q2

F3 > 0.6 and CCC >

0.85 (Chirico & Gramatica, 2011). All these parameters of the
obtained GA-MLR model are large enough to ensure its per-
formance. Furthermore, the scatter plot of the experimental
versus the predicted pEC50 by the established GA-MLR model
is illustrated in Figure 4. From this figure we shall see that all
the samples are slightly scattered near the regression line,
which showed that the model denotes a significant correl-
ation between the studied activity and the 10 selected
descriptors.

3.2. Model validation and applicability
domain assessment

After the Y-scrambling procedure, Figure 5 shows the distri-
bution of R2Yscr and Q2

Yscr versus the correlation between
descriptors and pEC50 activity (Kxy) by applying 2000

http://www.inteligand.com


iterations. The correlation coefficients of the non-scrambled
model (R2tr ¼ 0.74, R2adj ¼ 0.71, Q2

LOO¼ 0.67) tend to be seen
higher than those from Y-scrambling, indicating that the rela-
tionship between the IPSA derivatives and their correspond-
ing pEC50 do exist and the non-scrambled GA-MLR model
was not accidentally acquired. The proposed GA-MLR model
has a good reliability, robustness and stability.

The leverage method shown in Figure 6, illustrated as
Williams plot, is employed to evaluate the practical applic-
ability domain (AD) of the model. The dashed lines indicate
the cutoff value of ±3 standard deviation (s.d.). The warning
line for X outlier (h�) is 0.407. As can be seen from the
Williams plot, all chemicals are within the scope of the AD
except for compounds No. 26 and No. 65. In addition, all
compounds are within standard residuals of ±3 (s.d.). Even
for compounds No. 26 and 65, whose h value are beyond
h�, the predicted pEC50 are slightly close to their experimen-
tal ones.

3.3. Mechanistic interpretation of the selected
descriptors

Mechanistic interpretation of the QSAR model was performed
in order to infer whether the important descriptors were
selected reasonably. These descriptors belong to several cat-
egories (Table 2). Some of these categories are difficult to
interpret, and therefore are delicate to use for the study of
the synthesis of new derivatives. The ten molecular descrip-
tors appearing in the GA-MLR model (Eq. 1) are divided into
two classes. The first one comprises descriptors with favor-
able correlation to the inhibitory activity, whereas the other
class is negatively correlated to it.

In the first class, the most important descriptor is
SpPosA_X due to its highly positive coefficient. The lower
the value of this descriptor (i.e. the greater the number of
atoms in the molecule), the tendency of increased anti-HCV
inhibitory activity tends to be higher. This may show that
active inhibitors have a larger molecular size. This finding
was addressed in a previous similar QSAR study (de Campos
& de Melo, 2017).

The second important descriptor is the MATS5p that
belongs to the 2D autocorrelations descriptor and describes
the electronic properties of the molecules, particularly in
terms of the atomic polarizability. It shows that the high
polarizability stems from the larger size of the molecules (in
this case, the higher the better) is significant to the activity.

The third descriptor is Mor23v, it belongs to the 3D-
MoRSE family and weighted by atomic van der Waals volume
(Devinyak et al., 2014). The higher Mor23v values lead to
higher activity levels. Its positive coefficient might indicate
the beneficial molecular volume in improving the
pEC50 activity.

The last two descriptors H6s and RDF090s belong to the
GETAWAY and Radial Distribution Function (RDF) classes,
respectively. These two properties are both weighted by the
intrinsic state and considered as relevant descriptors but

Figure 2. Pharmacophore model with distance constraints.

Figure 3. Structure-based pharmacophore model generated by LigandScout
software. Three hydrogen-bonds acceptors (HBA), one hydrogen-bond donor
(HBD), one Hydrophobic (H), and three aromatic rings (AR).



Figure 4. Scatter plot of experimental vs. predicted pEC50 values calculated by the GA-MLR model.

Figure 5. R2Yscr and Q2
Yscr vs. Kxy from Y-scrambling procedure.



difficult to interpret. Taking into consideration that they are
weighted by intrinsic state, the values of these factors are
higher for compounds with more electronegative atoms
(H. Hall, 2012).

In the second class, the descriptor R6vþ that belongs to
the GETAWAY class (Todeschini & Consonni, 2009) is found
to be very important though its coefficient is highly negative.
Indeed, it should be noted that the proposed hits should
have lower R6vþ values. This parameter is directly related to
the Van der Waals volume. Unlike the most important
descriptor with a positive coefficient, it is important to note
that R6vþ is not necessarily related to the total size of
the compounds.

The second descriptor VE1_B(m) is a 2D matrix-based
descriptor and depends on a complex way on the molecular
size, shape, presence of heavy heteroatoms and of multiple
bonds (Consonni & Todeschini, 2012). VE1_B(m) tends to
increase when increasing the molecular size (number of non-
H atoms), the branching (number of terminal atoms), and
the number of cycles and of multiple bonds.

The third negatively correlated descriptor CATS3D_07_AL
encodes the conformation of a molecule in the form of a histo-
gram that contains the normalized frequencies of all pairs of
atoms in a molecule (Fechner et al., 2003). Furthermore, the
TIC1 descriptor that belongs to the class of the total informa-
tion index, represents the residual information contained in
the molecular structures (Todeschini & Consonni, 2000).

Finally, P_VSA_p_2 is the least contributing one and is
weighted by polarizability. Nevertheless, it is useful for

selecting new molecules in virtual screening since the
weighting by polarizability is consistent with the pEC50
inhibitory activity.

3.4. Pharmacophore model generation and hits analysis

A virtual screening methodology, using a basic pharmaco-
phore-based model, was firstly implemented to search in the
Zinc database. A total number of 1285 of molecules from the
Zinc database were retrieved to match the created pharma-
cophore model and were exposed to further analysis. After
that, we have applied the established GA-MLR model on
these molecules, which allows the prediction of their activ-
ities based on Equation 1. Only compounds with pEC50 in
the range of 8.26 to 9.29 (i.e. EC50 in the range of 0.52 to
5.38 nM) were selected. Thereby, 220 compounds were
chosen based on their pEC50 values and were subjected to
the pharmacophore fit score calculations. The pharmaco-
phore fit model was built based on the training and test sets
of the 115 IPSA compounds. The best model was then used
to select the best hits by means of their pharmacophore fit-
ting scores. Finally, seven hits were selected for the ADME
analysis (Table 3).

Several small molecule inhibitors were reported to have a
good potency regarding the treatment of the HCV. Inhibitors
bearing the sulfonamide moiety attached to the phenyl ring,
as a preferred pharmacophore feature, lead to promising
sub-micromolar potency in the replicon cell-based assay
(Chen et al., 2013). Out of the selected hit molecules,

Figure 6. Williams plot. Training samples in yellow and test samples in blue. The dashes lines are the cutoff ±3 s.d. and the warning leverage value h� of 0.407.



Zinc14822482 (Hit: 1), bearing the sulfonamide moiety
attached to the phenyl ring, exhibited the best pharmaco-
phore features with the highest fit score and also the best
predicted inhibitory activity. This moiety is presented in com-
pound hits 5 and 6 as well. The sulfonamide group could be
identified in a core structure as a leading group during the
optimization of novel compounds and in the finding of
potent drugs with excellent pharmacokinetic properties
(Manfroni & Cannalire, 2019). In addition, Zinc14822482 is

having a nitro-benzamide moiety in the core structure. This
group increases the efficacy of the hit molecule and showed
a very potent antiviral activity as reported in previous studies
(Ganta et al., 2019; Walker, 1999).

Concerning the second ranked hit (2), which is the
Zinc11766170, it is an oxochromen-based compound and
belongs to the family of coumarin derivatives. The use of the
coumarin-based chemicals had shown increased potency and
selectivity as anti-HCV compounds (Manvar et al., 2016;

Table 3. Seven molecules that successfully passed the assigned filters.

Hit Zinc ID Chemical Structure Predicted pEC50 Pharmacophore-Fit Score

1 Zinc14822482 9.04 65.18

2 Zinc11766170 8.68 64.93

3 Zinc41554609 8.55 64.91

4 Zinc39557374 8.50 64.63

(continued)



Mishra et al., 2020). Despite the early described groups, the
other hit molecules including Zinc41554609 and
Zinc41493305 (3 and 7) are selected among the retrieved
1285 molecules due to the exhibition of the triazolyl sub-
stituent. Heterocyclic compounds bearing the triazolyl group
showed a promising activity in the treatment of the HCV
(K€uç€ukg€uzel & Çikla-S€uzg€un, 2015; Naud et al., 2008). All in
all, the sulfonamide, the nitro-benzamide, the oxochromen,

and the triazolyl moieties were found to be the leading
groups in the selected hits.

3.5. Pharmacokinetic ADME analysis

The well-known ADME analysis i.e. Absorption (A),
Distribution (D), Metabolism (M) and Excretion (E) of any

Table 3. Continued.

Hit Zinc ID Chemical Structure Predicted pEC50 Pharmacophore-Fit Score

5 Zinc05205726 8.36 64.55

6 Zinc00670533 9.21 64.48

7 Zinc41493305 8.39 64.31

Table 4. ADME profiles of the seven top ranked hits.

Hit Molecular Weight (g/mol)
Lipophilicity

(logP)
HI

Absorption
BBB

Permeability
Druglikeness
(Lipinski)

Synthetic
Accessibility

1 417.48 2.48 High No Yes 3.05
2 339.32 2.65 High No Yes 3.54
3 357.29 1.77 High No Yes 2.96
4 292.31 2.50 High Yes Yes 2.80
5 385.48 2.93 High No Yes 3.11
6 401.46 2.19 High No Yes 2.67
7 289.29 1.99 High No Yes 2.70



organic compound is a crucial investigation in the drug
development. It provides complimentary and interesting
results regarding the potential use and the disposition of
any pharmaceutical molecule inside an organism and conse-
quently, affects its pharmacological activity (Tian et al., 2015).
In the current study, we analyzed the ADME profile of the
hits that successfully passed the allocated filters using the
SWISSADME online tool (Daina et al., 2017). Hence, it has
been shown from the obtained results that all the hits
exhibit a high predicted pEC50 inhibitory activity (as evident
from GA-MLR results) and good ADME properties (Table 4).

The ADME properties shown in Table 4 are essential for
any pharmacologically active molecule and play a vital role
in the drug design process. It has been observed from these
results that all the hits exhibit encouraging properties.
Among these properties, the drug-likeness of Lipinski. All the
selected hit compounds follow the Lipinski rule, according to
which an orally active drug molecule should have its molecu-
lar weight < 500, logP < 5, hydrogen-bond donors < 5, and
hydrogen-bond acceptors < 10. Moreover, the absorption of
a molecule after oral administration is a significant character-
istic and refers to Human Intestinal Absorption (HIA) and the
blood brain barrier is also important and refers to Blood
Brain Penetration (BBB). All the hit molecules show a positive
absorption from the intestine into the bloodstream, while
only compound 4 being the one exhibiting a favorable
absorption permeability. Additionally, a closer look at the
ADME analysis, reveals that the theoretical drug-like behavior
of these hits is very promising and can be considered benefi-
cial for further in vitro biological tests. Furthermore, in the
tested in silico synthetic accessibility which provides a score
from 1 (very easy to synthesize) to 10 (difficult and complex
to synthesize), all the hit molecules are shown to be easier
to prepare. The highest predicted score is less than 3.05 indi-
cating that these hits are chemically synthesizable.

4. Conclusion

In this work, the main concern was to investigate the quanti-
tative structure-activity relationships of a series of indol-2-
ylpyridine-3-sulfonamides (IPSA) analogs and their corre-
sponding inhibitory activities within the NS4B enzyme by
using the hybrid GA-MLR method. Furthermore, the con-
structed model, which is found to be stable, robust and pre-
dictive with satisfactory performance, was used to predict
the inhibitory activity of screened molecules from a chemical
library. The IPSA compounds were used to generate a lig-
and-based pharmacophore model which was used to screen
for potential, safe and potent inhibitor scaffolds of NS4B tar-
get. From the screened molecules, it has been shown that
seven hits, which were checked by their pharmacokinetic
ADME profiles, exhibit advantageous chemical features,
allowing for favorable inhibitory activity against NS4B target.
The combined strategies were utilized as a computational
tool and demonstrate their abilities to contribute to the
design of newly anti-HCV antivirals. The filtered hit com-
pounds from this study can be further biologically evaluated
for their efficiency and physiologic toxicity.
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