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Abstract: Equid herpesvirus 1 is one of the most common viral pathogens in the horse population
and is associated with respiratory disease, abortion and still-birth, neonatal death and neurological
disease. A single point mutation in the DNA polymerase gene (ORF30: A2254G, N752D) has been
widely associated with neuropathogenicity of strains, although this association has not been exclusive.
This study describes the fortuitous isolation of a strain carrying a new genotype C2254 (H752) from an
outbreak in France that lasted several weeks in 2018 and involved 82 horses, two of which showed
neurological signs of disease. The strain was characterised as UL clade 10 using the equid herpesvirus
1 (EHV-1) multi-locus sequence typing (MLST) classification but has not been identified or isolated
since 2018. The retrospective screening of EHV-1 strains collected between 2016 and 2018 did not
reveal the presence of the C2254 mutation. When cultured in vitro, the C2254 EHV-1 strain induced
a typical EHV-1 syncytium and cytopathic effect but no significant difference was observed when
compared with A2254 and G2254 EHV-1 strains. An experimental infection was carried out on four
Welsh mountain ponies to confirm the infectious nature of the C2254 strain. A rapid onset of marked
respiratory disease lasting at least 2 weeks, with significant virus shedding and cell-associated
viraemia, was observed. Finally, an in vitro antiviral assay using impedance measurement and
viral load quantification was performed with three antiviral molecules (ganciclovir (GCV), aciclovir
(ACV) and aphidicolin (APD)) on the newly isolated C2254 strain and two other A/G2254 field strains.
The three strains showed similar sensitivity to ganciclovir and aphidicolin but both C2254 and A2254

strains were more sensitive to aciclovir than the G2254 strain, based on viral load measurement.
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1. Introduction

Equid herpesvirus 1 (EHV-1) is an alphaherpesvirus, classified among the Herpesviridae family
and the Varicellovirus genus [1]. EHV-1 is one of the most important viral pathogens infecting horses.
Some cases have also been reported in other equid and non-equid mammals [2,3].

Transmission of the EHV-1 occurs through direct contact between horses; inhalation of infectious
aerosols; direct contact with infected fomites, placenta and aborted foetus; or indirect contact with
humans. EHV-1 first infects and replicates in the epithelial cells of the upper respiratory tract [4,5].
At this stage of EHV-1 infection, horses may present a respiratory form of disease associated with
nasal discharge, cough and pyrexia. EHV-1 quickly translocates to the draining lymph nodes and
associated lymphoid tissues, where it infects leucocytes [6]. Circulation of infected leucocytes
during cell-associated viraemia disseminates EHV-1 through the organism to secondary sites such
as the central nervous system or the reproductive tract. In these cases, EHV-1 can induce equine
herpesvirus encephalomyelitis (EHM; from a mild limb ataxia to quadriplegia) or abortion, stillbirth
and neonatal death [7–10]. Finally, like all herpesviruses, EHV-1 has the ability to establish latency
after primo-infection and to reactivate under environmental stress conditions, immune weakness or
after corticoid-based treatments [11–15].

EHV-1 genome is 150 kbp and carries 76 open reading frames (ORFs) encoding for proteins
involved at different stages of the viral replication cycle. Among them, the 3663-kb-long open
reading frame 30 (ORF30) encodes for the DNA polymerase [16]. The mechanisms conditioning
one type of disease from another are not well-known, but a correlation between a non-synonymous
mutation in position 2254 of ORF30 and the pathogenicity of EHV-1 strains was presented in 2006 by
Nugent et al. [17]. Strains carrying a guanine (G) in position 2254 (aspartic acid (D) in position 752 of
the protein), were identified as neuropathogenic, whereas those carrying an adenine (A) in the same
position (asparagine (N752)) were identified as non-neuropathogenic [17–19]. Several studies based on
field isolates have since suggested that abortion is largely associated with A2254 EHV-1 strains, whereas
in the case of EHM, the genotype/pathotype association is less obvious [20–22]. It has been reported
that G2254 EHV-1 strains replicate more efficiently in the horse and produce significantly higher viral
loads [23].

Due to the diseases it causes, EHV-1 has a significant impact on equine health and the equine
industry. As a preventive strategy, thorough vaccination against EHV-1 reduces the intensity of the
clinical signs, virus shedding and therefore the extent of an outbreak [24]. It is generally accepted
that implementation of EHV-1 vaccination in the late 1960s, alongside biosafety measures and herd
management, have reduced the abortion storm occurrence [10]. To date, no vaccine exists against
EHM among the various vaccines against EHV-1, possibly due to the difficulty of experimentally
reproducing this form of disease [20,25,26]. Concerning the therapeutic strategy, no EHV-1 specific
treatment has been commercialised. However, some studies have shown the in vitro efficacy of antiviral
compounds such as ganciclovir (GCV) and aciclovir (ACV) [27,28]. The ORF30 position 2254 mutation
has no effect on these molecules’ efficacy in vitro but has been shown to modify EHV-1′s sensitivity
to aphidicolin (APD) in vitro. Indeed, APD had a better antiviral effect against A2254 (N752) EHV-1
strains than against G2254 (D752) EHV-1 strains [18]. However, in vivo experimental infections showed
heterogeneous data after aciclovir treatment [28,29].

This study describes a new ORF30 genetic profile, with the identification of a strain carrying a
cytosine (C) in position 2254, resulting in a histidine (H) in amino acid position 752. The strain was
isolated at several occasions over 6 months in 2018 from one single and localised EHV-1 outbreak,
during which 82 vaccinated horses were affected and showed clinical signs of respiratory diseases,
associated with hyperthermia and hind limb oedema [30]. Two horses showed neurological signs of
disease and one of them was euthanised. Virus isolation, complete ORF30 sequencing and multi-locus
sequence typing (MLST) allowed the identification of a UL clade 10 EHV-1 strain. A new PCR
genotyping test was developed to identify specifically the C2254 strain. Experimental infection on four
Welsh mountain ponies confirmed the infectious nature of the newly isolated strain. In vitro antiviral



Viruses 2020, 12, 1160 3 of 23

assays using real-time cell analysis (RTCA) technology [27] against the newly isolated strain and two
other A/G2254 field strains showed that these three strains had good sensitivity to GCV, ACV and APD.

2. Materials and Methods

2.1. Sample Collection and EHV-1 Strains

One hundred and sixty samples related to EHV-1 outbreaks were collected between 2016 and
2020 from the diagnostic and equine research Institute LABÉO (Saint-Contest, France), the French
Epidemiological Surveillance Network for Equine Pathology (Réseau d’Epidémio-Surveillance en
Pathologie Equine (RESPE), Saint-Contest, France) and associated equine veterinary practitioners (109
nasal swabs or tracheal washes; 6 spinal cord, brain or cerebrospinal fluid samples; 36 liver, lung
or placenta samples; and 9 blood samples) (Supplementary Table S1). These data included samples
collected from 21 horses housed at the same premises during an EHV-1 outbreak that occurred between
March and November 2018. During this outbreak, nasal swabs were taken from 9 horses (Horses 1 to 9)
at the onset of clinical signs of respiratory disease. Nasal swabs, heparinised blood and serum samples
were taken from 12 horses at the same time (Horses 10 to 21). Serum samples were also collected 14
days later from 11 out of these 12 horses (Horses 10 to 20).

Two other EHV-1 strains, FR-6815 (A2254/N752) and FR-38991 (G2254/D752), collected at LABÉO in
2013 and 2009 respectively, were also used in this study for antiviral assays [27].

2.2. Nucleic Acid Extraction

Nasal swabs were sampled in 4 mL Eagle minimal essential medium complemented with 1%
antibiotics (penicillin-streptomycin-amphotericin, reference: CABPSA00-0U, Eurobio, Courtaboeuf,
France) or phosphate-buffered saline (PBS). Nucleic acids from nasal swabs and from culture supernatant
for the antiviral assay were extracted using QIAmp® Viral RNA Mini Kit extraction kits (Qiagen,
Hilden, Germany) according to manufacturer’s recommendations.

2.3. PCR Assays

Detection/quantitative PCR (PCR 1), a quantitative polymerase chain reaction (qPCR) assay, was
performed on purified nucleic acids for EHV-1 glycoprotein B (gB) gene detection and quantification
using Diallo et al. (2006) primers and probe. All qPCR details are summarised in Supplementary
Table S2 [31]. TaqMan Universal PCR Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) was
used for this assay. A standard curve based on a cloned sequence was used for the calculation of the
number of copies per sample, as described previously [27,32].

Typing PCR (PCR 2), a second real-time PCR assay, was performed using Allen et al. (2007)
primers and probes for the ORF30 A/G2254 typing [33]. TaqMan Universal Master Mix was also used
for this PCR and all details are summarised in Supplementary Table S2.

A new PCR (PCR 3) assay was designed with a specific probe for the detection of a cytosine at the
ORF30 2254 position (see Results Section 3.2).

2.4. Sequencing Assay, MLST, Phylogenetic Analysis and 3D Modeling

ORF30 position 2254 sequencing was performed using Allen et al. (2007) PCR primers
(Supplementary Table S2). Amplification PCR (PCR 4) was performed using Phusion Hot Start II DNA
Polymerase (2 U/µL) chemistry (Thermo Fisher Scientific). Amplicons were purified using a QIAquick
PCR Purification Kit® (Qiagen). Sequencing PCR (PCR 5) was performed using a BigDye™ Terminator
v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific). All details are described in Supplementary
Table S2. Sequencing products were purified using a ZR DNA Sequencing Clean-Up® Kit (Zymo
Research, Irvine, CA, USA) and electrophoresis was performed using the 3500 Genetic Analyser®

(Thermo Fisher Scientific). Complete ORF30 sequencing was performed by BIOFIDAL (Vaulx-en-Velin,
France), as previously described [22] (Supplementary Table S3 and Figure S3). Sequences were analysed
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using BioEdit version 7.0.5.3 (Tom Hall, Carlsbad, CA, USA) [34]. A median joining network based on
ORF30 was built using Population Analysis with Reticulate Trees (PopART) software (Jessica Leigh,
David Bryant and Mike Steel, Dunedin, New Zealand) [35].

The MLST analysis was performed as previously described [22,36]. Sequences were also analysed
using BioEdit, and a neighbour joining network was built using Splitstree 4 [37].

DNA polymerase three-dimensional models were built using Phyre2 and Phyre2 Investigator
web servers and based on the new C2254 EHV-1 strain (identified as FR-56628 in Section 3.3 (accession
number: MT968035)) and EHV-1 reference strains Ab4 (AY665713) and V592 (AY464052) ORF30 amino
acid sequence homologies with herpes simplex virus 1 (HSV-1, also identified as human herpesvirus 1
(HHV-1)) [38].

2.5. Cell Culture and Virus Culture and Titration

The cell lines from RK13 (rabbit kidney cells, ATCC®, Molsheim, France), EEKs (equine
embryonic kidney cells, kindly provided by Merial, Lyon, France) and E. Derm (equine dermal
fibroblasts, ATCC®) were used in this study. All the cell lines were cultured at 37 ◦C with
5% CO2. RK13 cells were maintained in minimum essential medium (MEM) with Earle’s salts
(reference: CM1MEM10-01, Eurobio) complemented with 1% l-glutamine (reference: CSTGLY00-0U
Eurobio). EEKs were maintained using MEM Alpha (reference: L0476-500, Biowest, Nuaillé, France)
complemented with 2% Lactalbumine 50× (reference 58901C, Sigma-Aldrich, St. Louis, MO, USA),
1% L-glutamine and 0.2% d-glucose 45% (reference G8769, Sigma-Aldrich). E. Derm cells were
maintained in ATCC® 30-2003 Eagle’s minimum essential medium (EMEM, ATCC®). All media were
also complemented with 10% fetal bovine serum (FBS, reference: CVFSVF00-01, Eurobio) and 1%
antibiotics (penicillin-streptomycin-amphotericin, Eurobio).

Peripheral blood mononucleated cells (PBMCs) were isolated from heparinised blood samples
using the Hue et al. method [39] and were co-cultured with a RK13 cell monolayer for up to 6 days.
Nasal swabs were sampled in 4 mL, from which 500 µL were inoculated on E. Derm and RK13 cells and
cultured for up to 7 days. Co-culture was monitored using IncuCyte® Live Cell Analysis technology
(Essen BioScience, Ann Arbor, MI, USA). The newly isolated EHV-1 strain (FR-56628) was amplified on
both E. Derm and RK13 cells. Second passage virus titer was determined on RK13, E. Derm and EEK
cells lines using the Karber method [40].

EEK cells were inoculated (1.2 × 104 cells per well) in three 96-well plates for xCELLigence
acquisition (E-plate VIEW 96 PET, ACEA Biosciences, San Diego, CA, USA), IncuCyte® acquisition and
viral load quantification, respectively. Cells were cultured for 24 h prior to infection with four EHV-1
strains (the newly isolated C2254 EHV-1 strain, strains FR-6815 (A2254) and FR-38991 (G2254) isolated
from the field, and the reference EHV-1 strain KyD (VR700TM, ATCC®)) at a multiplicity of infection
(MOI) of 0.05. The time corresponding to 50% of the cell index decrease (CIT50) was measured [41].

2.6. Neutralisation Assay

A neutralisation assay was performed following the World Organisation for Animal Health (OIE)
method. E. Derm cells (1.2 × 104 cells per well) and the EHV-1 KyD strain (VR-700TM, ATCC®) were
used for this assay [42].

2.7. Experimental Infection with EHV-1, Clinical Signs of Diseases, Virus Shedding and
Cell-Associated Viraemia

Four 10-month-old male Welsh mountain ponies, seronegative for EHV-1 and EHV-4 (confirmed
by seroneutralisaiton (SN) and complement fixing (CF) assays) and with no history of EHV infection
(EHV-1 PCR was negative 3 days before infection), were experimentally infected by individual
nebulisation (Flexineb® nebuliser; VLC Europe, Bazoches sur Guyonne, France) [43] with the C2254

EHV-1 strain (third passage on RK13 cells; 2 mL dose per pony, containing a total of 5 × 107 tissue
culture infectious dose 50 (TCID50)). The day of experimental infection was defined as Day 0.
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All experiments were conducted in accordance with the guidelines of the Directive 2010/63/EU of
the European Parliament and of the Council, in the facilities of the EU-1277 Plateforme d’Infectiologie
Expérimentale (PFIE, Infectiology of Farm, Model and Wild Animals facility, [44], INRAE, 2018, Centre
Val de Loire, Nouzilly, France). All experimental procedures were approved by the Loire Valley ethical
review board (CEEA VdL, committee number 19).

Rectal temperature (RT) was recorded twice a day from Day −5 to Day +21 post-infection (pi).
Pyrexia was defined as a rectal temperature exceeding 38.8 ◦C. Clinical scores were recorded twice a
day from Day −5 to Day +21 for cough, attitude, nasal discharge, ocular discharge, mandibular lymph
node enlargement, ataxia and other signs of neurological disease. The cumulative clinical score after
experimental infection with EHV-1 was calculated using the score for each clinical sign, according to
the formula used and reported previously for equine influenza virus infection in Welsh mountain
ponies, with some minor modifications [45]:

Cumulative clinical score = score RT + score nasal discharge + 2*(score cough) + score lymph
node enlargement + score ocular discharge.

Nasopharyngeal swabs were collected on Day −3, from Day +1 to Day +10 and on Days +12, +14,
+16, +18, +20 and +21. The swabs were placed directly into 3 mL of EMEM + 1% antibiotics. Virus DNA
extraction was performed from nasopharyngeal swab extracts to measure virus shedding using the
QIAamp® Viral RNA Mini Kit (Qiagen) and according to the manufacturer’s instructions. Quantitative
PCR was performed as described in Section 2.3. Blood samples were collected by jugular venepuncture
into EDTA and dry tubes each day from Day 0 to Day +21. Virus DNA extraction from 2 mL of
EDTA blood was performed to determine cell-associated viraemia, using the Nucleospin® Blood L kit
(Macherey-Nagel, Düren, Germany) according to the manufacturer’s instructions. Quantitative PCR
(PCR 1) was performed as described in Section 2.3.

2.8. In Vitro Antiviral Assay

Antiviral assay was performed using xCELLigence Real-Time Cell Analysis (ACEA, Bioscience)
and Incucyte® technologies. Cells were infected with three EHV-1 strains (the newly isolated C2254

EHV-1 strain (FR-56628), and two EHV-1 strains FR-6815 (A2254) and FR-38991 (G2254) isolated from
the field), as described in Section 2.5, and treated simultaneously with three antiviral drugs in a
dose-response manner, as presented in Table 1. All compounds were previously dissolved at 20 mM
in dimethyl sulfoxide (DMSO) and stored at −20 ◦C. One plate was frozen 48 h post-infection (hpi)
for viral load quantification. From this plate, nucleic acids were extracted as described in Section 2.2,
and viral load was quantified as described in Section 2.3. The two other plates were kept in culture
for up to 140 hpi. Infected or non-infected cells treated with 0.5% DMSO were used in each plate as
controls. The half maximal effective concentration (EC50) was calculated as previously described [27].
Experiments were carried out at least three times.

Table 1. Antiviral molecules tested against the newly isolated equid herpesvirus 1 (EHV-1) strain
(FR-56628) and EHV-1 strains FR-6815 and FR-38991.

Antiviral
Molecule

Name
Abbreviation Empirical

Formula
DNA Polymerase

Inhibitor
Initial

Concentration
Final

Concentration
Dilution

Fold Replicates

Ganciclovir GCV C9H13N5O4
Nucleoside
analogue 1 50 µM 0.10 µM 2 3

Aciclovir ACV C8H11N5O3
Nucleoside
analogue 2 100 µM 0.78 µM 2 3

Aphidicolin ADP C20H34O4
Nucleoside- binding

site homology 3 2.5 µM 0.02 µM 2 4

1 Elion et al. 1983 [46], 2 Matthews and Boehme 1988 [47], 3 Sheaff et al. 1991 [48].
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2.9. Statistical Analysis

For the antiviral assay results, statistical analysis was performed on StatGraphics® Centurion
XVI Version 16.1.12 for Windows (StatPoint Technologies, Inc., Warrenton, VA, USA) [49]. A one-way
analysis of variance (ANOVA) was used to compare CIT50. EC50 were compared using Tukey’s multiple
comparison test. Data were considered significant for p values < 0.05.

3. Results

3.1. EHV-1 Outbreak Description

In 2018, 82 horses located in a single site in France and kept in different stable blocks showed
clinical signs of disease associated with EHV-1 infection (i.e., cough, nasal discharge, anorexia, pyrexia,
depression and limb oedema) over a 6-month period from March 2018 to November 2018. The origin
of this specific outbreak is unknown.

Due to the increased number of EHV infection cases reported to RESPE in February and March
2018 (12 outbreaks between 1 January 2018 and 31 March 2018), and rapidly after the first clinical
signs appeared in a first stable block (5 March), the 64 horses kept in this stable block were monitored
for a set of clinical signs of respiratory disease (e.g., cough, nasal discharge, anorexia, defined as
“respiratory signs” in this report); temperature; depression and limb oedema from 5 March 2018 to the
22 April 2018. There are no data available for the first block after this date.

As illustrated in Figure 1A, an increased frequency of clinical signs of disease was observed
around 22 days (26 March 2018) after the first clinical signs were reported in this group. Sixty-three
horses out of 64 showed clinical signs of disease during the monitoring period. The available data
showed the first peak on the 25th day (29 March 2018) after the beginning of the monitoring, and this
was followed by a second and major peak on the 33rd day (6 April 2018). Overall, 62 (96.9%) horses
displayed respiratory signs with a duration ranging from 1 to 13 days (average: 3.2 ± 2.4 days), 45
(70.3%) horses showed pyrexia (> 38.8 ◦C) lasting 1 to 7 days (average: 1.8 ± 1.4 days), 38 (59.4%)
horses showed limb oedema lasting 1 to 6 days (average: 2.5 ± 1.5 days) and finally 18 (28.1%) horses
presented signs of depression lasting 1 to 4 days (average: 1.5 ± 1 days) (Figure 1B).

The clinical picture was variable from horse to horse, as shown in Figure 1B. Clinical signs
appeared alone or in combination, with the most represented combinations being respiratory signs +

pyrexia + leg oedema + depression (29.7%); respiratory signs + pyrexia (20.3%); and respiratory signs
+ pyrexia + leg oedema (14.1%).

Among this population, two horses showed neurological signs of disease (9 April 2018), which
required euthanasia for one of them. There is no information available concerning treatments
administered during the outbreak or concerning the clinical signs’ evolution after 22 April 2018.

During this period, nasal swabs were taken from four horses from the first stable block (Horses 1
to 4) and tested positive for EHV-1 using the PCR 1 assay (5 April 2018). Soon after this first episode,
three other horses from a second stable block in the premises (Horses 5 to 7) were sampled and also
tested positive for EHV-1 using the same PCR assay (19 April and 26 April 2018). Finally, a new episode
was reported from October to November 2018, during which 14 horses from a third stable block in the
premises (Horses 8 to 21) were sampled and 11 of them tested positive for EHV-1 using the PCR 1
assay (samples from Horses 12, 15 and 20 were negative; Supplementary Table S4).

3.2. New (ORF30) C2254 Mutation Identification

As described above, EHV-1 was detected in 18 nasal swab samples out of 21, all taken from
different horses from the premises described previously, using a detection PCR assay (PCR 1) that
amplifies a 63-bp fragment of the EHV-1 gB gene (Supplementary Table S4). As the A/G typing of the
ORF30 mutation in position 2254 (PCR 2) was unsuccessful, 145 bp ORF30 fragments from the samples
taken from Horses 2, 6 and 7 were sequenced, which revealed a cytosine at position 2254.
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pyrexia, depression, leg oedema or general clinical signs; the right axis represents the total number
of horses affected each day (blue line). Frequency of horses showing a sign of disease, alone or in
combination, is presented in (B).

In order to identify new C2254 strains using a PCR assay (PCR 3), a modified MGB probe was
designed based on the existing probe sequences of Allen et al. (2007) (Table 2). Though A2254 and
G2254 probes were used in a multiplex PCR (PCR 2), a C2254 probe was used in a simplex PCR (PCR 3),
and amplification curves are shown in Figure 2. The specificity of the C2254 probe was validated with
the EHV-1 isolates FR-6815 (A2254) and FR-38991 (G2254) and 160 DNA EHV-1 positive field samples
(including the 21 samples collected in this study) obtained from different biological matrices and
collected between 2016 and 2018 (Supplementary Table S1). Seventeen of the 18 EHV-1 positive (PCR
1) nasal swabs collected in 2018 from the premises described in Section 3.1 were tested and confirmed
to contain C2254 EHV-1 strains only. These samples were the only ones to contain the C2254 subtype.
No further samples from these premises were available (in 2019 and 2020). Thirty out of the 160 EHV-1
positive samples could not be typed due to low EHV-1 viral load. Fifty-six samples contained the A2254

subtype and 57 samples contained the G2254 subtype.
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Table 2. PCR conditions of the newly developed assay (PCR 3) for C2254 strain detection.

Primers and Probe Sequence

Primer GaF 5′-CCACCCTGGCGCTCG-3′

Primer GaR 5′-AGCCAGTCGCGCAGCAAGATG-3′

Probe C2254 5′- NED-CATCCGTCCACTACTC-MGB-NFQ-3′

Thermoprofile 95 ◦C during 10 min, 55 cycles x {95 ◦C during 15 s, 65 ◦C during 1 min} —
QuantStudio™ 12K Flex Real-time PCR System

Mixture for 1 sample
2.5 µL DNA extract + 12.5 µL TaqMan Universal PCR Master Mix + 0.6 µL of each
primer (20µM) + 0.5 µL of 10µM probe (depending on titration) + nuclease free

water to complete to 25 µL
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Figure 2. Real-time PCR amplification curves using C2254 probe (green curve) and both A2254 (red curve)
and G2254 (blue curve) probes on a 145 bp fragment of the ORF30 for the typing of an EHV-1-positive
sample from the premises described in Section 3.1 (C2254) (A), EHV-1 strains FR-6815 (A2254) (B) and
FR-38991 (G2254) (C). Simplex amplification curve (C2254) and multiplex amplification curves (A/G2254)
are combined in each graph.
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3.3. Virus Isolation

Virus isolation from three nasal swabs (Horses 2, 6 and 7) was attempted without success.
Consequently, PBMCs were isolated from heparinised blood taken from six other horses (Horses 10
to 15) and co-cultured on RK13 cells. Cytopathic effects (CPEs) characterised by syncytia formation
were observed for two samples (from Horses 10 and 13) after 1 and 4 days of incubation, respectively
(Figure 3A). The new C2254 probe (PCR 3) confirmed the presence of C2254 EHV-1 in the culture
supernatants collected after 5 days (Horse 13) and 6 days (Horse 10) of incubation (Figure 3B).
The strain isolated from Horse 13 was identified as FR-56628 (MT968035). Virus isolation on an E.
Derm cell monolayer from a nasal swab collected from Horse 13, at the same time, was also successful.
The presence of mucosal neutralising antibodies was investigated in five nasal swabs (when sample
quantity allowed it) isolated from Horses 16 to 19 and from Horse 21 in a neutralisation assay using the
EHV-1 strain. No neutralisation was measured (data not shown). In vitro growth of the strain FR-56628
(C2254) on EEK cells was compared to three other EHV-1 strains FR-6815 (A2254), FR-38991 (G2254) and
reference strain KyD VR700TM (G2254), showing a similar decrease of the cell index for the four strains
(Figure 3C). The viral load was measured and calculated in Log10 for each strain 48 h post-infection (hpi)
on EEK cells (MOI of 0.05) (Supplementary Table S5). There was no significant variation (p = 0.77) of
viral load 48 hpi between the EHV-1 strains FR-56628 (C2254/H752), FR-6815 (A2254/N752) and FR-38991
(G2254/D752) and KyD VR700TM. The viral load values in Log10 for each strain are as follows: 8.99 ± 0.46
(FR-56628); 9.21 ± 0.20 (FR-6815); 9.14 ± 0.18 (FR-38991); and 9.04 ± 0.07 (KyD VR700TM). However,
there was a significant difference in the CIT50 mean ± standard between the EHV-1 strain FR-6815 and
the EHV-1 strains FR-38991 and FR-56628 (p = 0.033). The CIT50 values for each strain are as follows:
1.11 ± 0.10 (FR-56628); 1.00 ± 0.06 (FR-6815); 1.12 ± 0.13 (FR-38991); and 1.00 ± 0.05 (KyD VR700TM).
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Figure 3. Microscopic observation of RK13 cell monolayer without (left) or with infection with the
EHV-1 strain FR-56628 (120 hpi; right). Microscope lens: ×20. Scale bar: 100 µm. White arrow indicates
an example of syncytia formation (A). Amplification curves for the EHV-1 strain FR-56628 detected
with the C2254 probe (B). Real-time cell analysis of EEK cells infected with EHV-1 strains FR-56628
(C2254; yellow curve), FR-6815 (A2254; purple curve), FR38991 (G2254; blue curve), and reference strain
KyD VR700TM (G2254; red curve) at a multiplicity of infection (MOI) of 0.05, in comparison with mock
infected cells (green curve) (C).
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3.4. Phylogeny

The full ORF30 sequence was obtained from the newly isolated EHV-1 strain FR-56628 and
compared with ORF30 from the EHV-1 reference strains Ab4 and V592. Three single nucleotide
polymorphisms (SNPs) were identified between EHV-1 strains FR-56628 and Ab4 (positions 96, 2254
and 2968) and three SNPs were also identified between EHV-1 strains FR-56628 and V592 (positions 96,
924 and 2254), as shown in Figure 4 (complete ORF30 alignment in Supplementary Figures S5 and S6).
The 2254 and 2968 SNPs are non-synonymous (D752H or N752H and E990K, respectively).
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Figure 4. Open reading frame 30 (ORF30) nucleotide (a) and amino acid (b) sequence alignments
between the EHV-1 reference strains Ab4, V592 and the newly isolated strain FR-56628.

Three dimensional models of the DNA polymerase were obtained based on the homology of the
ORF30 amino acid sequences from EHV-1 strains Ab4 (G2254), V592 (A2254) and FR-56628 (C2254) with
herpes simplex virus 1 (HSV-1) (Figure 5). The amino acid residue in position 752 is located in the palm
domain and remains close to the fingers domain. After analysis of the sequence by Phyre2 Investigator,
the web server predicted that this residue change was unlikely to affect the protein function (data
not shown).
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Figure 5. Three-dimensional models of EHV-1 strains Ab4 (D752) (A), V592 (N752) (B) and the newly
isolated EHV-1 strain FR-56628 (H752) (C). ORF30 amino acid sequences based on their homology with
HSV-1 DNA polymerase and predictive structure of the ORF30 amino acid sequence (D).
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The complete ORF30 gene sequence was compared with previously published sequences from
14 EHV-1 strains from France and Belgium, 67 EHV-1 strains mostly from the United Kingdom and
reference strains Ab4 and V592 (Figure 6) [22,50]. As previously described, the ORF30 median joining
network discriminates these strains in two groups, the second one being a group of three clusters.
The EHV-1 strain FR-56628 is located in cluster 2 with one French strain isolated in 2010, three other
French strains isolated between 2015 and 2018, a Belgium strain isolated in 2017 and six strains from
the UK isolated between 1993 and 2013 (ORF30 maximum likelihood tree shown in Supplementary
Figure S7). The EHV-1 strain FR-56628 showed one to four nucleotide differences when compared
with the other EHV-1 strains from cluster 2 (including the mutation in position 2254), and from one to
five nucleotide differences when compared with all 83 EHV-1 strains of the network (including the
mutation in position 2254).
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strains, 67 EHV-1 strains previously described [50] and 15 EHV-1 strains from France and Belgium [22],
including the newly isolated EHV-1 strain FR-56628 (highlighted in yellow). The ORF30 position 2254
nucleotide is annotated.
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The EHV-1 MLST, as described by Garvey et al. (2019) [36], was also performed, and the newly
isolated strain was classified as UL clade 10 (Supplementary Table S8). The EHV-1 strain FR-56628
MLST amino acid sequence was compared to 79 EHV-1 strains from the UK, Ireland, China, Australia,
the United States, Belgium and France and was grouped with the EHV-1 French strains NORM/2/2010,
NORM18/2018, the EHV-1 Belgium strain BELG/12/2017, the EHV-1 UK strain SUFF/87/2009 and the
EHV-1 Irish strain IRL/348/2002, all from UL clade 10 (Figure 7). The amino acid change in ORF30
position 752 was the only feature discriminating the EHV-1 strain FR-56628 from the five other UL clade
10 strains shown in this report (Supplementary Table S8). The UL clade 10 EHV-1 strains NORM/2/2010,
NORM/18/2018, BELG/12/2017 and SUFF/87/2009 were also grouped in ORF30 cluster 2, as shown in
the ORF30 maximum likelihood tree in Supplementary Figure S7.
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Two different ORF37 profiles were identified and confirmed for the EHV-1 strain FR-56628 isolated
from Horse 13 (A795 and G795), which did not induce an amino acid change but which suggests that
two variants of the strain were isolated (V1 and V2, Table 3). V2 was the only variant isolated from the
Horse 10 sample.

3.5. Experimental Infection

Four 10 month-old Welsh ponies were experimentally infected by nebulisation with EHV-1 strain
FR-56628 (C2254). Daily clinical scores were evaluated twice a day. As illustrated in Figure 8A and
Supplementary Figure S9, all ponies showed a significant increase (p < 0.0001, multifactiorial ANOVA
with days as main effect and pony ID as covariates) of the cumulative clinical score from day 1
post-experimental infection, from the second checking point of the day. Overall, the cumulative clinical
score started to decrease 10 to 14 days post-infection, depending on the individual, but remained
above pre-infection level until the end of the study (i.e., 21 days after experimental infection). Pyrexia
(i.e., body temperature >38.8 ◦C) was measured in all ponies on day 1.5 post-infection, on the second
checking point of the day (Figure 8B). Abnormal body temperatures were mostly recorded in the
afternoon and lasted from 4 to 8 days, with peaks of temperature up to 40.6 ◦C. Nasal discharge
was first observed on day 1 and was recorded until the end of the study. Cough was recorded in all
ponies on day 2 post-infection and intermittently thereafter. Mandibular lymph node enlargement was
observed for one pony on day 2, and all four ponies from day 3 to day 11. All ponies showed signs of
lethargy on day 2, and an overall reduction in food consumption was also noted during the first week
post-infection. Finally, tail hypotonia was observed for all ponies, from day 2 post-infection and lasted
from 4 to 5 days.

Viral load quantification showed that virus shedding started on day 1, with a peak between days
2 and 6, depending on the pony (Figure 8C). From day 7, nasal shedding started to decrease but EHV-1
remained detectable in nasopharyngeal swabs from all ponies on day 16 post-infection, and was still
detected in two out of four ponies on day 20. EHV-1 was detected in the blood sample collected from
one pony on day 3, from three out of four ponies on day 5 and in blood samples from all four ponies
from day 6 to the end of sampling (day 20). The peak was measured on day 9 (Figure 8D).

3.6. Antiviral Assay

The activity of three antiviral compounds (aciclovir, aphidicolin and ganciclovir) was measured
against three EHV-1 strains carrying the C2254 (H752), A2254 (N752) and G2254 (D752) mutations (FR-56628,
FR-6815 and FR-38991, respectively) and results are shown in Table 4. RTCA curves and viral load at 48
hpi for each concentration of ganciclovir, aciclovir and aphidicolin against EHV-1 strain FR-56628 (C2254)
are shown in Supplementary Figure S10. Concerning the antiviral assay, results obtained by qPCR
and RTCA showed that aphidicolin was the most effective compound against the three EHV-1 strains,
whereas aciclovir was the least effective. There was no significant difference of sensitivity (p > 0.05)
between the three EHV-1 strains (FR-56628 (C2254/H752), FR-6815 (A2254/N752) and FR-38991(G2254/D752))
to ganciclovir and aphidicolin according to EC50 values obtained from the qPCR assay. When measured
by impedancemetry, the EHV-1 strains FR-38991 (G2254/D752) appeared to be more sensitive (p = 0.046)
to aphidicolin than the FR-6815 (A2254/N752) strain. According to EC50 obtained from the qPCR assay,
the FR-56628 (C2254/H752) and FR-6815 (A2254/N752) strains were significantly more sensitive to aciclovir
(p = 0.012 and 0.036, respectively) than FR-38991 (G2254/D752). There was no significant difference in
sensitivity between FR-56628 and FR-6815 compared with aciclovir using the qPCR assay. Impedance
measurements showed that FR-56628 was significantly more sensitive to aciclovir (p = 0.019) than
FR-6815, but showed no significant difference of sensitivity between FR-56628 and FR-38991, and
between FR-6815 and FR-38991.
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Table 3. MLST codon alignment between reference strains Ab4 and V592, and strain FR-56628 variants V1 and V2, based on MLST. FR-56628 nucleotides in ORF30
position 2254 and ORF37 are highlighted in grey.

Strain
UL

Clade
ORF 2 5 8 11 11 13 13 13 13 13 13 14 14 14 15 22 29 30 30 31 32 33 33 34 36 37 39 40 42 45 46 50 52 57 73 76

nt 175 340 340 565 703 913 1213 1378 1474 1477 1495 1852–1860 1882 2074 496 1288 34 2254 2968 268 124 43 2926 196 139 793 1318 586 3823 1279 418 1009 1156 2410 364 382

Ab4 1 GGC GGC GAC CAG AGG TCA GCA GCC GAA ACT GCA — AGA AGC GAT TCC ACG GAC GAG AAC TCG AAT AAT GAT AGC GCG TCA CGT AAG GAA TTT CCG GCC AAG GCC TTT
FR-56628 V1 10 .A. .T. ... ... ... .T. ... A.. ... ... ... CCCCAGCCG ... ... A.. ... ... C.. A.. .G. ... C.. G.. ... ... .TA ... ... ... .G. .C. ... .T. .G. ... .C.
FR-56628 V2 10 .A. .T. ... ... ... .T. ... A.. ... ... ... CCCCAGCCG ... ... A.. ... ... C.. A.. .G. ... C.. G.. ... ... .T. ... ... ... .G. .C. ... .T. .G. ... .C.

V592 9 .A. .T. A.. A.. ... .T. ... A.. ... ... ... CCCCAGCCG ... ... A.. C.. .A. A.. A.. .G. .T. C.. G.. .G. C.. .T. .T. .A. .G. .G. .C. T.. .T. .G. .T. .C.

nt = nucleotide position.
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Figure 8. Clinical scores (A), pyrexia (B), nasal shedding (C) and viraemia (D) observed from −3 days
to 21 days post-infection with EHV-1 strain FR-56628 in four Welsh ponies.

Table 4. EC50 (µM) ± standard deviation (SD) of ganciclovir (GCV), aciclovir (ACV) and aphidicolin
(APD) against three different EHV-1 ORF30 2254 variants measured by qPCR assays and real time cell
analysis (RTCA).

Strains
GCV ACV APD

qPCR RTCA qPCR RTCA qPCR RTCA

FR-56628 (C2254/H752) 0.57 ± 0.2 1.29 ± 0.69 7.87 ± 0.98 a 30.32 ± 3.89 c 0.05 ± 0.03 0.14 ± 0.07
FR-6815 (A2254/N752) 0.75 ± 0.44 2.49 ± 1.20 14.15 ± 5.27 b 56.19 ± 11.04 c 0.09 ± 0.04 0.19 ± 0.03 b

FR-38991 (G2254/D752) 0.73 ± 0.42 1.20 ± 0.55 35.98 ± 10.97 a,b 35.09 ± 10.32 0.09 ± 0.04 0.09 ± 0.05 b

a Significant difference between strain FR-56628 (C2254/H752) and strain FR-38991 (G2254/D752) (p < 0.05). b Significant
difference between strain FR-6815 (A2254/N752) and strain FR-38991 (G2254/D752) (p < 0.05). c Significant difference
between strain FR-56628 (C2254/H752) and strain FR-6815 (A2254/N752) (p < 0.05).



Viruses 2020, 12, 1160 16 of 23

4. Discussion

Equid herpesvirus 1, which was first designated as equine abortion virus [51] is a major
cause of infectious abortion and can also cause sporadic EHM cases, in addition to usually mild
respiratory infection. In 2006, Nugent et al. suggested that ORF30 position 2254 could discriminate a
neuropathogenic genotype (G2254/D752) from a non-neuropathogenic genotype (A2254/N752), although
the mechanisms involved are not well defined [17,20]. The current study reports the discovery of a
third genotype with the isolation of a C2254/H752 strain in one single site in France. The EHV-1 strain
affecting these premises was isolated in 2018 and a new PCR assay was designed for the detection of
the C2254 mutation and successfully discriminated A/G and C2254 strains, in combination with a PCR
assay designed by Allen et al. [33]. The C2254 mutation was not detected in strains from other premises
in France between 2016 and 2020. Due to the absence of breeding activity on the affected premises,
and the absence of further C2254/H752 EHV-1 outbreaks since 2018, it is not possible to evaluate the
effect of the C2254/H752 EHV-1 strain in pregnant mares at the current time. In addition, the site from
which the strain was isolated is very restrictive on horse mixing and circulation, which could explain
the absence of identification of any other C2254 strains since the 2018 outbreak. It should also be taken
into account that 2018 was a year with a large number of EHV outbreaks and consequently with a
large number of samples taken. The number of EHV outbreaks in France and associated sampling is
usually much lower, limiting opportunities for virus isolation. Despite anecdotal reports of frequent
vaccination in these premises (every 6 months), there was no information available on the immune
status of the horses at the time of infection. Vaccine efficacy against this strain would need to be
further investigated. Isolation from nasal swabs was not as successful as from co-culture with PBMCs,
which could be explained by the possible presence of interferon alpha (INF-α) in infected horses’ nasal
secretions, as shown in 2010 by Gryspeerdt et al. [52]. When cultured in vitro, the strain induced
cytopathic effects (CPEs) associated with polykaryocytes and syncytia formation, as usually observed
by microscopy in cell culture after infection with EHV-1 [53]. The new EHV-1 strain, named FR-5628,
questions the effect of ORF30 position 2254 mutation on the strain activity.

Based on the amino acid in position 752 (or equivalent) of DNA polymerase gene comparison
between several herpesviruses, including the eight known equid herpesviruses (EHV-1, 2, 3, 4, 5, 7, 8 and
9), as already pointed out by Nugent et al. (2006), D752 (or an equivalent position in other herpesviruses)
appears to be a highly conserved amino acid amongst the Herpesviridae family (Supplementary
Figure S11) [17]. It has been suggested that D752 strains are more likely to be ancestral strains from
which N752 would have evolved, as shown in Figure 9, in which the G2254 strain KENT/64/1994 (see
Figure 6) was proposed to have evolved from an A2254 strain from group 2 cluster 2. All of the
sequences compared carried an aspartic acid (D) at this position, with the exception of numerous
EHV-1 strains (with V592 as a representative N752 EHV-1 strain) and EHV-1 FR-56628, the only H752

strain described to date [30]. To our knowledge, asparagine (N) and histidine (H) are the only two
other amino acids identified in equid herpesviruses’ DNA polymerase gene in position 752. In
addition, a study showed that N752 strains (isolated from abortion) could infect equally monocytic
CD172a+ cells and T lymphocytes, whereas D752 strains (isolated from neurological cases) could infect
CD172a+ cells in a larger proportion than T lymphocytes. In accordance with other studies, the authors
suggested that N752 had adapted its immune evasion strategy after co-evolving from D752 strains with
the host immune system [52,54,55]. Concerning the genotype/pathotype association suggested by
Nugent et al. (2006), it was followed by a statistical report by Perkins et al. performed on 176 EHV-1
isolates, showing a strong but not strict association between G2254/D752 strains and neurological disease,
and A2254 strains and abortion disease. According to the authors, the probability of neurological
disease being associated with G2254/D752 strains was 162 times greater than the probability of it being
associated with A2254/N752 strains [56]. Several studies then showed that this genotype/pathotype
association is not exclusive [21,22,57–59]. The discovery of a third genotype C2254/H752 and its potential
association with neurological signs makes the understanding of the genotype/pathotype association
even more complex. EHV-1 is the only equid herpesvirus known to have possibly evolved from
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D752 strains to N752 and H752 strains. Along with EHV-8 and EHV-9, these three viruses are also the
only equid herpesviruses to our knowledge that have been reported as causing neurological diseases.
This observation is in line with other statements suggesting that the amino acid in position 2254 is not
the only determinant for neurovirulence and could also depend on the environment (air quality, stress,
training management, etc.), the immune status of the horse and its genetic background [9,56,60].Viruses 2020, 12, 1160 20 of 25 
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An antiviral assay with the newly isolated FR-56628 EHV-1 strain and two other A/G2254 strains
was performed with ganciclovir, aciclovir and aphidicolin. Ganciclovir and aciclovir are two nucleoside
analogues (analogues to deoxyguanosine). Indeed, triphosphorylated ganciclovir and aciclovir act as
competitive nucleotide substrates for DNA polymerase [46,47]. When phosphorylated, first by the
viral thymidine kinase (TK) and then by the cellular TK, ganciclovir and aciclovir are incorporated
in the synthesised DNA strand. Replication stops either immediately after treatment (aciclovir),
or after the incorporation of several nucleotides (ganciclovir) [61]. Aphidicolin is a tetracyclic diterpen
that has been described to inhibit the activity of B-family DNA polymerase (to which EHV-1 DNA
polymerase belongs) as a competitive dNTP binding site molecule [62]. Some studies have shown a
good efficacy of this molecule against human herpesviruses, especially in strains resistant to nucleoside
analogues [63–65]. The herpesvirus DNA polymerase crystal structure has only been described for
HSV-1. However, as explained in 2007 by Goodman et al., the EHV-1 amino acid D752 (G2254) residue
is homologous to HSV-1 amino acid D751 residue, which is located in the palm domain, a region
close to the dNTP binging domain (fingers domain) [18,66,67]. In addition, in their in vivo study,
Goodman et al. (2007) suggest that amino acid change from D752 (G2254) to N752 (A2254) could alter
DNA polymerase activity, after they highlighted thst aphidicolin was less effective against DNA
polymerase N752 (A2254) mutant and N752 (A2254) strains than against DNA polymerase D752 (G2254)
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mutant and D752 (G2254) strains [18]. After binding with dNTP, the DNA polymerase subdomain rotates
and changes conformation to allow dNTP incorporation [66,68]. Aphidicolin may change the fingers
and palm domain interaction, as it is associated with Human Pol α by Baranosvki et al. [62]. The effect
of an amino acid change in the palm domain on the interaction of aphidicolin (but also possibly of
ganciclovir and aciclovir) with the DNA polymerase dNTP binding site was therefore questioned.
In this study, aphidicolin and ganciclovir showed a good in vitro effect against the three EHV-1 strains
(FR-56628, FR-6815 and FR-38991), whereas a higher concentration of aciclovir was required to inhibit
these three strains’ replication. As both ganciclovir and aciclovir require the viral TK for their first
phosphorylation, it is unlikely that aciclovir’s lower efficacy was due to strain TK resistances. The 3D
models of the EHV-1 DNA polymerase, based on the HSV-1 DNA polymerase model, did not predict
an effect of an amino acid change in position 752 on the protein function. In addition, antiviral
assays did not show an evident influence of position 752 amino acid residue on the efficacy of either
ganciclovir or aphidicolin in vitro (no significant EC50 difference was found between FR-56628 and
FR-6815, and between FR-56628 and FR-38991). EC50, measured by impedance measurements, showed
that aphidicolin was significantly more efficient against FR-38991 (G2254/D752) than against FR-6815
(A2254/N752), but this was not confirmed by the qPCR assay. Even if a good correlation between RTCA
and qPCR EC50 values has been demonstrated, the impedance method depends on parameters that are
more variable than the qPCR assay, which can explain the differences [69]. Aciclovir showed differences
in efficacy against the three strains which were not reproduced with the two methods. As nucleotide
position 2254 is not the only site where non-synonymous mutations occur in ORF30, these could also
imply changes of DNA polymerase conformation, different from the strains used by Goodman et al.
(2007) and constitute a possible explanation for the aphidicolin effects observed in the two studies.

When compared to 83 other EHV-1 strains, the complete ORF30 nucleotide sequence of the newly
isolated EHV-1 strain FR-56628 showed that, in addition to the mutation in position 2254, this part
of the genome had from zero to three other mutations, when compared to the other EHV-1 strains
in group 2 cluster 2. This cluster is mainly represented by A2254 strains, with the exception of one
G2254 strain and the FR-56628 C2254 strain. As all other G2254 strains are clustered in the ORF30
group 1, the·possibility is not excluded that some EHV-1 A2254 strains from this cluster (group 2)
reversed to EHV-1 G2254 strains or evolved to a C2254 strain (Figure 9). Considering the amino acid
sequence, the EHV-1 MLST placed the EHV-1 strain FR-56628 among UL clade 10, alongside five EHV-1
strains also classified into ORF30 group 2 cluster 2. The amino acid change in ORF30 position 752
differentiates the strain FR-56628 MLST sequence from the other members of the UL clade 10 used
in this study. However, the nucleotide MLST sequence not only showed another silent variation site
in ORF37, but also suggested that two different FR-56628 variants have been isolated from Horse 13.
ORF37 is a conserved gene among alphaherpesviruses and encodes the HSV-1 UL24 homolog [16].
On the contrary to ORF30, this gene has been classified among the non-essential genes for growth
on cultured cells [70,71]. HSV-1 UL24 has been shown to play a role in pathogenicity and to affect
in vivo and in vitro replication and reactivation from latency [72,73]. This protein seems to carry
numerous functions, such as viral gene expression regulation, dispersion of cellular proteins in the
nucleus and glycoproteins distribution in the cytoplasm [74,75]. It was also shown to be required for
EHV-1 pathogenicity in a mouse model [70]. Numerous transcription initiation sites and therefore
transcripts have been identified for HSV-1 UL24. The impact of the silent mutation detected in this
study on different transcripts from different transcription initiation sites is unknown, although all the
ATG codons from EHV-1 ORF37 seemed to be in the same reading frame. This silent mutation was not
identified in the EHV-1 strain isolated from Horse 10, but no information is available concerning other
horses, making it difficult to date the mutation event. Indeed, the strain could either have mutated
after infecting Horse 13, or this could also be the result of a double infection with the two variants,
after physical contact with different horses.

Experimental infection of four 10-month-old Welsh ponies with EHV-1 strain FR-56628 (C2254)
induced characteristic clinical signs of EHV-1 infection in all ponies starting from Day 1 post-infection.
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None of the horses showed neurological clinical signs, but EHM is difficult to reproduce in experimental
infections [7,76–78]. However, the rapid onset of clinical signs, nasal shedding and viraemia were in
accordance with previous experimental challenges performed using EHV-1 strains V592 (A2254) and
Ab4 (G2254) with slightly lower (105.5 TCID50 and 106.6 TCID50, for example) or similar (107.5, 107.6,
for example) infectious doses [6,7,77,79].

5. Conclusions

This study describes the isolation of a new 2254 mutant strain (C2254/H752) from a unique site
in France in 2018 which was associated with a large number of affected animals, despite frequent
vaccination. There was no other identification or isolation of C2254 EHV-1 strains before 2018, nor in
2019 and 2020. The pathogenicity of this strain was confirmed in the context of an in vivo experimental
infection that highlighted the rapid onset of disease and significant excretion and cell-associated
viraemia. The impact of the mutation on ganciclovir, aciclovir and aphidicolin susceptibility was
limited. The molecular characterisation of the strain, the predictive 3D model of the ORF30 and the
in vitro culture taken altogether did not show evidence of a major effect of this new C2254 mutation on
the strain’s behaviour. Most equine herpesviruses have the D752 mutation. EHV-1 is the only equine
herpesvirus to carry the N752 or H752 mutations. This is why ORF30 and MLST phylogeny tend to
indicate that this C2254/H752 has evolved from N752 strains.
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