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in diffuse large B cell lymphoma and Hodgkin 
lymphoma
Pierre Decazes1,2*  , Vincent Camus3,4, Elodie Bohers3,4, Pierre‑Julien Viailly3,4, Hervé Tilly3,4, Philippe Ruminy3,4, 
Mathieu Viennot3,4, Sébastien Hapdey1,2, Isabelle Gardin1,2, Stéphanie Becker1,2, Pierre Vera1,2 
and Fabrice Jardin3,4

Abstract 

Background:  18F-FDG PET/CT is a standard for many B cell malignancies, while blood DNA measurements are 
emerging tools. Our objective was to evaluate the correlations between baseline PET parameters and circulating DNA 
in diffuse large B cell lymphoma (DLBCL) and classical Hodgkin lymphoma (cHL).

Methods:  Twenty-seven DLBCL and forty-eight cHL were prospectively included. Twelve PET parameters were 
analysed. Spearman’s correlations were used to compare PET parameters each other and to circulating cell-free DNA 
([cfDNA]) and circulating tumour DNA ([ctDNA]). p values were controlled by Benjamini–Hochberg correction.

Results:  Among the PET parameters, three different clusters for tumour burden, fragmentation/massiveness and dis‑
persion parameters were observed. Some PET parameters were significantly correlated with blood DNA parameters, 
including the total metabolic tumour surface (TMTS) describing the tumour–host interface (e.g. ρ = 0.81 p < 0.001 for 
[ctDNA] of DLBLC), the tumour median distance between the periphery and the centroid (medPCD) describing the 
tumour’s massiveness (e.g. ρ = 0.81 p < 0.001 for [ctDNA] of DLBLC) and the volume of the bounding box including 
tumours (TumBB) describing the disease’s dispersion (e.g. ρ = 0.83 p < 0.001 for [ctDNA] of DLBLC).

Conclusions:  Some PET parameters describing tumour burden, fragmentation/massiveness and dispersion are sig‑
nificantly correlated with circulating DNA parameters of DLBCL and cHL patients. These results could help to under‑
stand the pathophysiology of B cell malignancies.

Keywords:  Positron emission tomography, B cell malignancies, Diffuse large B cell lymphoma, Hodgkin lymphoma, 
Circulating tumour DNA, Circulating free DNA
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Background
B cell malignancies include non-Hodgkin’s lymphomas 
(NHL), with diffuse large B cell lymphoma (DLBCL) 
which accounts for approximately one third to one half 
of NHL in adults [1] and classical Hodgkin lymphoma 

(cHL). NHL and cHL share the same cell of origin and are 
among the most frequent cancers with, for NHL, an inci-
dence in the USA of 19.6 per 100,000 [2] and, for cHL, 
an incidence of 2.7 per 100,000 per year [3]. These two 
diseases are separated as two distinct categories in World 
Health Organization (WHO) classification due to major 
differences that were well described in morphology, phe-
notype, epigenetic, natural history, treatment strategies 
and clinical manifestations.
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In both DLCBL and cHL, 18F-fluorodeoxyglucose 
(FDG) positron emission tomography coupled with com-
puted tomography (PET/CT) is a standard at baseline 
to describe the extension of the disease, but also during 
the follow-up to evaluate the therapeutic response [4]. 
Among the different parameters which can be extracted 
on the PET/CT, the tumour burden explored by total 
metabolic tumour volume (TMTV) is a well-known prog-
nostic parameter for both DLBCL and cHL [5]. With the 
development of the radiomics [6], more complex quan-
titative parameters than TMTV can be extracted from 
imaging and analysed, some of them describing meaning-
ful tumour phenotype. However, if thousands of different 
radiomical features, including “textural” features, can be 
extracted and analysed from medical images [6, 7], most 
of them can be applied only on unique tumours, while 
lymphomas are, most of the time, multisite tumours and 
it is possible that textural features are therefore less effec-
tive in lymphomas. Therefore, if entropy, a parameter 
among the textural features exploring the relationships 
between the tumour pixels, seems to be a prognostic 
factor for mantle cell lymphoma [8, 9], it is usually dif-
ficult to extract and analyse “textural” parameters when 
multiple tumours are considered because they are math-
ematically designed for unique tumour [10]. For mul-
tisite tumours, like lymphomas, parameters describing 
the tumour burden, tumour fragmentation/massiveness, 
tumour dispersion and tumour activity seem particularly 
relevant. Therefore, new parameters have proven to have 
a prognostic value [11, 12], notably the tumour volume 
surface ratio (TVSR) describing the tumour fragmenta-
tion and which is an independent prognostic factor in 
DLBCL and has an additional prognostic value when 
combined with TMTV, international prognostic index 
(IPI) score and type of chemotherapy used [12]. However, 
in order to optimally describe the tumour phenotype in 
imaging, many new parameters have to be defined and 
evaluated.

In parallel with FDG PET/CT, biology has also made 
great progress in describing lymphomas, notably the con-
cept of liquid biopsy. One major tool of liquid biopsy is 
the analysis of circulating tumour DNA (ctDNA), which 
is the tumour fraction of plasma cell-free circulating 
DNA (cfDNA), measured by the variant allele frequen-
cies (VAF) of somatic tumour mutations. In healthy sub-
jects, cfDNA is detectable as low level due to the normal 
apoptosis of nucleated cells, in particular hematopoietic 
cells. Therefore, the detection of ctDNA requires highly 
sensitive technologies, such as next-generation sequenc-
ing (NGS) approaches or digital PCR (dPCR), capable of 
detecting low-frequency somatic variants. In cancerous 
patients, plasma ctDNA is released by apoptotic tumour 
cells, by necrotic tumour cells or is actively secreted by 

tumour cells [13] and ctDNA level can have a prognos-
tic value at baseline, notably for DLBCL [14]. To quantify 
the ctDNA level ([ctDNA]), we have recently designed 
and validated two sets of genes for DLBCL (panel of 34 
genes frequently mutated in DLBCL patients, so-called 
lymphopanel) [15] and for cHL (set of 9 genes) [16]. In 
these previous studies, [ctDNA] was correlated with fac-
tors of poor prognosis, notably international pronos-
tic index (IPI) for DLBCL and stage 3–4, anaemia and 
symptoms B for cHL. Moreover high TMTV and high 
[ctDNA] level were found to be significantly correlated at 
the time of diagnosis for both DLBCL and cHL [15, 16]. 
However, these correlations were moderate, suggesting 
that other factors may influence these two approaches of 
tumour burden quantification. Thus, the links between 
the tumour phenotype (tumour burden, tumour frag-
mentation/massiveness, tumour dispersion and tumour 
activity), which can be determined on baseline PET/CT, 
and circulating DNA have yet to be explored, notably to 
explain the pathophysiology of ctDNA release.

The main objective of this study was to evaluate the 
correlations between baseline PET parameters and circu-
lating DNA levels ([cfDNA] and [ctDNA]) in two B cell 
malignancies: DLBCL and cHL.

Results
Patients
Thirty patients with diffuse large B cell lymphoma 
(DLBCL) and 50 patients with classical Hodgkin lym-
phoma (cHL) were enrolled prospectively. Description of 
the population with clinical characteristics and outcomes 
is available in two previous studies [15, 16]. All patients 
had performed a PET/CT on one of 3 different machines 
(description summarized in Additional file 1: Table 1). As 
one machine (PET/CT n°3) represented only 6,25% of the 
examinations performed (n = 3 for DLBCL and n = 2 for 
cHL), the patients concerned were excluded to avoid a 
bias linked to the PET/CT used. Description of the popu-
lation studies, values of PET parameters and blood cell-
free DNA measurements is available in Table 1. For the 
analysis concerning ctDNA, 3 patients for DLBCL and 
15 patients for cHL were excluded as no mutation corre-
sponding to lymphoma was found in ctDNA (false nega-
tives of the technique at baseline).

Distribution of correlations between PET parameters 
with each other
Comparison of PET parameters distribution accord-
ing to the machine use is summarized in Additional 
file  1: Table  1. No statistically significant difference 
(Wilcoxon–Mann–Whitney test p values > 0.05) was 
observed in the distribution of all PET parameters for 
DLBCL between PET/CT n°1 (n = 14) and PET/CT 
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n°2 (n = 13). For cHL, only four parameters (TumBB, 
Dmax, itErosion, medPCD) among the twelve studied 
had a statistically significant difference (Wilcoxon–
Mann–Whitney test p values < 0.05) in the distribution 
between PET/CT n°1 (n = 14) and PET/CT n°2 (n = 34). 
For these four parameters, a post-reconstruction har-
monization by ComBat [17, 18] was performed to avoid 
a bias linked to PET/CT used (see Additional file  2: 
Fig. 1), with no statistically significant difference found 
between the distributions after harmonization (Wil-
coxon–Mann–Whitney test p values > 0.05) and the 
results obtained used for the subsequent analysis.

Histograms of the distributions of each PET param-
eter, fused for DLBCL and cHL, are presented in Fig. 1. 
TMTV, TMTS, TumBB, Dmax and nROI showed non-
different distributions for both DLCBL and cHL (Wil-
coxon–Mann–Whitney test p values > 0.05), while 

the distributions were significantly different for the 
other parameters (Wilcoxon–Mann–Whitney test p 
values < 0.05).

Plots of high Spearman’s correlations (p < 0.05 con-
trolled by Benjamini–Hochberg–BH correction [19]) 
between PET parameters for DLBCL and cHL are 
presented in Fig.  2. Three similar clusters were found 
in both DLBCL and cHL combining highly correlated 
parameters: the first one concerning the tumour bur-
den with TMTV, TMTS and TLG, the second describ-
ing the tumour dispersion with TumBB and Dmax (and 
also with nROI with a lower correlation) and the third 
concerning the massiveness with medEdgeD and itEro-
sion (but also TVSR and medPCD, which is, in the case 
of DLCBL, also associated with the tumour burden). 
MedEdgeD, itErosion, TumBB were also well corre-
lated with TMTV and TLG for DLBCL. All statistically 

Table 1  Patients characteristics and values of PET and blood DNA parameters

cfDNA circulating free DNA, cHL classical Hodgkin’s lymphoma, ctDNA circulating tumour DNA, DLBCL diffuse large B cell lymphoma, LDH lactate dehydrogenase, NA 
not available, PET positron emission tomography

DLBCL
(n = 27)
n (%)

cHL
(n = 48)
n (%)

Median age [range] (in years) 69 [20–93] 33 [20–86]

Male 15 (55.5%) 22 (45.8%)

Stage III/IV (vs. I/II) 20 (74%) 20 (41.7%)

LDH > ULN 10 (37%) 8 (17%, NA = 1)

Spleen involvement 2 (7%) 3 (6%)

Median time interval between blood sample and PET 
[maximal] (in days)

9 [61] 8 [65]

PET parameters
mean (± SD) [min–max]

(1) SUVmax 22.4 (± 8.3) [4.3–35.5] 15.4 (± 6.2) [3.6–33.8]

(2) SUVmean 10.3 (± 3.6) [2.9–17.3] 5.7 (± 1.8) [2.2–11.3]

(3) TMTV (cm3) 761 (± 898) [0.2–2927] 280 (± 291) [2–1256]

(4) TLG 8596 (± 10,068) [0.7–30,773] 1537(± 1444) [5–6520]

(5) TMTS (cm2) 910 (± 1017) [2–3309] 570 (± 570) [12–3218]

(6) TVSR (mm) 7.0 (± 3.4) [1.2–15.2] 4.5 (± 1.6) [1.9–9.6]

(7) TumBB (cm3) 13,997 (± 18,021) [0–60,982] 12,961 (± 22,462) [6–107,039]

(8) Dmax (mm) 404 (± 294) [10–1026] 376 (± 313) [26–1175]

(9) nROI 9.2 (± 12.6) [1–65] 12 (± 10.8) [1–49]

(10) itErosion 2.2 (0.8) [1–4.46] 1.6 (± 0.4) [1.0–2.8]

(11) medPCD (mm) 49.8 (± 29.7) [3.9–117.5] 29.6 (± 15.1) [7.7–80.1]

(12) medEdgeD (mm) 44.6 (± 20.2) [3.3–79.4] 29.2 (± 10.2) [11.3–57.6]

Blood cell-free DNA parameters
mean (± SD) [min–max]

[cfDNA] (hGE/mL) 22,665 (± 28,414)[4206–124,425] 13,771 (± 18,975)[2023–
88,046]

[ctDNA] (hGE/mL) 4961 (± 9948) [2–39,151]
(3 NA, no mutation found)

335 (± 623)[10–2684]
(15 NA, no mutation found)
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Figure 1  Plots representing distribution histograms of PET parameters fused for DLBCL and cHL with Wilcoxon–Mann–Whitney test p value

Figure 2  Plot representing clusters of Spearman’s correlations (with p<0.05 controlled by Benjamini–Hochberg correction) between PET 
parameters for DLBCL and cHL. The blue, brown and rose lines show the three similar clusters found in both DLBCL and cHL
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significant correlation values are visible in Additional 
file 3: Fig. 2.

Correlations between PET parameters and circulating DNA 
([cfDNA] and [ctDNA])
Table  2 represents the Spearman’s correlations between 
the twelve PET parameters and the two blood DNA 
parameters ([cfDNA], [ctDNA]) for DLBCL and cHL, 
with the 3 first higher values parameters with an aster-
isk  for each category (p values controlled by BH 
correction).

Concerning cfDNA and for DLBCL, three PET bur-
den parameters (TMTS, TMTV and TLG) had the high-
est correlations with [cfDNA] (ρ = 0.78, ρ = 0.76 and 
ρ = 0.74, respectively). Parameters of dispersion, like 
TumBB, and of massiveness, like medPCD, were also well 
correlated (ρ = 0.69 and ρ = 0.70, respectively). For cHL, 
no statistically significant correlation was found between 
PET parameters and [cfDNA].

Concerning ctDNA, dispersion parameter TumBB had 
correlation values with [ctDNA] among the highest for 
both DLBCL (ρ = 0.83) and cHL (ρ = 0.54). For DLBCL, 
medPCD, describing massiveness and TMTS were also 
highly correlated with [ctDNA] (ρ = 0.81 for both). For 
cHL, two burden parameters, TLG and TMTV, presented 
the highest correlation values with [ctDNA] (ρ = 0.58 and 
ρ = 0.55, respectively).

In an univariate linear regression analysis (see Addi-
tional file  4: Table  2), most of the parameters were sig-
nificantly associated with [cfDNA] of DLBCL and 

none to [cfDNA] of cHL. Concerning [ctDNA], burden 
parameters (TMTV, TMTS and TLG) were significantly 
associated with it in both DLBCL and cHL. Dispersion 
parameters (TumBB and Dmax) were significantly asso-
ciated with [ctDNA] in cHL and massiveness param-
eters (itErosion, medPCD, medEdgeD) with [ctDNA] in 
DLBCL.

In the multivariate stepwise regression analysis used to 
determine [cfDNA] and [ctDNA] from PET parameters 
(see Table 3), statistically significant formulas were found 
for both DLBCL and cHL even if adjusted R2 was higher 
for DLBCL (0.53 and 0.44 for [cfDNA] and [ctDNA], 
respectively) than for cHL (0.28 and 0.40 for [cfDNA] and 
[ctDNA], respectively). Interestingly, TMTS and med-
EdgeD were associated with determined [ctDNA] in both 
DLBCL and cHL, while TMTV was absent of the formu-
las used to predict [ctDNA].

Discussion
In this study analysis patients prospectively included, 
we explored the correlations between PET parameters 
and circulating DNA ([cfDNA] and [ctDNA]) in two B 
cell malignancies, DLBCL and cHL. We have seen that 
TMTV, a tumour burden parameter, but also some other 
PET parameters, describing tumour burden, fragmenta-
tion/massiveness and dispersion, were significantly cor-
related with cfDNA and ctDNA levels. These parameters 
could be associated to predict cfDNA and ctDNA release 
for both DLBCL and cHL as shown by a multivariate 
analysis.

Table 2  Spearman’s correlations between twelve PET parameters (SUVmax, SUVmean, TMTV, TLG, TMTS, TVSR, TumBB, 
Dmax, nROI, itErosion, medPCD, medEdgeD) and  two blood DNA parameters ([cfDNA], [ctDNA]) for  DLBCL and  cHL 
and with the 3 more important and significant values with an asterisk for each categories

p values controlled by Benjamini–Hochberg correction

[cfDNA] [ctDNA]

DLCBL cHL DLBCL cHL

ρ p value ρ p value ρ p value ρ P value

(1) SUVmax 0.44 0.02 0.10 0.77 0.41 0.05 0.30 0.14

(2) SUVmean 0.18 0.38 -0.06 0.80 0.19 0.37 0.08 0.74

(3) TMTV 0.76*  < 0.001 0.33 0.14 0.79  < 0.001 0.55* 0.005

(4) TLG 0.74*  < 0.001 0.31 0.14 0.75  < 0.001 0.58* 0.005

(5) TMTS 0.78*  < 0.001 0.36 0.14 0.81*  < 0.001 0.52 0.005

(6) TVSR 0.50 0.009 0.08 0.77 0.56 0.006 0.26 0.20

(7) TumBB 0.69 0.001 0.27 0.17 0.83*  < 0.001 0.54* 0.005

(8) Dmax 0.67  < 0.001 0.23 0.21 0.77  < 0.001 0.50 0.007

(9) nROI 0.66  < 0.001 0.26 0.17 0.75  < 0.001 0.41 0.03

(10) itErosion 0.59 0.001 0.05 0.8 0.59 0.003 0.17 0.42

(11) medPCD 0.70  < 0.001 0.25 0.81 0.81*  < 0.001 0.41 0.03

(12) medEdgeD 0.62  < 0.001 0.04 0.17 0.65  < 0.001 0.02 0.91



Page 6 of 10Decazes et al. EJNMMI Res          (2020) 10:120 

The PET parameters studied explored different pheno-
types of the tumours: the tumour burden (with TMTV, 
TMTS but also TLG as it is a parameter highly corre-
lated with the two previous), the tumour activity (SUV-
max, SUVmean and, partly, TLG), the tumour dispersion 
(Dmax, TumBB) and the tumour massiveness/fragmen-
tation (TVSR, medPCD, medEdgeD, nRoi, itErosion). 
These parameters consider the disease as a whole and can 
characterize all tumour locations. This type of param-
eters is well suited to some cancers, notably lymphomas 
and probably metastatic solid cancers, as shown by the 
predictive value of known parameters like TMTV [5], 
TVSR [12] or Dmax [20].

Concerning the burden parameters, TMTV was found 
to be significantly correlated with [cfDNA] and [ctDNA] 
levels in both DLBLC and cHL, as already found in previ-
ous studies [15, 16]. We have also found that TMTS was 
frequently among the more highly correlated parameters 
with cfDNA and ctDNA levels (among the three first 
parameters in 2 cases of 4). It was notably highly corre-
lated with [ctDNA] (ρ = 0.81 p < 0.001) for DLBCL. One 
possible pathophysiological explanation is that TMTS 
represents the tumour surface where the progression or 
the regression of the tumours [21] occurs and, therefore, 
the “battlefront” between the tumour and the host where 
cytolysis takes place.

For tumour massiveness/fragmentation parameters, 
medPCD, corresponding to the median distance between 
the centroid of the tumours and the periphery, was 
also among the more highly correlated parameter with 
[cfDNA] and [ctDNA] for DLBCL (ρ = 0.70 and ρ = 0.81, 
respectively). One possible hypothesis for this link 
between massiveness and circulating blood DNA is the 
fact that massive tumour can be necrotic at their centre 
and therefore release cell-free DNA in the bloodstream.

Among the dispersion parameters, TumBB, represent-
ing the dispersion volume of the tumours, was among 

the more highly correlated parameter with [ctDNA] for 
both DLBCL and cHL (ρ = 0.83 and ρ = 0.54, respec-
tively). One explanation is the fact that TumBB is linked 
to the extend and the stage of the disease, like Ann Arbor 
staging.

In this study, we explored PET parameters dedicated 
to multisite tumours to determine the tumour burden, 
activity, dispersion and massiveness/fragmentation. 
These parameters belong to the “shape” and “intensity” 
parameter types [22]. Some other parameters, including 
“textural” parameters used to determine the heterogene-
ity of the tumours [9], could be interesting with possible 
links between DNA parameters (in bloodstream or in 
tumour biopsy) and PET parameters. However, most of 
the “textural” parameters are mathematically designed to 
characterize unique tumour [10, 23] and have therefore 
to be applied on the largest lymphoma lesion which could 
be representative of the disease, notably to predict sur-
vival [24].

It has to be noticed that, contrary to the “textural” ones, 
the parameters based on “shape” and “intensity”, such 
as those explored in our study, are robust and less sen-
sitive to PET/CT machine and reconstruction used [17, 
22, 25]. This is concordant with the Wilcoxon–Mann–
Whitney tests performed in our study comparing the 
PET parameters distribution acquired by the two differ-
ent machines: in both diseases, no statistically significant 
difference was observed in the distribution of 83% of the 
parameters studied (100% if considering DLBCL alone). 
For the remaining 17% (only 4 parameters of cHL), we 
applied a data harmonization by the ComBat method [17, 
18] to avoid a potential bias linked to the difference of the 
machines used. However, the robustness, notably inter-
observer one, and reproducibility of the global param-
eters, based on “shape” and “intensity”, compared to 
other parameters, such as “textural” parameters, have to 
be confirmed by other studies. Moreover, the prognostic 

Table 3  Multivariate stepwise regression between twelve PET parameters (SUVmax, SUVmean, TMTV, TLG, TMTS, TVSR, 
TumBB, Dmax, nROI, itErosion, medPCD, medEdgeD) and  two blood DNA parameters ([cfDNA], [ctDNA]) with  adjusted 
R-squared (R2) and p values

[cfDNA] [ctDNA]

DLBCL cHL DLBCL cHL

(Intercept) − 7.78e03
 + TMTV*20.1
 + itErosion*2.25e04
 + medEdgeD* − 7.33e02

(Intercept) 1.89e04
 + TMTV* − 6.14e01
 + TMTS*5.25e01
 + TVSR*1.05e04
 + TumBB* − 5.28e−01
 + Dmax*6.04e01
 + nROI* − 1.05e03
 + itErosion* − 4.18e04

(Intercept) − 7.72e03
 + itErosion*9.95e03
 + TMTS*5.06
 + medEdgeD* − 2.86e02

(Intercept) 3.62e02
 + TMTS*7.82e − 01
 + TVSR*2.09e02
 + TumBB* − 2.55e−02
 + Dmax*2.72e00
 + nROI* − 4.41e01
 + medPCD*4.31e01
 + medEdgeD* − 9.28e01

[R2 = 0.53] (p < 0.001) [R2 = 0.28] (p = 0.006) [R2 = 0.44] (p = 0.002) [R2 = 0.40] (p = 0.005)
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value of these parameter has to be explored on a larger 
population with a sufficient follow-up. To allow this, and 
in accordance with the “image biomarker standardisa-
tion initiative” (IBSI) guidelines [23], we have described 
the PET parameters studied, as well as the acquisitions 
performed, in such a way that they can be reproduced by 
other teams.

There is a growing trend towards a PET/[ctDNA] com-
bination to monitor minimal residual disease (MRD) in 
patients, hence the relevance of this work. In addition, 
PET parameters explored by Oncometer3D can be easily 
calculated, automatically and quickly from tumour con-
tours. This type of new parameters will become more and 
more accessible as tumours are increasingly segmented 
automatically [26, 27] and could help to determine 
whether ctDNA should replace or be additional data to 
PET/CT.

Conclusions
Some PET parameters describing tumour burden, frag-
mentation/massiveness and dispersion are significantly 
correlated with the blood DNA parameters of DLBCL 
and cHL. These results could help to understand the 
pathophysiology of these B cell malignancies. In addition, 
the combination of PET parameters and liquid biopsy 
could improve patient monitoring.

Materials and methods
Patients
Patients with DLBCL and cHL were enrolled prospec-
tively in two non-interventional studies: LymphoSeq 
(NCT 02339805) and XPO1 (NCT 02815137). Clinical 
features and biological material at the time of diagno-
sis, including DNA from blood, were collected before 
any treatment. Patients were followed after rituximab-
cyclophosphamide-doxorubicin-vincristine-prednisone 
(R-CHOP) or R-CHOP-like chemotherapies for DLBCL, 
or after ABVD or BEACOPP-escalated chemotherapies 
for cHL. An 18FDG-PET/CT was performed at the time 
of diagnosis and during the follow-up (mid-treatment 
and end of treatment, according to treatment strategies).

Patients provided written informed consent in accord-
ance with the Declaration of Helsinki, and the Institu-
tional Review Board of Henri Becquerel Cancer Centre 
approved the protocol (registration clinical.gov numbers: 
NCT02339805 and NCT02815137).

Blood specimens
Blood samples were obtained by blood tests at diagnosis 
on EDTA tubes and were centrifuged for 10 min at 3000–
3500  rpm within three hours of collection. Plasma was 
aliquoted into 1  mL in microtubes and stored at -80  °C 
until extraction.

Circulating cell-free DNA ([cfDNA]) was extracted 
from 3  mL of plasma aliquots with Amp Circulating 
Nucleic Acid® QI Kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s instructions and quantified 
using QuBit High Sensitivity dsDNA (ThermoFisher 
Scientific, Illkirch, France). After tumour sequenc-
ing adapted to the type of cancer [15, 16], the DNA was 
eluted in 60 to 80  μL of AVE buffer and then stored at 
− 80 °C. Quantification of the double-stranded DNA was 
performed by fluorometry on Qubit 2.0 (ThermoFisher 
Scientific Carlsbad, CA, USA), with Qubit® dsDNA kit 
HS Assay (ThermoFisher Scientific, Carlsbad, CA, USA). 
The circulating cell-free tumour DNA ([ctDNA]) concen-
trations were expressed in haploid genome equivalents 
per mL of plasma (hGE/mL) and calculated by multiply-
ing the mean variant allelic frequency (VAF) for all muta-
tions used for detection calling by the concentration of 
[cfDNA] (pg/mL of plasma) and dividing by 3.3, using 
the assumption that each haploid genomic equivalent 
weighs 3.3 pg, as previously described in the publication 
by Scherer et al. [28].

Positron emission tomography (PET) analysis
All patients underwent FDG PET/CT before the onset 
of chemotherapy, performed after a 6-h fasting and 
when blood glucose level was less than 1.7  g/L. PET 
data were acquired on 3 different PET systems, approxi-
mately 60 min after injection of 3.5 to 4.5 Mbq/kg, from 
the mid-thigh toward the base of the skull, 3 to 4  min 
per bed position. CT scan was set up to 100 to 120 kV, 
with an intensity modulation system. Injected activity, 
acquisition time and CT parameters were depended of 
the PET system and patient’s habitus. No contrast agent 
was administered to the patients for CT. Three different 
PET/CT scanners were used without selection accord-
ing to patients: a Biograph16 HiRes (Siemens®, Germany) 
(PET/CT n°1), a GE710 (General Electrics®, USA) (PET/
CT n°2) and a Biograph40 mCT (Siemens®, Germany) 
(PET/CT n°3) with acquisition parameters described in 
Additional file  1: Table  1. PET system was normalized 
daily and the calibration coefficient validated if the day-
to-day variation remained below 0.3%. The global quan-
tification, from the dose calibrator to the imaging system, 
was measured internally on a quarterly basis and double 
checked by the EARL’s quality assurance program. SUV 
was normalized according to the weight of the patients. 
Regions of interest were segmented semi-automatically 
with PET VCAR (General Electrics®, USA) based on 
41% SUVmax segmentation, by consensus of two nuclear 
medicine physicians (SB and PD) with a visual control 
and manual adaptation if necessary. The spleen was con-
sidered as involved if there was focal uptake or diffuse 
uptake higher than 150% of the liver background. The 
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bone marrow involvement was only included in the vol-
ume measurement if there was focal uptake. Contours (in 
RTSS format) were converted to binary mask (in mha for-
mat) by using the software plastimatch [29]. Two images 
mask was used for each patient: one binary mask with 
only contours, one 32-bits mask with SUV values hard-
coded in the pixel data. PET parameters were extracted 
by using the in-house software Oncometer3D version 1.0.

PET parameters
The twelve following parameters were determined on 
the baseline PET/CT by an in-house software called 
“Oncometer3D”, with a graphical representation of the 
parameters visible in Fig.  3: (1) SUVmax, the highest 
maximal standardized uptake value (SUV) measured in 
all tumours, (2) SUVmean, the mean value of SUV meas-
ured in all tumours, (3) total metabolic tumour volume 
(TMTV) obtained by summing the metabolic volumes of 
all the nodal and extra-nodal lesions, (4) total lesion gly-
colysis (TLG) calculated as the product of the MTV and 
the SUVmean (TLG = TMTV × SUVmean), (5) total met-
abolic tumour surface (TMTS) obtained by summing the 
metabolic surfaces of all tumours [12], (6) tumour vol-
ume surface ratio (TVSR) corresponding to the ratio of 
the TMTV and the TMTS [12], (7) volume of the bound-
ing box including the tumours (TumBB) correspond-
ing to the volume of tumour dispersion, (8) the maximal 
tumour distance (Dmax) corresponding to the distance 
between the two lesions that were the furthest apart [20], 

(9) the number of regions of interest (nROI) correspond-
ing to the number of unique tumour on the whole exami-
nation, (10) iterative erosion (itErosion) corresponding to 
the number of erosions [30] required to remove tumours 
from the images, (11) the median distance between the 
centroid of the tumours and the periphery (medPCD), 
(12) the median edge distance (medEdgeD) correspond-
ing to the median distance between the opposite edges of 
the tumours.

Statistical analysis
In order to analyse a potential “machine effect” due to the 
use of several different PET/CT machines, the distribu-
tions of the different PET parameters according to the 
machines used and the type of disease were compared by 
Wilcoxon–Mann–Whitney tests. In case of differences in 
the distributions, a harmonization by ComBat method 
was carried out [17, 18].

To illustrate and compare distribution of PET param-
eters between DLBCL and cHL, fused histograms were 
produced with Wilcoxon–Mann–Whitney tests per-
formed between the distributions of DLBCL and those of 
cHL.

To characterize the relationships between the dif-
ferent parameters, Spearman’s rank correlation coeffi-
cient of PET/CT parameters with each other and with 
DNA parameters ([cfDNA], [ctDNA]) was calculated 
separately for DLBC and cHL. For [ctDNA], null values 
were excluded from the analysis as they correspond to 

Figure 3  Representation of the twelve different PET parameters measured by the software Oncometer3D and analysing burden, activity, 
dispersion, fragmentation and massiveness of the lymphoma. For graphical purpose, a planar representation of these 3D parameters is shown
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a false negative (mutation of the lymphoma not present 
in the panel and, therefore, no possibility to measure 
the ctDNA).

An univariate linear regression analysis was per-
formed to explore linear correlations between PET and 
DNA parameters. To explore the interest of the combi-
nation of several factors, a multivariate stepwise regres-
sion analysis in both direction was used to determine 
[cfDNA] and [ctDNA] from the twelve parameters for 
both diseases.

Statistical significance was considered at p < 0.05 con-
trolled by Benjamini–Hochberg correction [19]. All sta-
tistical analyses were performed using R software version 
3.4.4 [31].
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Additional file 1: Table 1. Acquisition parameters of the 3 different 
PET/CT used and Wilcoxon test p-values between distributions of PET 
parameters for DLCBL and cHL according to the acquisition on PET/CT n°1 
(Biograph16) or PET/CT n°2 (GE710). p values controlled by Benjamini–
Hochberg correction.
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and n°2 before and after harmonization by ComBat with Wilcoxon–Mann–
Whitney test p-value.

Additional file 3: Figure 2. Plot representing Spearman’s correlations 
(p < 0.05 controlled by Benjamini–Hochberg correction, else blank) 
between PET parameters for DLBCL and cHL.

Additional file 4: Table 2. Univariate linear regression between twelve 
PET parameters (SUVmax, SUVmean, TMTV, TLG, TMTS, TVSR, TumBB, Dmax, 
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