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Simple Summary: The biological pathways underlying glioblastoma malignancy and radioresistance
are still unclear. In this review, we describe the role of the hypoxic microenvironment and SRC
proto-oncogene non-receptor tyrosine kinase in the activation of radioresistance and invasion
pathways of glioblastoma. We also highlight the hypoxia- and ionizing radiation-induced infiltration,
providing updated evidences on the involvement of SRC in these processes. Optimizing radiotherapy
and identifying druggable molecular players are crucial steps to improve current glioblastoma
therapeutic strategies.

Abstract: Advances in functional imaging are supporting neurosurgery and radiotherapy for
glioblastoma, which still remains the most aggressive brain tumor with poor prognosis. The typical
infiltration pattern of glioblastoma, which impedes a complete surgical resection, is coupled with a high
rate of invasiveness and radioresistance, thus further limiting efficient therapy, leading to inevitable
and fatal recurrences. Hypoxia is of crucial importance in gliomagenesis and, besides reducing
radiotherapy efficacy, also induces cellular and molecular mediators that foster proliferation and
invasion. In this review, we aimed at analyzing the biological mechanism of glioblastoma invasiveness
and radioresistance in hypoxic niches of glioblastoma. We also discussed the link between hypoxia
and radiation-induced radioresistance with activation of SRC proto-oncogene non-receptor tyrosine
kinase, prospecting potential strategies to overcome the current limitation in glioblastoma treatment.

Keywords: Glioblastoma; hypoxia; radioresistance; invasion; SRC tyrosine kinase; targeted therapy

1. Introduction

Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor with an incidence of
5/100,000 per year and a median survival of 12−15 months after diagnosis, despite aggressive multimodal
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treatments [1]. Recent genetic and molecular advances on GBM cellular states provided both genetic
and micro-environmental determinants, establishing four GBM subtypes recapitulating astrocyte-like,
mesenchymal-like, neural-progenitor-like, and oligodendrocyte-progenitor-like phenotypes [2,3].
Such a classification specifies molecular and genetic profiles associated with GBM subtypes,
thus providing additional information to the histopathological characterization in accordance with
World Health Organization guidelines [4]. Histologically, GBM is a highly cellular glioma composed
by glial cells with marked nuclear atypia and pleomorphism (Figure 1a). Common typical diagnostic
features are microvascular proliferation (Figure 1b), often with glomerular-like appearance and
palisading necrosis characterized by regular areas of necrosis surrounded by dense accumulations
of neoplastic cells (Figure 1b). Proliferative activity is usually prominent with highly mitotic count.
The proliferation index is evaluated immunohistochemically by analyzing the proportion of cells
expressing the nuclear markers of proliferation Ki-67, accounting for a total of 15−20% of GBM
cells, even if some tumors show a proliferation index greater than 50% (Figure 1c). Two different
molecular types of GBM are recognized: GBM isocitrate dehydrogenase (IDH)-wildtype and GBM
IDH-mutant, which are commonly associated with primary and secondary GBM, respectively. Indeed,
based on mutation of other genes, in GBM IDH-wildtype, the gliomagenesis occurs early due to the
amplification/mutation of epidermal growth factor receptor (EGFR) and the loss of the phosphatase
and tensin homolog (PTEN) gene. In GBM IDH-mutant, the mutation of tumor protein p53 (TP53) and
the deletion of 1p/19q determine the acquisition of the genetic alteration, resulting in a lower grade
astrocytoma or oligodendroglioma.
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it is characterized by absence of mutated IDH-1 (Figure 1d) and expression of ATRX chromatin 

Figure 1. Glioblastoma, isocitrate dehydrogenase (IDH) wildtype. Highly anaplastic glial cells with
nuclear atypia and pleomorphism (a); palisading necrosis (arrows) and microvascular proliferation
(b); at immunohistochemistry the neoplastic cells show a high proliferation index (Ki67); (c) no
immunostaining for IDH-1; (d) and retained ATRX chromatin remodeler (ATRX) (e).

GBM IDH-wildtype is more frequent, usually occurs in older patients (mean age: 62 years), and it
is characterized by absence of mutated IDH-1 (Figure 1d) and expression of ATRX chromatin remodeler
(ATRX, Figure 1e) is expressed. Conversely, GBM IDH-mutant, is less frequent and develops in
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significantly younger patients (mean age 45 years). It may arise from a lower grade glioma (diffuse or
anaplastic astrocytoma) and shows IDH-1 mutation and loss of ATRX.

Many advances have been made to elucidate the biological mechanisms promoting GBM
development and progression, including genetic mutations, metabolism, and the microenvironment
role. A common denominator is the hypoxic microenvironment that characterizes this scenario, feeding
the renewed players of the tumor set. Therefore, hypoxia and associated necrosis have provided this
tremendous neoplasm with an identity card, showing salient marks of the different subtypes and
stages of invasiveness and aggressiveness.

Despite recent evidence expanding the current knowledge on GBM, therapeutic options for
newly diagnosed cases are still limited to surgery, standard chemotherapy (i.e., temozolomide),
and radiotherapy [1]. Indeed, clinical reports showed that radiotherapy combined with temozolomide
improves the overall survival of patients, after surgical resection [5]. Current guidelines
indicate radiotherapy dosing up to 60 Gy for 30 fractions (2 Gy/day) as the best approach to
reduce radiotherapy-induced side effects and to counteract radioresistance and recurrences [6].
Hypofractionated treatment of 40 Gy in 15 fractions over 3 weeks is suggested only for patients older
than 70 years old and with poor performance status [7].

However, in this context, in order to reduce GBM aggressiveness and to simultaneously increase
the effect of the radiation dose, there is an urgent clinical need to develop targeted therapy and
radiosensitizing agents. Strategies to reach this aim should take into account two main features of GBM:
hypoxia and invasiveness. These two features are also correlated with each other; indeed, hypoxia is
known to support GBM radioresistance and it is also involved in increased GBM invasiveness and
infiltration into the surrounding tissue [8].

In this sense, it is essential to dissect hypoxia-related events which play a central role in determining
cancer cell invasiveness and infiltration into the surrounding tissue, and also in causing radioresistance.
The investigation of molecular mechanisms may elucidate the relationship between GBM hallmarks
and hypoxia, providing new key molecular targets.

In this review we describe the role of hypoxia and the molecular mechanisms involved in GBM
invasiveness and radioresistance, focusing on the involvement of SRC proto-oncogene non-receptor
tyrosine kinase (SRC). We also report potential strategies to improve efficacy of radiotherapy against
hypoxia, invasiveness, and SRC activation.

2. SRC Proto-Oncogene Non-Receptor Tyrosine Kinase and Glioblastoma

Previous studies revealed that SRC is shaping GBM pathophysiology and features such as
proliferation, migration, invasiveness, and angiogenesis [9]. SRC is composed of 4 SRC homology
domains (SH): SH4 is linked to N-terminal with a 14-carbon myristic acid moiety, a unique domain
different for all members and whose function is far to be fully elucidated, SH3 is a non-catalytic domain
and SH2 linked, with a SH2-kinase linker, to the SH1 domain, containing a kinase domain involved in
the activation of SRC autophosphorylation at the level of the tyrosine residue (Tyr419), followed by
a C-terminal negative regulatory domain (Tyr530) [10]. In particular, the autophosphorylation of
Tyr419 switches the protein from an inactive to an active conformation, whereas the phosphorylation of
Tyr530 determines the binds of the SH2 domain and the inhibition of protein kinase activity. There are
various hypotheses to explain the aberrant activation mechanisms of SRC in tumors that mostly
concern the destabilization of the SH4-SH3-SH2-Linker-SH1, leading to the promotion of adhesion,
invasion, and motility. Indeed, SRC protein can be activated by the direct binding of the SH2 and
SH3 domains with other surface receptors, such as integrins, with cytoplasmatic tyrosine kinases,
such as focal adhesion kinase (FAK), or with the cytoplasmic portion of activated receptor tyrosine
kinases (RTKs), which hinder the inhibitory SRC interactions [11]. The integrin/FAK/SRC axis regulates
intercellular interaction and communication between cells and the extracellular matrix (ECM) in
a signal transduction manner. Integrins and FAK colocalize on the focal adhesions, and SH2 and
SH3 domains are respectively high affinity sites for binding with the autophosphorylation domain
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and with proline-rich regions of the FAK. On one side, the interaction of FAK with the SH2 domain
of SRC displaces the salt bridge formed after Tyr530 phosphorylation in the closed conformation
and leads to activation of SRC. Conversely, following the SRC-FAK bond, SRC phosphorylates two
tyrosine residues on the FAK kinase domain, increasing their kinase activity. The FAK-SRC complex
phosphorylates the serine and threonine sites of paxilline, which regulates the Rho family of GTPases,
such as RhoA, promoting actin-stress-fiber formation in order to regulate the structural organization
of the cytoskeleton for adhesion, motility, and cell division [12]. In addition, SRC phosphorylates
tyrosine residues of the C-terminal of FAK which acts as a binding site for other molecules that regulate
communication signaling between cells or between cells and ECM [13]. In particular, these processes
are mediated by the formation of the FAK-SRC complex that regulates guanine-exchange factors and
GTPase-activating proteins, leading to membrane protrusion or cytoplasmatic projections formation
such as filopodia [14]. Furthermore, the activation of SRC mediated by RTKs, through the interaction
with SH2 domains or the recruitment of small GTPases Ras/Ral and the inhibition of the Csk negative
regulator, leads to downstream multiple effectors, such as PI3K/Akt, Ras/Raf/MAPK, STAT3/STAT5B,
and p130 Cas pathways, which are respectively involved in survival, proliferation, angiogenesis,
and motility [15] (Figure 2).
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Figure 2. Schematic representation of SRC structure and regulation. The inactive form of SRC is
illustrated on the left side, with the specification of each SH domain; in this closed conformation,
the phosphorylation of Tyr530 on C-terminal creates a link with the SH2 and the catalytic site, which is
positioned on SH1, becoming not accessible for the substrates. In the transition to the active form,
the phosphorylation of Tyr419 is showed with the main pathways that act by downstream and upstream
effectors. The conformational switch is mediated by many phosphatases, such as PTPα, PTPγ, SHP-1 and
-2, and PTP1B, able to dephosphorylate SRC. The regulation of activated SRC is displayed with the
RTKs and integrins signaling. In particular, the downstream effectors of RTKs/SRC interaction lead to
target genes transcription for survival, proliferation, and angiogenesis sustainment. The interaction of
integrins with ECM components and their localization on cell adhesion sites, determines the modulation
of cell motility: The SRC signaling pathway induces a cascade that results in the phosphorylation of
several proteins, such as FAK, talin, and paxillin, with the final actin cytoskeleton regulation that is
responsible for migration and invasion mechanisms.

Since the discovery of SRC as a proto-oncogene, the role of SRC in cancers has been largely
investigated, and due to the rare cases of gene mutation and amplification, it has remained unclear for
a long time. Then, much evidence supported the oncogenic role of SRC mainly due to the interaction
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with various signaling molecules activating pathways for the promotion, maintenance, and progression
of several cancers. Deregulation of SRC was not only associated with central nervous system cancers,
but also with several others, including prostate, colorectal, breast, lung, head-neck, and pancreatic
cancers [16]. In addition to SRC, also other proteins among the non-receptor tyrosine kinase family
have been associated with tumor development, including Fgr, Fyn, Yes, and Lyn [16].

In GBM, the absence of gene amplification and mutation confirmed that the hyperactivation of
SRC is linked to aberrant activation of RTKs and surface receptors [17]. Indeed, FAK and other RTKs,
including epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR),
and vascular endothelial growth factor receptor (VEGFR), determine the loss of SRC interdomains
interactions involved in SRC inhibition, leading to most of the GBM-associated phenomena [9,18–20].
The role of SRC in GBM progression is not only directly linked to the main proliferation and survival
pathways affected by deregulation of downstream RTKs; indeed, it was also found that SRC modulates
the activation or the overexpression of proinflammatory transcription factors, contributing to an increase
in aggressiveness and support of the complex tumor microenvironment [21]. The microenvironment
has a key role in GBM; cancer cells establish a complex network with reactive stroma composed by
a heterogenic cell population, including immune cells, fibroblasts, precursor cells, endothelial cells,
macrophages, lymphocytes, as well as signaling molecules and ECM components [22]. For these
reasons, SRC signaling in GBM holds great promise and may provide crucial insight into developing
new therapeutic approaches.

3. Hypoxia and Glioblastoma

Despite hypoxia being usually associated with cell suffering and death, it has a different connotation
in solid tumors, representing a common feature of increased malignancy. In fact, hypoxia can trigger the
production of inflammatory mediators which potentiate neoplastic risk [23]; furthermore, in response
to hypoxia, tumor tissues activate the production of VEGF, which is one of the main downstream targets
of the HIF-1α pathway, increasing vascular permeability and promoting angiogenesis. The creation of
new vessels is fundamental for the stromal blood supply in order to maintain the rate of cell growth [24].

Intratumoral oxygen pressure (pO2) values in GBM represent a critical aspect of the radiotherapy
approach. The aerobic value of the brain tissue is of about 40 mmHg in physiological conditions,
whereas it has been shown to be significantly lower in GBM [25]. To be defined hypoxic, a tissue
must reach a pO2 value below 10 mmHg, which is the result of the unbalanced oxygen supply and
consumption rate [26]. In GBM, hypoxia ranges from mild (pO2 = 20 to 4 mmHg) to severe condition
(pO2 = 4 to 0.75 mmHg), especially in necrotic and micronecrotic areas [26]. Hypoxia occurs when the
distance to the nearest blood vessel is impeding appropriate exchanges but also when blood perfusion
is altered. In general, both phenomena occur in GBM and it is considered that chronic but also cycling
hypoxia take place, making it very difficult to deal with such a complex scenario [27].

4. Hypoxic Regulation of SRC in Glioblastoma Development and Invasion

Hypoxia seems to play a major role in the SRC tyrosine-kinase pathway, which is constitutively
activated in several malignant human tumors, including GBM [28–30]. In fact, all the RTKs described
above are targets of the transcription factors hypoxia-inducible factor-1α (HIF-1α), which is induced
under conditions of low oxygen. The oxygen-sensitive subunits of HIF transcription factors are
normally synthesized in normoxic condition, but they are unstable and targeted for ubiquitination
and degradation by the von Hippel–Lindau protein (VHL). VHL is able to recognize HIF-1α/HIF-2α
thanks to their hydroxylation that is performed by prolyl hydroxylases, which use molecular oxygen
as a cofactor; for this reason, under hypoxic condition, HIF-1α and HIF-2α cannot be hydroxylated
and they bind the HIF-1β subunit, allowing gene transcription regulation [31]. Indeed, as early as
1995, it has been shown that phosphorylated SRC protein is highly active in GBM cells, particularly
under hypoxic conditions [32]. In this study, it has also been shown that the increase in SRC activity
in hypoxia causes the VEGF upregulation, which therefore represents a downstream transcription
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of the SRC pathway induced by hypoxia [32]. Moreover, a correlation between angiogenesis and
hypoxia was also sustained by the observation of a significant increase in vascularization related to the
hypoxia-signaling pathway involving integrin upregulation [33,34]. The integrin overexpression in
hypoxic GBM cells was correlated to the activation of FAK, which promotes the activation of small
GTPase such as RhoB. RhoB increases the phosphorylation leading to the inhibition of glycogen
synthase kinase-3β (GSK-3beta) pathway, involved in the degradation of HIF-1α [35]. This evidence
supported angiogenesis inhibition as a strategy for GBM therapy; however, it was shown that in
response to the anti-VEGF antibody (Bevacizumab), further cell survival mechanisms were activated
due to increased SRC signaling [36]. The robust invasion in response to anti-VEGF may be, at least
partially, associated with neo-vascular loss, low perfusion, and consequent hypoxia, which induces
SRC activation [37]. In addition to angiogenesis, metabolism alteration has been identified as a typical
hallmark of GBM, mainly due to the hypoxic condition that promotes the upregulation of glycolysis
by HIFs and sustains the so-called Warburg effect [38]. In this scenario, there is not a direct link
between the metabolism alteration and the SRC activity in GBM; among the factors influencing GBM
metabolism, the MYC oncoprotein has been shown to increase glycolysis in GBM and its regulation
has been associated with the SRC pathway in other tumors. Therefore, there is likely an involvement
of the SRC-MYC axis in driving metabolic reprogramming, in addition to the RTKs expression by
HIF-1α [39].

GBM is a highly infiltrating tumor characterized by intense proliferation, the ability to invade
surrounding tissue, and dysregulated biological pathways operating in both intra- and extra-cellular
compartments. Among the most crucial alterations, the dysfunction of cellular metabolism leads to a
series of consecutive events which invariably affect the degree of malignancy. In particular, hypoxic
conditions are known to control the expression of target genes such as VEGF, TGF-β2, MMP-1,2, and 9,
human plasminogen activator inhibitor type 1, endothelin-1, and erythropoietin (EPO), influencing
angiogenesis, tumor growth, and GBM invasiveness [40–42].

Hypoxia also supports a complex remodeling of cytoskeleton, which includes a number of
linked events such as (i) alteration of cell adhesion, (ii) activation of cell motility, (iii) production
of proteolytic enzymes. Cell adhesion modification occurs through the modulation of E-cadherin
expression, which is commonly altered in tumors [43], generally as a result of mutation or gene
suppression by hypermethylation [44]. It has been reported that E-cadherin expression decreases
in high grade brain tumor as compared to healthy tissue [45]. In particular, a shift occurs from
E-cadherin to N-cadherin expression, which increases the interaction between cancer and stromal
cells [46], promoting the activation of cell motility as part of the complex epithelial-mesenchymal
transition (EMT) [46]. Several pathways are involved in the cadherin switching, consisting in the
upregulation of N-cadherin, which creates less efficient adherent junctions than E-cadherin. In this
context, it has been demonstrated that zinc finger E-box binding homeobox 1 (ZEB1) was upregulated
in U87 cells under hypoxic conditions, with the consequent nuclear accumulation with HIF-1α and
HIF-2α. Roundabout guidance receptor 1 (ROBO) is a downstream effector of ZEB1, which takes part
in the process of loss of N-cadherin adhesion to the cytoskeleton, thus promoting motility and finally
supporting the EMT process [47,48].

After cell adhesion loss, cancer cells increase their motility by a number of processes such as
stimulating the activity of cytoskeleton, autocrine/paracrine chemotaxis or proteolysis activity, and ECM
degradation [49]. Cancer cells are stimulated to move via interactions between adhesion molecules
(i.e., integrins) and the products of ECM degradation. Under hypoxic condition, GBM cells increase
interactions between the mutated form of epidermal growth factor receptor vIII (EGFR-vIII) and αvβ3
and αvβ5 integrins [50,51] which are recruited on the cell membrane surface, leading to invasion
enhancement mediated by FAK activation [35]. Such a process generates the so-called adhesion plate,
where integrins interact with FAK promoting cytoskeleton contraction and proliferative effects by
intracellular signal transduction. It is noteworthy that phosphorylation of FAK is induced in hypoxia
by a pathway that involved the procollagen-lysine 2-oxoglutarate 5-dioxygenase (PLOD2) [52].
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The production of proteolytic enzymes is a crucial event during invasion. In particular, increased
activity of matrix metalloproteases (MMPs) is associated with higher grade glioma and correlated
with shorter overall survival in GBM patients [53,54], even if in vitro studies on GBM cell lines
provided evidence of a heterogeneous expression of MMPs [55,56]. On this aspect, a well-characterized
effect is mediated by hypoxia. Indeed, low oxygenation indirectly promotes MMP-9 and MMP-2
upregulation and increased proteolytic activity, by reducing pH levels in the tumor microenvironment.
This condition is related to the increased metabolic activity of the tumor that, based on glycolysis in
hypoxic conditions, increases the lactic acid levels by gradually reducing the pH [57]. In addition,
induction of type A lactate dehydrogenase (LDH-A), regulating the transforming growth factor-β2
(TGF-β2), has been shown to trigger the cascade of transcriptional regulation of MMP-2 and integrin
αvβ3 expression, strongly influencing the tumor invasiveness [58]. It is noteworthy that the tissue
inhibitor of metalloproteases (TIMP) and TIMP-like molecules, which are synthesized and released by
resident cells, counteracting ECM degradation including MMPs, inhibit GBM invasion [59,60].

SRC drives GBM invasion and progression [9,61]. The hypoxia-induced SRC pathway entirely
influences the process described above, finally resulting in fostered invasiveness. In fact, it primarily
involves EGFR-vIII and integrin β3 interaction, the recruitment of αvβ3 integrin on GBM cell
membranes and the creation of focal adhesion complexes by FAK activation [62]. Finally, the EGFRvIII
/ integrin β3 / FAK / SRC axis leads to the activation of the intracellular signaling pathway ERK1/2,
MAPK, AKT, and STAT3, which determines the upregulation of MMP-2 and MMP-9, further promoting
cell invasion [63]. It is also interesting that the SRC-induced TGFβ pathway activation via α-SMA
is associated with the promotion of cancer-associated fibroblasts (CAFs), which further increase
chemotactic mediated migration of GBM cells (Figure 3) [30,64].
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SRC pathway stimulation under hypoxia contributes to the deregulation of the principal events required
for invasion, including cell adhesion, activation of cell motility, and production of proteolytic enzymes.

5. Hypoxia-SRC Axis Promoting Glioblastoma Radioresistance

Hypoxia-induced radioresistance in GBM is a radiobiological event due to the interaction between
ionizing radiation (IR) and the biological matter. IR can determine direct and indirect damage
to all organelles and macromolecules of cells [65]. IR induces single strand breaks, or double
strand breaks, directly on DNA molecules, which are difficult to repair and are associated with
oxygen-independent-cell death. Vice versa, indirect damage is closely linked to the presence of oxygen.
Indeed, IR interacting with water molecules induces the formation of reactive oxygen species (ROS)



Cancers 2020, 12, 2860 8 of 18

through a radiolysis reaction, which is much more efficient in well oxygenated tissues that facilitate the
formation of superoxide radical and hyperoxide, leading to the amplification of damage and increased
radiotherapy efficiency [66]. In particular, according to oxygen fixation hypothesis, increasing ROS
concentration induces the so-called “fixed damage from oxygen” on DNA, invariably leading to cell
death [67]. In hypoxic areas, the effect of cell death induced by ROS and oxygen reactions is less
efficient, with the resulting radioresistance. In view of the crucial significance of the GBM hypoxic
condition, the “oxygen effect” and the response to radiotherapy treatment is assessed by the oxygen
enhancement ratio (OER) parameter, which is defined as the ratio between the dose in hypoxia and
normoxia to reach the same biological effect [68].

It has been shown that the majority of GBM recurrences occur at the margins of surgical resection
or within the high dose irradiation field, likely associated to residual cells that receive a sublethal
irradiation and escape from the primary tumor, while underlying molecular mechanisms remained
partially uncovered [69,70]. Moreover, the high incidences of recurrences within the high-dose
irradiation field, in close proximity (1–2 cm) to the primary tumor, is associated to the existence
of a subpopulation of resistant cells with stem cell-like properties, called glioblastoma stem cells
(GSCs), which are promoted in the high hypoxic site or niches [71,72]. It was reported that IR
promoted the phenotypical switch from neural to mesenchymal types in GSCs in recurrences; the IR
induces the production of proinflammatory factors or NF-κB and induction of C/EBP-β, which in
turn activates CD109 transcription binding its promoter. CD109 is a clear marker of the mesenchymal
subtype [73]. GSCs were also implicated in the formation of new blood vessels in response to IR,
enhancing their trans-differentiation in tumor derived endothelial cells, by the activation of the Tie2
signaling pathway [74]. SRC was found highly expressed in GSCs, where they can enhance the
migratory ability [75] and potentiate the stemness properties being a downstream target, together with
transcription 3 (STAT3)-Kirsten rat sarcoma viral oncogene homolog (KRAS), in the MerTK pathway.
Indeed, MerTK is upregulated in GBM and it was reported that the silencing of KRAS and SRC
suppressed mesenchymal markers and GSC features in MerTK-overexpressing X01 GBM stem-like
cells [76].

Besides being active during hypoxia, SRC activation has been found to promote invasiveness
and motility of cancer cells in response to radiotherapy; in breast cancer cells it has been shown that
fractional irradiation caused an increase in SRC phosphorylation [77]. In the same study, it has been
observed that SRC inhibition reduced cell migration and the expression of markers associated with
the EMT process [77]. The activation of malignant phenotypes of GBM in response to radiation was
reported through the induction of MMP-2, involving pathways mediated by the interaction of SRC with
EGFR. In this study, it has been reported that IR induced phosphorylation of SRC kinase and that SRC
inhibition by PP2 reduced MMP-2 secretion, AKT activation, and SRC phosphorylation in irradiated
cells. Moreover, PP2 was able to block IR-induced EGFR phosphorylation, whereas inhibition of EGFR
did not affect the phosphorylation of SRC, identifying the possibility that radiation may stimulate
the SRC activation regardless of EGFR/AKT pathway [78]. It has been also reported that IR-induced
invasion modulating the ECM protein, is not only due to MMP action, but also to high production
of other components such as hyaluronic acid, which acts as an extracellular signaling molecule for
the mesenchymal shift of GBM, in response to radiation; hyaluronic acid is recognized by the CD44
receptor, which is a clear marker of the mesenchymal subtype. The interaction of hyaluronic acid and
the CD44 receptor, leads to SRC activation, promoting tumor progression and radioresistance [79].
Moreover, IR-SRC activation promotes invasion processes also due to FAK, ephrin type-A receptor 2
(EphA2), and EGFR-vIII signaling [80]. The EGFR-vIII expressing cells have been shown to release
ligands such as hepatocyte growth factor (HGF) and interleukin 6 (IL6), activating SRC in EGFR
expressing cells, thus increasing diffusion and infiltration [81].

The SRC pathways induced by IR have been also evaluated in relation to the intercellular
communication systems in the context of signal molecules transmission by connexin-based channel
and extracellular vesicles [82–84]. It has been shown in vitro that connexin43 (Cx43)-gap junction and
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-hemichannel activity is implicated in invadopodia formation and function responsible for invasion
capacity and MMP-2 activity by Cx43 dynamic interactions with partners including SRC [85,86]. It has
also been shown that following irradiation, GBM cells can release exosomes, which stimulate the
migration of recipient cells. In this condition, cells increase the expression of proteins involved in cell
migration, including SRC, in addition to focal adhesion kinase (FAK), paxillin, and T neurotrophic
tyrosine kinase receptor type 1 (TrkA) [87].

6. New Frontiers to Improve Radiotherapy: Evaluating the Potential of Synergistic Approaches

It is well known that hypoxia is associated with increased resistance to IR, contributing to treatment
failures after radiotherapy based on X-rays. The need for new strategies to improve radiotherapy
has become increasingly urgent and research efforts are currently focusing on studying synergistic
approaches to overcome current limitations.

An action plan adopted to counteract hypoxia-induced radioresistance involves a model known
as “hypoxia dose painting”, based on providing a personalized radiation dose according to local
phenotypic or microenvironmental variations of the tumor, influenced by spatial and temporal
heterogeneity of hypoxia [26,88]. Other aspects take into consideration the IR physical features
including specific linear energy transfer (LET), which also have an impact on radiotherapy efficacy
and biological effects. LET is a measure of ionization density and it is defined as the average energy
(keV) transferred by a particle along the 1 µm path [89]. High LET particles show high ionization
density, thus inducing increased direct cell damage, but display lower indirect effects mediated by ROS
and other radicals [89,90]. Another main advantage of particle-based radiation therapy is the finite
dose deposition in the tissue that allows sparing the normal brain tissue. Consequently, a frontier in
radiotherapy is to combine multiple ion beams simultaneously, in order to deliver low-LET radiation
in normoxic tumor areas and high-LET radiation in the hypoxic tumor microenvironment, in so doing
optimizing IR-induced cell damage in a microenvironment-dependent manner [91]. Reoxygenation
strategies have been also developed to improve radiotherapy efficacy both during the course of
irradiation and by radiosensitizing drugs or nanoparticles delivered into the tumor to improve
oxygenation [92,93].

Targeting the molecular mechanisms regulated by hypoxia represents a promising way to sensitize
GBM cells to treatments. In general, the rationale to use radiosensitizing agents is to reduce the dose of
IR maintaining similar biological effects in terms of cell death and reducing radiotherapy side-effects.
Such a concept is expressed as dose modifying factor or sensitized enhancement ratio, both indicating the
ratio between the dose alone and in the presence of the radiosensitizer to determine the same biological
effect [94]. Radiosensitive agents also hold great potential to increase effectiveness of radiotherapy
reducing OER with multivariate effects, such as blocking specific pathway induced by hypoxia,
or enhancing DNA damage by affecting self-repairing mechanisms [95]. In addition to radiosensitive
agents designed for specific biological targets, further promising candidates for synergistic approaches
include sodium borocaptate (BSH) and boron phenylalanine (BPA). The combination of BSH/BPA
with IR can determine an increase in therapeutic efficacy by increasing the LET, due to a selective
accumulation of the Boron isotope 10B inside cancer cells that react with the thermal neutron to produce
high-energy alpha particles, leading to the so-called boron neutron capture therapy (BNCT) [96].
Good results have been obtained, especially in Japan, thanks to imaging techniques labeling the
BPA [97]; the main challenge for this promising therapy is not only related to the cost and availability
of the neutron sources in clinical settings but also to the research of new boron carriers capable to cross
the blood brain barrier [98]. A similar strategy using BSH/BPA combined with protons for proton
boron capture therapy (PBCT) has revealed the possibility to enhance the proton therapy effectiveness,
but preliminary results have been obtained and no clinical trials for GBM have been proposed so
far [99].

Hypoxia induces a number of intracellular reactions such as the activation of the transcription
factor HIF, which in turn activate a variety of cellular process in response to the lowering oxygen
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level [100]. Several molecular targets have been described as radiosensitizing agents in hypoxic
conditions. For instance, EPO transcription is regulated by the HIF-1α/HIF-1β complex and it has
a key role in GBM proliferation and survival through the AKT/PI3K pathway and the upregulation
of Bcl-2/Bcl-xL anti apoptotic factors. Therefore, EPO receptor silencing not only increases the
sensitivity of glioma cells to chemotherapy (temozolomide) as well as X-rays, but also counteracts the
hypoxia-induced chemo- and radio-resistance [101]; for this reason, targeted therapy, such as specific
antibodies, may be applied directly to EPO, EPO receptor, or to another downstream mediator of EPO
receptor signaling pathway such as STAT3. Likewise, the hypoxic cell radiosensitizer doranidazole
(PR-350) administration in malignant significantly enhanced radiation-induced reproductive cell death
in vitro under hypoxia, suggesting a potent strategy for improving the clinical outcome of radiotherapy,
reducing related side effects [102]. A promising strategy to enhance the radiosensitivity of GBM is
represented by the application of targeted molecules that weaken the DNA damage response (DDR)
signaling pathway. DDR can be considered as a group of highly interconnected signaling pathways,
that cooperate to preserve the survival in response to the DNA damage by irradiation; DDR activation
contributes to enhance radioresistance of GBM, which is able to reach high levels of double strand
DNA break repair proficiency. The most representative agents belonging to this radiosensitizers group
are inhibitors of the poly(ADP-ribose) polymerase (PARP) proteins; PARP are involved in DNA repair
pathways, especially for DNA single-strand breaks [103]. Veliparib and olaparib are PARP inhibitors,
largely evaluated at both the preclinical and clinical stages. However, despite some promising results,
veliparib has not been shown to be effective in combination with temozolomide and radiotherapy in
new diagnosed GBM [104]; clinical trials for olaparib are currently ongoing, and additional upstream
or downstream DDR biomarkers, including DNA-dependent protein kinase and cell cycle checkpoint
inhibitors are attractive target for the radiosensitization of GBM [105].

Beside radiosensitizing agents, novel strategies have also been tested as molecularly targeted drugs.
Cilengitide is a drug that selectively blocks activation of the αvβ3 and αvβ5 integrins, amplifying
the effect of IR and triggering an enhanced apoptotic response and tumor growth suppression [106].
Unfortunately, the results of two large phase-III clinical trials showed that combination of cilengitide,
radiotherapy, and temozolomide for newly diagnosed GBM does not improve progression free survival
and overall survival as compared to radiotherapy and temozolomide alone [107]. As previously
reported, FAK participates with SRC in adhesion and migration signaling network; moreover, they are
upregulated and activated in GBM influencing growth and motility. The combination of radiotherapy
and FAK inhibition also provided promising results, showing radiosensitization in GBM cell lines
in vitro [108]. Further studies encouraged the development of a potent, ATP-competitive, reversible
inhibitor of FAK, called GSK2256098. A phase I clinical trial evaluated the tolerability for GBM treatment
and additional clinical trials are evaluating the therapeutic efficiency of such an approach [109]. Likewise,
inhibition of MMP-14 in combination with radiotherapy and temozolomide improved the survival
of glioma-bearing mice as compared to single treatment group [110]; nevertheless, the main MMP
inhibitor, marimastat, was tested with temozolomide, but not with radiotherapy, in a phase II trial for
recurrent GBM [111].

SRC activation leads to different pathways activation, promoting cell adhesion, motility, survival,
proliferation, and angiogenesis. Moreover, SRC is also activated in response to IR, promoting
invasiveness and malignancy of GBM as a consequence. For this reason, SRC inhibition combined
with RT represents a promising approach to increase the therapeutic effect as well as to block GBM
progression. The SRC pathway is targeted by radiosensitizing strategies tested to treat GBM in
preclinical studies or at different phases of active clinical trials. Several SRC inhibitors were tested
to treat GBM and they have been recently reviewed by Cirotti et al. [21]. Noteworthy, dasatinib
(Sprycel, by Bristol-Myers Squibb) was the most used in clinical trial. It is a dual inhibitor SRC/ABL
proto-oncogene 1-non-receptor tyrosine kinase, also inhibiting other SRC family kinases, such as LYN
proto-oncogene and FYN proto-oncogene SRC. In a single-arm phase II trial, dasatinib was tested
as monotherapy and was considered ineffective to proceed to stage 2 [112]. The evidences of SRC



Cancers 2020, 12, 2860 11 of 18

inhibition to reduce invasiveness induced by anti-VGFA led to perform an additional trial, in which
dasatinib was tested in combination with bevacizumab [36]. Even in this trial, dasatinib does not show
a significant improvement as compared with bevacizumab alone [36]; no additional improvements
were provided in combination with EGFR (erlotinib) [113] and cyclonexyl-chloroethyl-nitrosourea
(CCNU) [114]. Recently, a clinical trial evaluating dasatinib in combination with temozolomide
and radiotherapy on newly diagnosed glioblastoma did not show promising results (NCT00869401).
The current efforts in evaluating SRC inhibition potential are coupled with research in drug design
to develop optimized SRC inhibitors for combinatorial approaches with radiotherapy. Such a field
benefits from the current knowledge on the limitations of previously tested drugs. For example, it is
now clear that pharmacodynamic issues, such as overexpression of efflux transporters P-gp at the
blood–brain barrier levels, strongly affects dasatinib efficiency [115]. Current efforts aim at the design
of new SRC inhibitor drugs aiming at the optimization of combinatorial approaches with radiotherapy.

A new SRC inhibitor, belonging to the pyrazolo[3¨ -d] pyrimidines series (i.e., Si306, Lead Discovery
Siena, Italy) showed an excellent pharmacodynamic profile and was able to significantly inhibit GBM
cell growth in highly P-gp expressing cells as compared to dasatinib [116]. We previously demonstrated
that Si306 showed a synergic radiosensitive effect with proton irradiation in GBM cell lines [117].
We also identified up- or down-regulated genes associated with the SRC pathway modulation in
GBM cells after irradiation with proton therapy [117]. After 2 or 10 Gy irradiation with protons,
we detected that the GBM cell cycle, motility, survival, and proliferation rate were strongly affected
by Si306, also showing increased overall radiation efficiency [117]. Moreover, Si306 has been tested
in combination with X-ray both in normoxic and hypoxic conditions, demonstrating a significantly
increased effect as compared to radiotherapy alone [30,118]. These findings are encouraging the
investigations on SRC mechanisms in order to discover a valuable approach to develop new effective
therapy against GBM. Most of the trials with targeted therapy were conducted in patients with
recurrent GBM and rarely were tested in combination with radiotherapy. Further studies and evidence
from in vitro and preclinical studies could enhance the importance of molecularly targeted drugs in
association with radiotherapy, increasing the number of clinical trials, in order to propose new solution
to GBM treatment.

7. Conclusions

The dynamic GBM profile is still limiting our knowledge on its progression and invasion.
Nevertheless, the remarkable progress that is gradually being made allows us to have some clear
conditions on which to focus our attention. Indeed, it is now widely accepted that the microenvironment,
which can be defined hostile for its hypoxic and necrotic characteristics, paradoxically proves to be a
survival stimulus for cancer cells able to reprogram molecules and pathways and above all migrate to
new sites, so arguing, in short, the aggressive phenotype and invasiveness of the tumor.

Classical therapeutic approaches are facing strong limitations due to the intrinsic characteristics of
GBM, such as heterogeneity, high invasiveness, and marked angiogenesis, but also due to physiological
barriers protecting the central nervous system, such as the blood-brain barrier, and off target and
side effects. The ideal approach therefore would be a synergistic combination of therapies specifically
developed to counteract this aggressive brain tumor. Hypoxia-induced pathways dysregulation
certainly represents the beating heart of GBM. Optimizing radiotherapy and its functional variables
using target therapy against specific molecular actors, such as SRC, represents a promising path that
needs to be smoothed out in the shortest possible time.
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BPA Boron phenylalanine
BSH Sodium borocaptate
Cx43 Connexin43
DDR DNA damage response
ECM Extracellular matrix
EGF Epidermal growth factor receptor
EMT Epithelial–mesenchymal transition
EPO Erythropoietin
FAK Focal adhesion kinases
GBM Glioblastoma
HIF-1α Hypoxia-inducible factor-1α
IR Ionizing radiation
LET Linear energy transfer
MMPs Matrix metalloproteases
OER Oxygen enhancement ratio
ROS Reactive oxygen species
RTKs Receptors tyrosine kinases
SH SRC homology domains
SRC SRC proto-oncogene non-receptor tyrosine kinase
TIMPs Tissue inhibitor of metalloproteases
VEGFR Vascular endothelial growth factor receptor
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