D. Alsina, Phd thesis: Multipartite entanglement and quantum algorithms, 2017.

M. Bataille and J. Luque, Quantum circuits of cZ and SWAP gates: optimization and entanglement, Journal of Physics A: Mathematical and Theoretical, vol.52, issue.32, p.325302, 2019.

H. Charles, S. J. Bennett, and . Wiesner, Communication via one-and twoparticle operators on einstein-podolsky-rosen states, Phys. Rev. Lett, vol.69, pp.2881-2884, 1992.

A. Cayley, Mémoire sur les hyperdéterminants, Journal für die reine und angewandte Mathematik, vol.30, pp.1-37, 1846.

L. Chen, . Dragomir, and . Okovi, Proof of the Gour-Wallach conjecture, Physical Review A, vol.88, issue.4, 2013.

R. Cleve, D. Gottesman, and H. Lo, How to share a quantum secret, Physical Review Letters, vol.83, issue.3, p.648651, 1999.

D. Ellie, P. Hondt, and . Panangaden, The computational power of the W and GHZ states, 2004.

W. Dür, G. Vidal, and C. J. Ignacio, Three qubits can be entangled in two inequivalent ways, Physical Review A, vol.62, p.62314, 2000.

A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete, Physical Review, vol.47, 1935.

. Ekert, Quantum cryptography based on Bell's theorem. Physical review letters, vol.67, pp.661-663, 1991.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble et al., Unconditional Quantum Teleportation, Science, vol.282, p.706, 1998.

M. Israel, M. M. Gelfand, Z. Kapranov, V. Andrei, and . Discriminants, Resultants and Multidimensional Determinant. Birkhäuser, 1992.

G. Gour and N. R. Wallach, Entanglement of subspaces and errorcorrecting codes, Physical Review A, vol.76, issue.4, 2007.

G. Gour and N. R. Wallach, On symmetric SL-invariant polynomials in four qubits, 2012.

M. Daniel, M. A. Greenberger, A. Horne, and . Zeilinger, Bell's theorem without inequalities, American Journal of Physics, vol.58, issue.12, p.1131, 1990.

A. Higuchi and A. Sudbery, How entangled can two couples get?, Physics Letters A, vol.273, issue.4, pp.213-217, 2000.

M. Hillery, V. Buek, and A. Berthiaume, Quantum secret sharing, Physical Review A, vol.59, issue.3, p.18291834, 1999.

F. Holweck, J. Luque, and T. Jean-yves, Geometric descriptions of entangled states by auxiliary varieties, Journal of Mathematical Physics, vol.53, issue.10, p.102203, 2012.

F. Holweck, J. Luque, and T. Jean-yves, Entanglement of four qubit systems: A geometric atlas with polynomial compass I (the finite world), Journal of Mathematical Physics, vol.55, issue.1, p.12202, 2014.

F. Holweck, J. Luque, and T. Jean-yves, Entanglement of four-qubit systems: a geometric atlas with polynomial compass II (the tame world), Journal of Mathematical Physics, vol.58, issue.2, p.22201, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02096076

J. Hopcroft and R. Tarjan, Algorithm 447: Efficient algorithms for graph manipulation, Commun. ACM, vol.16, issue.6, p.372378, 1973.

R. Horodecki, M. L. Pawe-l-horodecki, K. Horodecki, and . Horodecki, Quantum entanglement, Rev. Mod. Phys, vol.81, pp.865-942, 2009.

A. Klyachko, Coherent states, entanglement, and geometric invariant theory

N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt et al., Experimental comparison of two quantum computing architectures. Proceedings of the National Academy of Sciences of the United States of America, vol.114, pp.3305-3310, 2017.

J. , G. Luque, and J. Thibon, The polynomial invariants of four qubits, Phys. Rev. A, vol.67, p.42303, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00084700

A. Miyake, Classification of multipartite entangled states by multidimensional determinant, Phys. Rev. A, vol.67, p.12108, 2003.

A. Miyake, Multipartite entanglement under stochastic local operations and classical communication, 2004.

A. Miyake and M. Wadati, Multipartite entanglement and hyperdeterminants, Quantum Information and Computation, vol.2, pp.540-555, 2002.

A. Michael, I. L. Nielsen, and . Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 2011.

S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nature Photonics, vol.9, pp.641-652, 2015.

R. Steinberg, Lectures on Chevalley Groups. University Lecture Series, vol.66, 2016.

L. Vaidman, Teleportation of quantum states, Physical Review A, vol.49, pp.1473-1476, 1994.

F. Verstraete, J. Dehaene, B. D. Moor, and H. Verschelde, Four qubits can be entangled in nine different ways, Phys. Rev. A, vol.65, p.52112, 2002.

R. Wilson, The Finite Simple Groups, 2009.

K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam et al.,

N. C. Chen, M. Pisenti, C. Chmielewski, and . Collins, Benchmarking an 11-qubit quantum computer, Nature Communications, vol.10, issue.1, 2019.

D. M. Zajac, T. M. Hazard, X. Mi, E. Nielsen, and J. R. Petta, Scalable gate architecture for a one-dimensional array of semiconductor spin qubits, Phys. Rev. Applied, vol.6, p.54013, 2016.