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The homology of permutation racks

Victoria Lebed Markus Szymik

October 2020

Despite a blossoming of research activity on racks and their homology for over two
decades, with a record of diverse applications to central parts of contemporary mathe-
matics, there are still very few examples of racks whose homology has been fully calcu-
lated. In this paper, we compute the entire integral homology of all permutation racks. Our
method of choice involves homotopical algebra, which was brought to bear on the homol-
ogy of racks only recently. For our main result, we establish a spectral sequence, which
reduces the problem to one in equivariant homology, and for which we show that it always
degenerates. The blueprint given in this paper demonstrates the high potential for further
exploitation of these techniques.

20N02 (18G40, 18G50, 55N91, 55T99).

Permutations, racks, rack homology, equivariant homology, spectral sequences.

Racks are fundamental algebraic structures boasting applications to knots [FR92, EN15], sin-
gularities [Bri88], monodromy [Yet03], branched covers [EVW16, Ran19], Yang–Baxter equa-
tions [Leb18, LV19, CJO20], Hopf algebras [AG03], and the integration of Leibniz alge-
bras [Kin07], for instance. Just as group homology is an important invariant of groups, racks
come with rack homology [FRS04], and these rack homology groups are what the applications
most often require. So far, complete computations of homological invariants of racks were lim-
ited to a few isolated cases, such as in [Cla11, Nos13, FGG14]. In this paper, we pursue the
approach to rack homology via Quillen’s homotopical algebra, initiated in [Szy19]. It allows
us to compute the entire integral homology for a whole family of racks: the permutation racks.

Recall that a rack (X ,B) is a set X together with a binary operation B such that the left
multiplications y 7→ xB y are automorphisms for all x in X . Basic examples are the per-
mutation racks (X ,ϕ), where these automorphisms are independent of the left factor: we
have xB y = ϕ(y) for a permutation ϕ on the set X .

Our main result reads as follows:

Theorem A. For every permutation rack (X ,ϕ), there is a spectral sequence of homological
type whose E2 page is given by

E2
•,q
∼= H•(X//ϕ)⊗(q−1)⊗H•(X//ϕ),

and which abuts to the rack homology HR•(X ,ϕ) of (X ,ϕ). This spectral sequence always
degenerates from its E2 page on.
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The spectral sequence in Theorem A is constructed in Theorem 4.1 of the main text, and the
degeneracy is proven in Theorem 6.1. As for the description of the E2 page, the spaces X//ϕ

are the homotopy orbit spaces of the permutation ϕ acting on X . We review their definition in
Section 3. They decompose, up to homotopy, into a disjoint union of contractible lines, one for
each infinite orbit of ϕ , and circles, one for each finite orbit of ϕ . In particular, we know their
homology, the Z–equivariant homology of (X ,ϕ), see Proposition 3.2. This extra information
makes the spectral sequence efficient. The rest of this introduction spells out the computational
consequences of Theorem A.

For free permutation racks, where all orbits are infinite, there is no difference between the
homotopy orbit space X//ϕ and the usual orbit space X/ϕ = S, which is discrete. This implies
that, in this particular case, the spectral sequence has only one column and degeneracy is obvi-
ous.

Theorem B. Let (X ,ϕ) be a free permutation rack with the set of orbits S = X/ϕ . There are
natural isomorphisms

HRn(X ,ϕ) ∼= ZS
⊗(n−1)⊗ZS,

where ZS is the free abelian group on the set S, and ZS is the free abelian subgroup of linear
combinations whose coefficients add up to zero. In particular, the homology is a free abelian
group in each degree. If the number |S|= r of orbits is finite, then

r(r−1)n−1 = (r−1)n +(r−1)n−1

is the n–th Betti number of the free permutation rack.

Actually, we use this result in the proof of Theorem A, and therefore provide an independent
proof beforehand, as Theorem 2.3.

In general, the spectral sequence is concentrated in the region of the first quadrant where p 6 q.
This easily implies the vanishing of the differentials in low dimensions and gives:

Theorem C. For any permuation rack (X ,ϕ) we have

HR0(X ,ϕ)∼= Z,
HR1(X ,ϕ) ∼= ZS ∼= Zr,

HR2(X ,ϕ) ∼= (ZS⊗ZS)⊕ZSfin ∼= Zr(r−1)+rfin,

where Sfin ⊆ S is the subset of finite orbits, and |Sfin|= rfin denotes its size.

These formulas for HR0 and HR1 agree with the known formulas for general racks. However,
our computations for HR2, especially important for applications, are new.

While our spectral sequence is built upon our direct computation for the free permutation racks,
we can use it to compute the entire integral homology for the opposite extreme as well: for
permutation racks that do not contain any free orbit, such as all finite permutation racks.
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Theorem D. Let (X ,ϕ) be a finite permutation rack or, more generally, a permutation rack
such that all its orbits are finite. Then

HRn(X ,ϕ) ∼= ZS⊗n

is a free abelian group on the set of n–tuples of orbits, where S = X/ϕ as before. In particular,
there is no torsion in the homology.

This is proven as Theorem 5.1 and Remark 5.2 in the main text. Briefly, we show that the
functional equation satisfied by the Poincaré series of the E2 page implies that the upper bound
on the homology given by the E2 page coincides with the lower bound known from the rational
computations in [EG03]: the n–th Betti number of (X ,ϕ) equals rn, where r = |X/ϕ| is the
number of orbits. In the case of a single finite orbit, the result recovers the computation for
cyclic racks from [Leb16, Thm. 6].

In the final Section 6, we prove the degeneracy of the spectral sequence in general, using most
of our earlier results. As a consequence, in Corollary 6.2, we can compute the entire integral
homology of any permutation rack:

Theorem E. Let (X ,ϕ) be any permutation rack. Then the homology is a free abelian group.
In particular, it is torsion free. The Poincaré series is given as

∞

∑
n=0

rankHRn(X ,ϕ)T n =
1+T

1− (r−1)T− rfinT2

if the number r of orbits is finite and rfin is the number of finite orbits.

Alternatively, the Betti numbers βn = rankHRn(X ,ϕ) can be computed by the following recur-
sive formula:

βn =


1, if n = 0,
r, if n = 1,
(r−1)βn−1 + rfinβn−2 if n > 2.

Beyond this definite result, we expect that the techniques of proof exposed in this paper will
find applications to other computations of rack and related homologies.

1 Preliminaries on the homology of permutation racks

In this section, we present some general tools that help us produce and detect homology classes
in permutation racks.

Let X be a set. We will write ZX for the free abelian group on X . Its elements are the formal
linear combinations of the elements of X . The subgroup ZX of ZX consists of those linear
combinations whose coefficients sum up to zero.
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Let T(ZX) be the tensor algebra on the free abelian group ZX . This a graded abelian group that
is free in each degree: in degree n, we have the group (ZX)⊗n = Z(Xn), with basis Xn. Using
the algebra structure, we can write the elements as non-commutative monomials x1 . . .xn rather
than x1⊗·· ·⊗ xn or (x1, . . . ,xn), which might have been more precise.

If (X ,B) is a rack, then the tensor algebra supports a differential of degree −1 which makes it
a chain complex:

d(x1 · · ·xn) =
n−1

∑
k=1

(−1)k−1(x1 · · ·xk−1xk+1 · · ·xn− x1 · · ·xk−1(xk B xk+1) · · ·(xk B xn))

=
n−1

∑
k=1

(−1)k−1x1 · · ·xk−1(xk+1 · · ·xn− (xk B xk+1) · · ·(xk B xn)).

This chain complex is denoted by CR•(X ,B), and its homology HR•(X ,B) is the rack homol-
ogy of the rack (X ,B). Note that the differential is not a derivation with respect to the tensor
algebra structure.

Example 1.1. A rack (S,B) is trivial if the rack operation B = pr2 is given by the projection,
that is sB t = t for all s and t in the set S. In that case, the differential on the chain com-
plex CR•(S,pr2) is zero by direct inspection, and therefore the homology of the trivial rack
on S is the tensor algebra: HRn(S,pr2) = (ZS)⊗n.

Trivial racks are examples of permutation racks (S,pr2) = (S, id), where id = idS refers to the
identity permutation on S. It turns out that the trivial permutation racks help us understand
all other permutation racks by means of functoriality: Let (X ,ϕ) be a permutation rack. The
canonical projection X → X/ϕ is a morphism of racks if the set X/ϕ = S of orbits is endowed
with the trivial rack structure as in Example 1.1. This leads to an induced homomorphism

HRn(X ,ϕ)−→ HRn(X/ϕ, id) = Z(X/ϕ)n (1.1)

in homology. This homomorphism gives us a means to detect elements in the homology of per-
mutation racks. We remark that the underlying homomorphism on the chain level is obviously
surjective, but this does not have to be the case on the level of homology.

If (X ,ϕ) is a permutation rack, the permutation ϕ on X extends to an automorphism of the
tensor algebra, and the formula for the differential becomes

d(x1 · · ·xn) =
n−1

∑
k=1

(−1)k−1x1 · · ·xk−1(xk+1 · · ·xn−ϕ(xk+1 · · ·xn))

= x2 · · ·xn−ϕ(x2 · · ·xn)− x1d(x2 · · ·xn).

We can rewrite this formula as

d(xw) = w−ϕ(w)− xd(w) (1.2)

for all x in X and w in CR•(X ,ϕ). Equation (1.2) immediately leads to a few fundamental
observations. Here is the first:

4



Proposition 1.2. The permutation ϕ : X→ X , which is a rack automorphism, induces the iden-
tity map HRn(X ,ϕ)→ HRn(X ,ϕ) in rack homology for all n.

Proof. Recall that two morphisms f and g of chain complexes are chain homotopic if their
difference is of the form f −g= dh+hd for an operator h that increases degrees by one. Then f
and g induce the same homomorphism in homology. In the present situation, the formula (1.2)
for the differential shows that multiplication by any element in the rack X is such an operator
for f = id and g = ϕ .

Here is another consequence of Equation (1.2):

Lemma 1.3. Let T be a subset of (X ,ϕ) that meets every orbit at least once. Then, modulo
boundaries, every n–chain in CRn(X ,ϕ) can be represented as a linear combination of basis
elements w = x1x2 . . .xn that start in T in the sense that x1 ∈ T .

This lemma shows that in our case it might (and will!) be fruitful to change the usual order of
things and study all chains up to boundaries before restricting ourselves to cycles only.

Proof. It suffices to show that every basis element w = x1x2 . . .xn can be represented, modulo
boundaries, as a linear combination of elements that start in T .

Let t ∈ T be any element. Then we have d(tw) = w−ϕ(w)− td(w) by the formula (1.2) for
the differential. This says that, modulo boundaries, we can make the difference between w
and ϕ(w) start with any chosen t ∈ T . By induction, the same holds for all elements ϕk(w)
in the same orbit as w. It remains to be noticed that ϕk(w) itself starts with an element t ∈ T
at some point: take an integer k such that ϕk(x1) ∈ T . This exists by our assumption on the
set T .

Remark 1.4. The lemma with its proof are valid for any rack R, not just permutation racks, and
any generating set T of R.

Recall the suspension C[1] of a chain complex C: we have C[1]n =Cn−1 and dC[1] =−dC. The
name is justified by the equation Hn(C[1]) = Hn−1(C).

Proposition 1.5. For all v ∈ ZX , the multiplication with v is a morphism

v : CR•(X ,ϕ)[1]−→ CR•(X ,ϕ)

of chain complexes.

Proof. Let us first assume that v = x− y is the difference of two basis elements. The for-
mula (1.2) for the differential implies

d((x− y)w) =−(x− y)d(w) (1.3)

for all chains w in the complex CR•(X ,ϕ), when all differentials are computed in CR•(X ,ϕ).
This is the equation saying that multiplication with v = x− y is compatible with the differentials
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when we use the differential from CR•(X ,ϕ)[1] on one side: the suspension accounts for the
sign.

In general, every element v∈ZX is a linear combination of elements of the form x−y, and mul-
tiplication with that element v is the corresponding linear combination of the multiplications
with the x− y’s.

Proposition 1.5 makes it easy for us to write down cycles for the homology of any permutation
rack (X ,ϕ): All elements x of X are 1–cycles. Therefore, for given elements x1, . . . ,y1, . . . in X ,
the element

(x1− y1)(x2− y2) · · ·(xn−1− yn−1)xn (1.4)

is automatically an n–cycle. Of course, many of these elements will be boundaries if not zero.
Fortunately, the homomorphism (1.1) already provides a device that allows us to detect ele-
ments in the homology of permutation racks.

In general, not all homology classes can be described by cycles of the form (1.4). Here is
another device that produces new cycles from old:

Proposition 1.6. For all fixed points x in X , the multiplication with x2 is a morphism

x2 : CR•(X ,ϕ)[2]−→ CR•(X ,ϕ)

of chain complexes.

Proof. This is a straightforward computation: from (1.2) we have

d(x2w) = xw−ϕ(xw)− xd(xw)
= xw− xϕ(w)− x(w−ϕ(w)− xd(w))

= x2d(w)

for all chains w in the complex CR•(X ,ϕ).

Remark 1.7. This cycle construction can be generalized to any element x from a finite d–
element orbit of X . One just needs to replace the map x2 above with

xav : CR•(X ,ϕ)[2]−→ CR•(X ,ϕ),

w 7−→ x
d−1

∑
i=0

ϕ
i(xw).

The computation from the proof of Proposition 1.6 can be adapted as follows:

d(x
d−1

∑
i=0

ϕ
i(xw)) =

d−1

∑
i=0

(ϕ i(xw)−ϕ
i+1(xw))− x

d−1

∑
i=0

(ϕ i(w)−ϕ
i+1(w))+ x

d−1

∑
i=0

ϕ
i(xd(w))

= (xw−ϕ
d(xw))− x(w−ϕ

d(w))+ x
d−1

∑
i=0

ϕ
i(xd(w))

= (xw− xϕ
d(w))− x(w−ϕ

d(w))+ x
d−1

∑
i=0

ϕ
i(xd(w))

= x
d−1

∑
i=0

ϕ
i(xd(w)).
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2 The homology of free permutation racks

In this section, we explain our computation of the homology of free permutation racks.

A permutation ϕ on a set X is essentially the same structure as an action of the infinite cyclic
group Z on X . A permutation rack (X ,ϕ) is called free if the corresponding action is free, that
is, all orbits are infinite. In that case, the permutation rack is isomorphic to a permutation rack
of the form (Z×S,ϕ), where S is some set, the basis, and ϕ(n,s) = (n+1,s) is the permutation
acting on the Cartesian product Z×S. In that example, we will shorten (0,s) to s and identify
the set (Z×S)/ϕ of orbits with S.

Lemma 2.1. On a free permutation rack (X ,ϕ) with basis S, let c be any chain in CR•(X ,ϕ)
that differs from its image ϕ(c) under ϕ only by monomials that start in S. Then the chain c is
zero.

Proof. We can write any chain c as a linear combination of monomials w = x1 . . .xn with inte-
gral coefficients. Fix one monomial w. We shall show that the coefficient in front of w is zero
if c satisfies the assumption in the statement.

By freeness, there is exactly one integer m such that the monomial ϕm(w) starts in S. Either m
is positive and ϕn(w) does not start in S for all n 6 0, or m is non-positive and ϕn(w) does not
start in S for all n > 1. We shall show that the coefficient in front of w is zero in both cases.

Assume first that ϕn(w) does not start in S for all n 6 0. Then w does not start in S and, by
assumption, it has to appear in ϕ(c) with the same coefficient. It follows that ϕ−1(w) appears
in c with the same coefficient as w. Inductively, we see that all the ϕn(w) with n 6−1 appear
in c with the same coefficient. Since only finitely many coefficients can be non-zero, all the
coefficients of these ϕn(w) have to be zero, and this holds, in particular, for the one in front
of w.

Assume now that ϕn(w) does not start in S for all n > 1. Then the monomial ϕ(w) appears
in c and ϕ(c) with the same coefficient, which is the coefficient of w in c. Inductively, we
see that all ϕn(w) with n > 0 have the same coefficient in c. As above, this coefficient has to
vanish.

Lemma 2.2. On a free permutation rack (X ,ϕ) with basis S, let c be an n–cycle, with n > 2.
Then c can be represented in ZS⊗CRn−1(X ,ϕ) modulo boundaries.

Proof. We already know from Lemma 1.3 that we can represent any chain c modulo boundaries
by an element that lives in ZS⊗CRn−1(X ,ϕ). This means that we can assume c to be of the
form

c = ∑
s∈S

scs

for suitable chains cs. We choose an element t in S and rewrite the expression for c as

c = ∑
s∈S

(s− t)cs + t

(
∑
s∈S

cs

)
.
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Since s− t ∈ ZS, it is sufficient to show that the rightmost sum vanishes.

We recall that c is assumed to be a cycle, so that we know

0 = d(c) =−∑
s∈S

(s− t)d(cs)+

(
∑
s∈S

cs

)
−ϕ

(
∑
s∈S

cs

)
− td

(
∑
s∈S

cs

)
from (1.3) and (1.2). We see that the sum ∑s∈S cs satisfies the conditions of Lemma 2.1: it
differs from its image under ϕ only by monomials that start in S. It follows from the lemma
that the sum is zero, as claimed.

We are now ready for the main result of this section.

Theorem 2.3. For any sets S, let (Z× S,+1) be the free permutation rack on S, with the
permutation +1(n,s) = (n+1,s). The natural homomorphism

ZS
⊗(n−1)⊗ZS

∼=−→ HRn(Z×S,+1),

given my multiplication, is an isomorphism.

Taking a one-element set S, we recover the homology of the free monogenic rack, cf. [FRS07,
FGG14]:

HRn(Z,+1)∼=

{
Z if n = 0,1,
0 if n 6= 0,1.

Proof. Let us first note that the map is well-defined: Take a typical element v1⊗·· ·⊗ vn−1⊗ s
with v j ∈ ZS and s ∈ S. It follows from Proposition 1.5 and the discussion following it that this
defines a cycle in CR•(Z×S,+1), and then it represents a homology class.

It follows from Lemma 2.2, inductively, that the resulting homomorphism is surjective onto
the homology. It remains to be seen that it is injective. We do this by composing it with the
morphism

HRn(Z×S,+1)−→ (ZS)⊗n

from (1.1). Since all maps are the identity on representatives, this composition is the inclusion,
hence injective. Then the first map also has to be injective, as claimed.

Corollary 2.4. The homology of a free permutation rack (X ,ϕ) is free as an abelian group. In
particular, it is torsion-free. If the number of orbits is finite, say r, then the Betti numbers are
given by

rankHRn(X ,ϕ) = (r−1)n−1r = (r−1)n +(r−1)n−1

for all n > 1.

Remark 2.5. The free permutation rack is the product of racks:

(Z×S,+1)∼= (Z,+1)× (S, id).

Our theorem and Example 1.1 yield the entire homology of the three racks involved, and we will
use the occasion to point out that a naive version of the Künneth theorem for rack homology is
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false. Indeed, given two racks (X ,BX) and (Y,BY ), and their direct product (X×Y,BX ×BY ),
it is tempting to conjecture the existence of a short exact sequence

0→
⊕

p+q=n
HRp(X)⊗HRq(Y )−→ HRn(X×Y )−→

⊕
p+q=n−1

Tor1
Z(HRp(X),HRq(Y ))→ 0.

For a free permutation rack, this sequence would imply

HRn(Z×S,+1) ∼=
⊕

p+q=n
HRp(Z,+1)⊗HRq(S, id)

∼= (ZS)⊗n⊕ (ZS)⊗(n−1),

contradicting our theorem.

Remark 2.6. Similar ideas yield a completely algebraic computation of the homology of
the free rack FRn on the n generators X = {x1, . . . ,xn}, which is considerably more con-
cise than the method from [FGG14]. Recall that the free rack FRn can be modelled as the
set Fn×X , where Fn is the free group on the generators X , with the rack operation given
as (u,x)B (w,y) = (uxu−1w,y). Let us show that

HRm(FRn)∼=


Z if m = 0,
Zn if m = 1,
0 if m 6= 0,1.

For m 6 1 the result is classical, given that the rack FRn has n orbits. Now, take an m > 1 and
an m–chain c. As explained in Remark 1.4, we may assume that c is of the form c = ∑

n
i=1 xici,

where the ci are (m− 1)–chains. We will prove that all the ci have to vanish. An analogue of
formula (1.2) yields

0 = d(c) = ∑
i

ci−∑
i

xi B ci−∑
i

xid(ci). (2.1)

Here, the action B has been extended from X to Xm−1 diagonally. To analyze the monomial
cancellation in the above sum, consider a graph whose vertices are monomials from Xm−1,
and whose xi–labelled edges point from a monomial w to xi Bw. Cancellations in (2.1) can
come either from a cycle in this graph, or from a path starting with a vertex of the form x ju
and ending with some xkv. These cycles and paths can be assumed not to contain the same
edge twice in a row. If such a path or cycle starts with some au, with a = (w,x j) ∈ FRn, then
it ends with some a′v, with a′ = (pw,x j), where p ∈ Fn is the product (written from right to
left) of the labels x±1

s encountered along our path, with the choice x−1
s corresponding to an

edge travelled in the opposite direction. Since pw 6= w for a non-trivial path, there can be no
non-trivial cancellation paths. On the other hand, if there is a non-zero ci, then cancellations
are necessary.

3 Permutations and their equivariant homology

Permutation racks (X ,ϕ) are essentially sets X with an action of the infinite cyclic group Z,
or Z–sets for short. The integer n acts as ϕn. We refer to [Szy18, Sec. 3] for a detailed discussion
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of the relation between racks and permutations on the categorical level. In this section, we will
very briefly review the equivariant homology theory for actions of a fixed group G, and then
we specialize it to the case of the infinite cyclic group Z. Proposition 3.2, the computation of
the equivariant homology of permutation actions, will be used in the following Section 4.

Let us fix a discrete group G. If the group G is not trivial, then not all G–sets X are free.
Therefore, we need to choose free resolutions. These are G–maps F• → X that are equiv-
alences, where F is a simplicial G–set, and the G–action on F is free (on each set of n–
simplices). For instance, the classifying space EG• coming from the bar construction is a
contractible space on which the group G acts freely; it provides functorial free simplicial reso-
lutions EG•×X → X for all G–sets X . The equivariant homology HG

• (X) is the homology of
the orbit space F•/G' EG•×G X . Up to homotopy, this space does not depend on the reso-
lution F• used to compute it, and it is common to denote this homotopy orbit space by X//G.
These constructions work more generally for G–spaces, or rather simplicial G–sets, and they
are interesting even for the trivial G–set X = ? consisting of one fixed point only: its equivariant
homology is the homology of the group G.

Remark 3.1. Equivariant homology in this form was initiated by Borel [Bor60]. It is obvious
from the description above that Borel’s equivariant homology theory agrees with Quillen’s
general homology theory [Qui70] when specialized to the algebraic theory of G–sets for a
fixed group G. This fact is well-known and we emphasize that it plays no role in the following.
We refer to [Szy19] for Quillen’s homology theory when specialized to the algebraic theory of
racks.

The situation is particularly transparent for the infinite cyclic group G =Z of interest to us. The
action is determined by the permutation ϕ corresponding to the generator. We need to know
the equivariant homology

HZ
• (X) = H•(X//ϕ)

of any Z–set X . In this case, the space X//ϕ is the mapping torus of the self-map ϕ : X → X .
The homology of the mapping torus sits in a long exact sequence

· · · // H•(X)
id−ϕ• // H•(X) // H•(X//ϕ) // H•−1(X)

id−ϕ• // · · · .

Proposition 3.2. Let ϕ be a permutation on a set X . Let S = X/ϕ be the set of orbits of ϕ , and
let Sfin ⊆ S be the subset of finite orbits. Then the equivariant homology of (X ,ϕ) is given as

Hn(X//ϕ)∼=


ZS if n = 0,
ZSfin if n = 1,
0 otherwise.

Proof. Let us first assume that X is a single orbit. If X is a free orbit, then there is no need
to resolve X , and X//ϕ ' X/ϕ is a point. This proves the claim for a single free orbit. If X
is a finite orbit, then the mapping torus X//ϕ is a circle. Therefore, or by inspection of the
long exact sequence, we see that the claim is true for finite orbits, too. In general, any G-set
is the disjoint union of its orbits, and the homology of a disjoint union is the direct sum of the
homologies. This proves the claim in general.
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This result is the reason why finite and infinite orbits play fundamentally different roles in the
homology of permutation racks.

4 The spectral sequence: construction and first applications

Finally, we can now address the following question: Given a set X with a permutation ϕ ,
how can we compute the cohomology of the associated permutation rack (X ,ϕ)? Our answer
follows the blueprint given by Quillen in [Qui70, Sec. 8]. He computes the associative algebra
homology of commutative algebras from the knowledge of the associative algebra homology
of free commutative algebras (polynomial rings). Here we adapt his methods and deduce the
homology of permutation racks from the homology of free permutation racks via a spectral
sequence.

Theorem 4.1. For every permutation rack (X ,ϕ), there is a spectral sequence of homological
type which has its E2 page given as

E2
•,q
∼= H•(X//ϕ)⊗(q−1)⊗H•(X//ϕ)

and which abuts to the rack homology of (X ,ϕ).

The homology groups on the right hand side are the ones computed in Proposition 3.2. We’ll
spell out the consequences after the proof.

Proof. We choose a simplicial resolution X ← F• by free permutations, as described in Sec-
tion 3. Then we apply the rack chain complex functor CR•(?) to it. This gives a simplicial
chain complex CR•(F•). The Moore construction, which turns a simplicial abelian group into
a chain complex with differential ∂ = ∑ j(−1) j∂ j, turns this into a double complex

E0
p,q = CRq(Fp).

This double complex comes with two spectral sequences that converge to the same target: the
homology of the totalization. We will inspect these in order.

First, let us consider the spectral sequence that computes the differential in the horizontal p–
direction first. For a fixed q, Lemma 2.3 in [Szy19] says that the Moore complex CRq(F•) is a
free resolution of the abelian group CRq(X). It follows that we get

E1
p,q
∼=

{
CRq(X) if p = 0,
0 if p 6= 0.

The vertical differential is the one coming from the rack complex, by naturality, so that we get

E2
p,q
∼=

{
HRq(X) if p = 0,
0 if p 6= 0.
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Since this is concentrated in the 0–th column, the spectral sequence necessarily degenerates
from E2 on. This shows that the target of this (and the other!) spectral sequence is the rack
homology of X .

Second, let us consider the spectral sequence that computes the differential in the vertical q–
direction first. By now, we already know that its target is the rack homology of X , but we
haven’t given a useful description of the initial terms, yet. The starting page is

E0
p,q = CRq(Fp)

as before. If we fix p, and compute the vertical differential, we get

E1
p,q = HRq(Fp),

the rack homology of the free racks Fp. We already have computed this in Section 2. If we
let Sp be the set of orbits of Fp, then Theorem 2.3 gives a natural isomorphism

HRq(Fp)∼= ZS
⊗(q−1)
p ⊗ZSp.

Naturality implies that, for a fixed degree q, we have an isomorphism

HRq(F•)∼= Z(X//ϕ)
⊗(q−1)⊗Z(X//ϕ) (4.1)

of simplicial abelian groups, where X//ϕ is the simplicial set of orbits of F•. It follows that
the q–th row of the E1 page of the spectral sequences is the Moore complex of the right
hand side of (4.1). Up to equivalence, the Moore complex commutes with tensor products.
The Moore complex for Z(X//ϕ) computes the homology of X//ϕ , and the Moore complex
for Z(X//ϕ) computes the reduced homology of X//ϕ . Both can be read off immediately from
our Proposition 3.2. Since all of these homologies are free, the Künneth theorem implies that
we have an isomorphism

E2
•,q
∼= H•(X//ϕ)⊗(q−1)⊗H•(X//ϕ),

as claimed.

It follows from Proposition 3.2 that we have E2
p,q = 0 whenever p > q. This implies that all the

differentials involving the E2
p,q with p+ q 6 2 are zero. Since all of these abelian groups are

also free, again by Proposition 3.2, there are no extension problems, and we get

HR0(X ,ϕ)∼= Z
HR1(X ,ϕ)∼= H0(X//ϕ)

∼= ZS

HR2(X ,ϕ)∼=
(

H0(X//ϕ)⊗H0(X//ϕ)
)
⊕H1(X//ϕ)

∼= (ZS⊗ZS)⊕ZSfin,

where S is the set of orbits of ϕ on X , and Sfin is the subset of finite orbits. Theorem C follows.
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Remark 4.2. Another important invariant of a rack (X ,B) is its structure group, given by the
presentation

G(X ,B) = 〈ga, a ∈ X |gagb = gaBbga, a,b ∈ X〉.

This is the value of the left-adjoint to the forgetful functor from groups to racks which sends
a group to its conjugation rack. It is easy to compute the structure group of a permutation
rack (X ,ϕ): it is the free abelian group on the set of orbits of ϕ . Up to isomorphism, this
group depends on the number of orbits of ϕ only. According to our preceding computations
of HR2(X ,ϕ), two permutation racks with the same (finite) number of orbits but different
numbers of finite orbits then have isomorphic structure groups but non-isomorphic homology
groups.

Example 4.3. If X is a free permutation rack, then H•(X//ϕ) is concentrated in degree 0, and
so the spectral sequence is concentrated in the 0–th column from E2 on. Then it degenerates,
and we recover the result of Theorem 2.3. Of course, we have used that result already when
setting up the spectral sequence, and this example only serves as a consistency check.

5 The spectral sequence degenerates for finite racks

We now turn to a more substantial example and prove Theorem D.

Theorem 5.1. Let (X ,ϕ) be a finite permutation rack. Then the spectral sequence degenerates
from its E2 page on, and the rack homology HRn(X ,ϕ) is a free abelian group of rank rn,
where r = |X/ϕ| is the number of orbits of ϕ acting on X .

Proof. We inspect the E2 page of the spectral sequence in Theorem 4.1. We have a free abelian
group in every bidegree (p,q), hence in every total degree n. We will now show that the rank
of the E2 page in total degree n is rn.

Let f (T) be the Poincaré series of H•(X//ϕ). If r is the number of orbits, then we have

f (T) = (r−1)+ r T (5.1)

by Proposition 3.2. This satisfies the functional equation

1− f (T)T = (1+T)(1− r T), (5.2)

as is straightforward to verify from (5.1). Note that we used that all orbits are finite; other-
wise the Poincaré series f (T) is a bit more complicated. From the description of the q–th
row of the E2 page of the spectral sequence, we get that its Poincaré series is 1 for q = 0
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and f (T)q + f (T)q−1 for all q > 1, regardless of the orbit structure. Therefore, we have

∑
n>0

(
∑

p+q=n
rank(E2

p,q)
)

Tn = ∑
p,q>0

rank(E2
p,q)T

p+q

= ∑
q>0

(
∑
p>0

rank(E2
p,q)T

p
)

Tq

= 1+ ∑
q>1

(
f (T)q + f (T)q−1

)
Tq

= ∑
q>0

f (T)qTq + ∑
q>0

f (T)qTq+1

= (1+T) ∑
q>0

f (T)qTq

=
1+T

1− f (T)T
.

In our specific situation, we can use the functional equation (5.2) to see that this equals

1
1− r T

= ∑
n>0

rnTn,

as claimed.

It is known from the work [EG03, Cor. 4.3] of Etingof and Graña that the n–th Betti number of
a finite permutation rack with r orbits is rn. So rn is the rank of the E∞ page in total degree n as
well. Given that all the groups on the E2 page are free abelian, if the spectral sequence would
not degenerate from its E2 page on, the rank of the E∞ page would be strictly less than that of
the E2 page, contradicting what we have shown above. Therefore the spectral sequence does
degenerate from its E2 page on. Since E∞ ∼= E2 is free abelian, there are no extension problems,
and we find that HRn(X ,ϕ) is the totalization of it, which we have just shown to be of rank rn

in total degree n.

Remark 5.2. It is easy to generalize Theorem 5.1 slightly to cover all permutation racks (X ,ϕ)
for permutations ϕ without free orbits. These are the unions of their finite subracks, and homol-
ogy is compatible with unions. It follows that the rack homology HR•(X ,ϕ) of these racks is
always free abelian in each degree.

6 The spectral sequence always degenerates

This final section completes the proof of Theorem A by proving the following result.

Theorem 6.1. For any permutation rack (X ,ϕ), the spectral sequence in Theorem 4.1 degen-
erates from its E2 page on.

Proof. As in Remark 5.2, it is clear that we can assume that the permutation ϕ on X has
only finitely many orbits: any differential involves only finitely many of them.
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Under this assumption, the E2 page consists of finitely generated free abelian groups in each
bidegree. Therefore, as in our proof of Theorem 5.1, it is sufficient to demonstrate the degen-
eracy with rational coefficients: this is enough to detect non-zero differentials between finitely
generated free abelian groups. For the rest of the proof, we can and will assume that (X ,ϕ) is a
permutation rack with finitely many orbits, and all homology will be with rational coefficients.

We construct a new permutation rack (X ,ϕ) from (X ,ϕ) as a quotient, by collapsing each finite
orbit onto a single fixed point, leaving the free orbits as they were. The new permutation rack
has the same number of orbits and of finite orbits, but it is semi-free: the complement of the
fixed point set is free. The quotient map (X ,ϕ)→ (X ,ϕ) is a morphism of (permutation) racks.

We claim that this morphism induces an isomorphism of spectral sequences from the E2 pages
on. To justify this claim, note that the E2 pages are given in terms of the equivariant homology
of the homotopy orbit spaces X//ϕ and X//ϕ , respectively. The induced map X//ϕ → X//ϕ

between the homotopy orbit spaces is as follows: The components coming from free orbits are
contractible, so any map is a homotopy equivalence. The components coming from the finite
orbits are equivalent to circles, and the collapse of an orbit of length n> 1 to a single fixed point
induces an n–fold covering. Both maps yield isomorphisms on the level of rational homology.
Together with naturality, this proves our claim: we have a morphism of spectral sequences that
is an isomorphism from their E2 pages on.

After all this dévissage, we are left to deal with a semi-free permutation rack (X ,ϕ) with finitely
many orbits. We can compute the Poincaré series of the E2 page as in the proof of Theorem 5.1:

∑
n>0

(
∑

p+q=n
rank(E2

p,q)
)

Tn =
1+T

1− f (T)T
.

In contrast to Theorem 5.1, we now have

f (T) = (r−1)+ rfinT,

where r is the number of orbits, and rfin is the number of finite orbits. Therefore, the Poincaré
series of the E2 page equals

1+T
1− (r−1)T− rfinT2 .

Equivalently, the Betti numbers βn = ∑p+q=n rank(E2
p,q) can be computed from the following

recursion formula:

β0 = 1, β1 = r, (6.1)
βn+2 = (r−1)βn+1 + rfinβn, n > 0. (6.2)

We thus obtain an upper bound on the Poincaré series of the E∞ page, which agrees with the
Poincaré series of the homology HR•(X ,ϕ). We claim that this bound is sharp: they are equal.
Once we have established that claim, the result follows because any non-zero differential would
contradict the equality of the Poincaré series.

To prove the claim, we will use Propositions 1.5 and 1.6 to produce a sufficient supply of
homology classes in HR•(X ,ϕ). We choose a set Q ⊆ X of orbit representatives, with a pre-
ferred one q∗. Let T ⊆ Q denote the set of fixed points. We define subsets Bn ⊆ HR•(X ,ϕ)
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inductively by

B0 = {1}, B1 = Q,

Bn = {(q−q∗) ·b1 |q ∈ Q\{q∗},b1 ∈ Bn−1 }∪{ t2 ·b2 | t ∈ T,b2 ∈ Bn−2 }.

In this description, to exhibit a homology class, we abusively give its representative only. By
construction, the cardinalities |Bn| satisfy the same recursive formula as the Betti numbers βn
above, and thus coincide.

It remains to be shown that the homology classes in each Bn are linearly independent. We will
actually prove slightly more: the images of these homology classes in HRn(S, id) = ZSn under
the map (1.1) are linearly independent. Identifying the orbit set S = X/ϕ with the set of orbit
representatives Q, we can abusively consider Bn as a subset of ZSn. We will need to slightly
modify some elements b of Bn. By construction, each b is a product of some terms of the
form (q−q∗), and some terms of the form t2. Read b from left to right. Whenever we see a
repetition b = a(q−q∗)(q−q∗)c, with q ∈ T , we replace it with

a(q−q∗)(q−q∗)c−aqqc = a(−qq∗−q∗q+q∗q∗)c.

We repeat this transformation for c if necessary, and so on. Denote the element so obtained
by b′. At each step, the element we subtract has more terms of the form t2 than the original
element; therefore the modified elements are linearly independent if and only if the original
elements of Bn were. Now, we order the orbit set S in any way which makes q∗ the minimal
element. We extend this order lexicographically to Sn. The maximal monomial of b′, with
respect to this order, is obtained from b by replacing each (q−q∗) with q, except for neighboring
factors (q−q∗)(q−q∗), with q ∈ T , which become qq∗. This latter replacement is again done
consecutively from left to right, and one can reconstruct b uniquely from this maximal term.
We remark that this is no longer true if one considers the maximal term of b itself, since the two
elements (q−q∗)(q−q∗)p and qqp, with q ∈ T , have the same maximal term, and that is why
the rather technical deformation procedure from b to b′ was necessary. As a consequence of
the fact that we can reconstruct b uniquely from the maximal term, the set Bn ⊆ ZSn is linearly
independent, as desired.

Corollary 6.2. Let (X ,ϕ) be a permutation rack with rfin of the r orbits finite. Then all its
homology groups HRn(X ,ϕ) are free abelian, and the Poincaré series of the rack homology is

∞

∑
n=0

rankHRn(X ,ϕ)T n =
1+T

1− (r−1)T− rfinT2 .

The reader can easily check that this formula specializes to the ones given earlier in the cases
when (X ,ϕ) is free (rfin = 0) or all orbits are finite (rfin = r).

Remark 6.3. Standard manipulations transform the above formula into an equivalent one,
which can be more suitable in practice:

∞

∑
n=0

rankHRn(X ,ϕ)Tn =
∞

∑
n=0

(r−1)n
(

1+T
T

)(
T

1− rfinT2

)n+1

.

The recursive formulas (6.1) and (6.2) are probably even more convenient for computations.
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Remark 6.4. In the proof of the theorem, one could avoid collapsing all finite orbits to fixed
points, at the price of replacing in the definition of Bn the elements t2 ·b2 with the more involved
construction tav(b2) from Remark 1.7. We preferred not to do so, keeping the main line of
thought as non-computational as possible.
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