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Rouen Normandy, 76801 Saint É tienne Du Rouvray, France. 5.—Laboratory of Multi-Scale
Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal
University, Lenin ave., 51, Ekaterinburg, Russian Federation 620000. 6.—Physikalisch-
Astronomische Fakultät, Friedrich-Schiller-Universität-Jena, 07743 Jena, Germany.
7.—e-mail: a.kao@gre.ac.uk. 8.—e-mail: l.v.toropova@urfu.ru

The theory of stable dendritic growth within a forced convective flow field is
tested against the enthalpy method for a single-component nickel melt. The
growth rate of dendritic tips and their tip diameter are plotted as functions of
the melt undercooling using the theoretical model (stability criterion and
undercooling balance condition) and computer simulations. The theory and
computations are in good agreement for a broad range of fluid velocities. In
addition, the dendrite tip diameter decreases, and its tip velocity increases
with increasing fluid velocity.

INTRODUCTION

It is well known that the growth of dendritic
crystals takes place in many areas of modern
science ranging from materials physics, geophysics
and atmosphere physics to the chemical industry,
biophysics and life science1–6. As this takes place,
the growth mechanisms of dendrites, their shape
and interaction determine the characteristics of the
internal microstructure of the crystallized sub-
stance7–9. These mechanisms, in turn, depend on
heat and mass transfer processes complicated by
hydrodynamic and convective fluid flows, the pres-
ence of dissolved impurities and various crystal
growth symmetries. To determine the stable den-
dritic growth mode, as well as to establish the
boundaries of morphologic transitions of the inter-
nal structure in solidified materials, it is necessary
to independently determine the growth rate V of the
dendrite tip and its diameter q depending on the

melt undercooling DT. This problem can be solved
using the microscopic solvability theory together
with the sharp interface model, which lead to two
transcendental equations for V and q as functions of
DT and other physical parameters of dendritic
growth. Such a theoretical approach has been
recently tested against experimental data and com-
putations in a series of works10–13 in the absence of
a forced convection. The present study compares the
theory of stable dendritic growth in the presence of
a forced convection with computer simulations by
the enthalpy method.

Our article is organized as follows. Section 2
summarizes the main outcomes following from the
solvability theory and the sharp interface model
keeping in mind the fourfold crystalline symmetry
and a forced convective flow. Here, we present the
thermally controlled model of anisotropic dendritic
growth as well as its final analytical solution, which
consists of two transcendental equations for V and
q. Section 3 is concerned with the background of the
enthalpy method and our main results following

(Received April 24, 2020; accepted July 13, 2020;

JOM, Vol. 72, No. 9, 2020

https://doi.org/10.1007/s11837-020-04292-4
� 2020 The Author(s)

(Published online August 7, 2020) 3123

http://orcid.org/0000-0002-6430-2134
http://crossmark.crossref.org/dialog/?doi=10.1007/s11837-020-04292-4&amp;domain=pdf


from simulations of dendritic growth. The main
outcomes of our analysis and future directions are
discussed in Sect. 4.

SHARP INTERFACE MODEL
AND THE SOLVABILITY THEORY

Governing Equations

Consider the steady-state growth of a two-dimen-
sional thermal dendritic crystal along the spatial
axis z in the presence of a forced convective flow
coming from the opposite direction14 (Fig. 1).

The heat balance condition at the dendritic inter-
face can be written as

TQ v � nð Þ ¼ DT rTs �rTlð Þ � n; ð1Þ

where TQ is the hypercooling, v � n is the growth
velocity, DT is the thermal diffusivity, Ts and Tl are
the temperatures in solid and liquid phases,
respectively.

The heat transport equations in the liquid and
solid phases take the form

@Tl

@t
þ w � rð ÞTl ¼ DTr2Tl;

@Ts

@t
¼ DTr2Ts; ð2Þ

where w is the fluid velocity, t is the time variable,
and r is the differential nabla operator. Note that
we consider the case of equal thermal diffusivities in
both the phases, because this hypothesis does not
change the selection criterion (it can change the
selection constant only).

To describe the hydrodynamic flows, we use the
linearized Oseen model for a viscous flow15–17

U
@w

@z
¼ � 1

ql
rpþ mr2w; r �w ¼ 0: ð3Þ

Here, U is the fluid velocity far from the dendritic
surface (see Fig. 1), p is the pressure, ql is the
density of liquid, and m is the kinematic viscosity.

The Gibbs-Thomson equation at the solid-liquid
boundary holds

Tint ¼ Tl ¼ Ts ¼ Tm � TQdðh;/ÞK � ~bðh;/Þvn; ð4Þ

where Tint is the phase transition temperature at
the dendrite interface, Tm is the melting tempera-
ture for the pure system, and K is the interface

curvature, dðh;/Þ, and ~bðh;/Þ are the capillary
length and the function of anisotropic kinetics with
the spherical angles h and /, which define the
orientation of the normal to the dendrite interface
and its growth direction.

In the case of cubic symmetry, dðh;/Þ and ~bðh;/Þ
are described by

dðh;/Þ ¼ d0 1 � ad cos4 hþ sin4 h 1 � 2 sin2 / cos2 /
� �� �� �

;

ð5Þ

~bðh;/Þ ¼ b0 1 � ab cos4 hþ sin4 h 1 � 2 sin2 / cos2 /
� �� �� �

;

ð6Þ

where d0 is the capillary constant, ad � 1 stands for
the stiffness, which depends on a small anisotropy
parameter ec of surface energy, b0 is the kinetic
constant, and ab � 1 is the kinetic anisotropy
parameter.

Considering the case of needle-like crystal in the
form of a paraboloid of revolution, Eq. 5 can be
reduced by averaging over /18 and written out for
the case of n-fold symmetry:

dðhÞ ¼ d0 1 � ad cos n h� hdð Þ½ �f g; ð7Þ

~bðhÞ ¼ b0TQ 1 � ab cos n h� hb
� �� �� �

; ð8Þ

where hd and hb designate the angles between the
directions of growth and minimal functions dðhÞ and
~bðhÞ.

The convective heat transfer problem (1)–(8) writ-
ten out for the case of n-fold symmetry of crystal
growth enables us to find the generalized solvability
criterion including convection and the effects of
kinetics.

Analytical Solution

In the first instance, we define the corresponding
parabolic coordinates n and g connected with the
Cartesian ones, x and z, by means of the familiar
expressions

x ¼ q
ffiffiffiffiffi
ng

p
; z ¼ q

2
g� nð Þ; ð9Þ

where q=2 represents the dendritic tip radius. The
equation g ¼ 1 corresponds to the solid/liquid sur-
face of the dendrite.

The Oseen hydrodynamic Eq. 3 supplemented by
the corresponding no-slip boundary conditions for
the fluid velocity components ug and un in a
parabolic reference frame take the form17,19

ug ¼ � f ðgÞ
2
ffiffiffiffiffiffiffiffiffiffiffi
nþ g

p ; un ¼
ffiffiffiffiffi
ng

p
ffiffiffiffiffiffiffiffiffiffiffi
nþ g

p df ðgÞ
dg

; ð10Þ
Fig. 1. A scheme of growing dendritic crystal in a convective flow.
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where

f ðgÞ ¼ 2ðU þ VÞ ffiffiffi
g

p � 2UgðgÞ;

gðgÞ ¼ ffiffiffi
g

p erfc
ffiffiffiffiffiffiffiffiffiffiffiffi
gR=2

p

erfc
ffiffiffiffiffiffiffiffiffiffi
R=2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpRÞ

p

erfc
ffiffiffiffiffiffiffiffiffiffi
R=2

p

� exp �R

2

	 

� exp � gR

2

	 
� �
ð11Þ

with the Reynolds number R ¼ qU=m.
Now rewriting the heat transfer Eq. 2 as well as

the boundary condition (1) in parabolic coordinates,
and then integrating them, we find the temperature
distribution in the two-dimensional geometry as

TlðgÞ ¼ Ti þ T1 � Tið Þ ITðgÞ
ITð1Þ ; ð12Þ

where

ITðgÞ ¼
Z g

1

exp Pf

Z g0

1

g g00ð Þ
ffiffiffiffiffi
g00

p dg00 � P0g
0

" #
dg0
ffiffiffiffi
g0

p ;

Ti ¼ T1 þ TQPg expðP0ÞITð1Þ; P0 ¼ Pg þ Pf :

T1 is the temperature in the liquid phase far from
the dendrite surface, and Pg ¼ qV=ð2DTÞ and Pf ¼
qU=ð2DTÞ stand for the growth and flow Péclet
numbers.

Solvability Condition

Pelcé, Bouissou and Bensimon3,19,20 showed that
the solvability condition, which gives a unique
combination between q and V, describes a
stable dendritic growth mode as

Z1

�1

G X0ðlÞ½ �YmðlÞdl ¼ 0; YmðlÞ ¼ exp i

Z l

0

kmðl1Þdl1

2

4

3

5;

ð13Þ

where G is the curvature operator, kmðlÞ designates
the marginal wavenumber mode, i represents the
imaginary unit, and X0ðlÞ is a continuum of solu-
tions from which the dependence kmðlÞ can be
derived.

Furthermore, to obtain the marginal wavenum-
bers km entering in the solvability integral (13), the
linear stability analysis should be carried out (see,
among others,14). It leads to the marginal mode of
the wavenumber km (see, for details,19,21), which is
determined by the following cubic equation

k3
m ¼ V expðihÞ

2dðhÞDT
km þ iaU sin h cos h

8qDT
km

� iV sin h
2DT

k2
m þ V2 cos h expðihÞ

4dðhÞD2
T

þ iV~bðhÞ sin h
dðhÞTQ

k2
m:

ð14Þ

An analytical solution of the cubic equation (14) has
been found using Cardano’s formula (d0 6¼ 0) for the
fourfold symmetry of dendritic growth as22

km ¼ kmBP þ V exp �ihð Þ
4DT

þ iV~bðhÞ sin h
2dðhÞTQ

; ð15Þ

where

kmBP ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V exp ihð Þ
2dðhÞDT

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ iaUdðhÞ
8qV

sinð2hÞ exp �ihð Þ

s

:

Solvability Criterion for the Thermally
Controlled Growth

Let us consider the purely thermal mode of
dendritic solidification when ad � 1, ab � 1, hd ¼ 0
and hb 6¼ 0. Substituting the analytical solution for
the fourfold symmetry of the dendritic growth
wavenumber (15) into the solvability integral (13),
we arrive at

Z1

�1

dgG X0ðgÞ½ � exp �i

Zg

0

Pgð1 � ig1Þ
2

þ iqVb0g1

2d0

�
8
<

:

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ig1ð Þ 1 þ g2

1

� �knþiag1Bnðg1Þ
r�Bnðg1Þ

s 3

5dg1

9
=

;
¼ 0;

ð16Þ

where

l1 ¼ � q
2

tan h
cos h

þ ln
1

cos h
þ tan h

	 
� �
; g ¼ tan h;

a ¼ aUd0

4qV
; kn ¼ nþ 1

2
; r� ¼ 2d0DT

q2V
;

BnðgÞ ¼ 1 þ g2
� �n=2�ad

Xn

k¼0

n

k

	 

gn�k cos

ðn� kÞp
2

:

The wave-number in the kinetically limited regime
can be obtained under the assumption that hb ¼ 0
and hd 6¼ 0:14
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Z1

�1

dgG X0ðgÞ½ � exp �i

Zg

0

Pg þ
iq 1 þ ig1ð Þ 1 þ g2

1

� �kn

2DTb0g1B
0
nðg1Þ

" #

dg1

8
<

:

9
=

;
¼ 0;

B0
nðgÞ ¼ 1 þ g2

� �n=2�ab
Xn

k¼0

n

k

	 

gn�k cos

ðn� kÞp
2

:

ð17Þ

We calculate the solvability integral (16) in two
stages as detailed in22. At the first stage, we neglect
the kinetic contribution (proportional to b0 in (16))
and pay our attention to the case known as ‘‘ther-
mally controlled’’ crystal growth. Setting b0 ¼ 0, we
come to the selection criterion (see also19,21,23)

r� ¼ 2d0DT

q2V
¼

r0a
7=n
d A

7=n
n

1 þ a1a
2=n
d A

2=n
n Pg

 �2
1 þ bstnnð Þ

; ð18Þ

where

sn ¼ aa�3=n
d A�3=n

n ; tn ¼ nþ 7

2ðnþ 3Þ ;

An ¼ 2�3n=4
Xn

k¼0

n

k

	 

in�k cos

ðn� kÞp
2

;

and r0 and b are the constants.
The second stage to evaluate the integral expres-

sion (16) is to analyze the dendrite growth mode
controlled by the kinetic contribution (proportional
to b0). By doing that, we neglect the summand
proportional to the growth Péclet number in (16)
and arrive at (by analogy with22)

r� ¼
r0a

7=n
d A

7=n
n

1 þ a0
1a

2=n
d PgDTb0A

2=n
n =d0

h i2
1 þ bstnnð Þ

; ð19Þ

where a0
1 represents a new constant.

Sewing together the obtained limiting crite-
ria (18) and (19), we come to the generalized crite-
rion of the form

r� ¼ 2d0DT

q2V
¼

r0a
7=n
d A

7=n
n

1 þ a1a
2=n
d A

2=n
n Pg 1 þ d0DTb0=d0ð Þ

h i2
1 þ bstnnð Þ

;

ð20Þ

where a0
1 ¼ a1d0 and d0 represents a fitting con-

stant. Note that the selection constants r0 and b for
each n might be found experimentally or from the
phase-field modeling.

Undercooling Balance

The second relation for V and q is called the
undercooling balance. This second relation and
selection criterion (20) allow us to obtain a pair of
most important parameters of primary solidifica-
tion, V and q, at a unique undercooling DT. The
total undercooling balance connects the melting

temperature Tm of a one-component liquid and the
far-field temperature T1 as DT ¼ Tm � T1 and
introduces the first model equation, which consists
of several contributions:

DT ¼ DTT þ DTR þ DTK ; ð21Þ

where DTT represents the thermal contribution,
DTR ¼ 2d0TQ=R is the undercooling due to the
Gibbs-Thomson effect, and DTK ¼ V=lk is the
kinetic undercooling (where lk stands for the kinetic
coefficient).

The thermal contribution DTT can be written out
using the Ivantsov function IvT, which describes the
temperature field around the growing steady-state
dendrite of a parabolic form:

DTT ¼ TQIvTðPg;Pf Þ; ð22Þ

where the Ivantsov function

IvTðPg;Pf Þ ¼ Pg expðP0ÞITð1Þ; P0 ¼ Pg þ Pf

ð23Þ

depends on the growth Pg ¼ qV=ð2DTÞ and flow
Pg ¼ qU=ð2DTÞ Péclet numbers.

Expression (21) represents a function of two
variables, velocity V and diameter q, through the
functions DTT, DTR and DTK for a given full
undercooling DT. To obtain V and q simultaneously,
we use the second equation in the form of stability
criterion (20). These two equations allow us to
obtain V and q for a given DT.

METHODOLOGY

In this work, an enthalpy-based method that
captures solidification is coupled to a lattice Boltz-
mann method (LBM) that resolves fluid flow. The
methods are linked by the convective thermal
transport equation and solid fraction, although in
other work they can also be linked by body forces.24

The enthalpy-based method is based on the work of
Voller,25 and before that Tacke,26,27 and it is written
using a finite difference scheme. The LBM uses a
discretized form of the Boltzmann equation. This
section outlines the two methods and then describes
the problem setup and typical solution procedure for
generating steady-state solutions for dendrite tip
velocity and tip radius for a given bulk undercooling
and mean flow.

Enthalpy Method

Convective transport of enthalpy is governed by

@H

@t
¼ r2ðKTÞ � uðrHÞ; ð24Þ

where t is time, K is the thermal conductivity, which
is assumed to be the same for both liquid and solid
phases, u is velocity, and H is enthalpy, which is a
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function of the heat capacity cp, temperature T and
the latent L. The volumetric enthalpy is defined as a
sum of sensible and latent heats

H ¼ cpT þ fliqL; ð25Þ

where fliq is the liquid fraction phase variable and is
0 for fully solid and 1 for fully liquid. At the solid-
liquid interface, the Gibbs-Thompson condition
gives the temperature for a pure material neglect-
ing any kinetic effects as

Ti ¼ Tf �
C hð ÞTf

L
j; ð26Þ

where Tf is the fusion temperature for a surface
energy anisotropy, c, of the form
c ¼ d0ð1 þ �4 cos 4hÞ, the surface stiffness CðhÞ given
by

C hð Þ ¼ cþ @2c

@h2
¼ d0 1 � �4 cos 4hð Þ: ð27Þ

and j is the interface curvature that can be
captured from the liquid fraction gradients as

j ¼ r � rfliq

rfliq
�� �� ¼ ðf 2

y fxx � 2fxfyfxy þ fx
2fyyÞ � f 2

x þ f 2
y

 ��3
2

:

ð28Þ

Here, fx and fxx represent the first and the second
derivatives of fliq with respect to the coordinate x.
The interface orientation h, which is the angle
between the interface normal and the x-axis, is
given by

h ¼ arctan
fx
fy
: ð29Þ

Lattice Boltzmann Method

The momentum transport for an incompressible
flow is given by the Navier-Stokes equations (NSEs)
as

r � u ¼ 0; ð30Þ

@u

@t
þ u � ru ¼ � 1

ql
rpþ mr2u; ð31Þ

where ql is density, p is pressure, and m is the
kinematic viscosity. To avoid non-linearity in the
convective term and to improve convergence of the
problem, the lattice Boltzmann method is employed.
It describes the evolution of a particle distribution
function (PDF), fi, and it has been shown to recover
the NSEs in the low Mach number limit via the
Chapman and Enskog multi-scale analysis. The
implementation is 3D, using a D3Q19 lattice, which

in this two-dimensional analysis reduces to the
equivalent D2Q9 lattice. The lattice Boltzmann
equation generally can be written as

fiðxþ ciDt; tþ DtÞ � fiðx; tÞ ¼ � 1

s
fiðx; tÞ � fi

eqðx; tÞð Þ;

ð32Þ

where the left-hand side represents the streaming
process and the right-hand side describes collisions.
Here, x is the lattice node coordinate, ci are the
discretized lattice velocities, Dt is the LBM time
step, s is a non-dimensional relaxation parameter,
and fi

eq is the equilibrium PDF given by

fi
eq ¼ q�wi 1 þ 3ci � u�

c2
þ ð3ci � u�Þ2

2c4
� 3u�2

2c2

 !

; ð33Þ

where the asterisks (�) mark the non-dimensional
lattice Boltzmann variables, wi is the lattice weight
coefficient, and c ¼ Dx=Dt is the lattice speed. The
lattice spacing, Dx, time stepping, Dt and equilib-
rium density, q�, are all defined as unity. Fluid
properties such as density and fluid velocities can be
calculated from the PDF by taking the velocity
moments as

q� ¼
X

i

fi; q�u� ¼
X

i

fici: ð34Þ

Other physical quantities like the fluid density and
viscosity can be calculated from the following
expressions:

p� ¼ q�

3
; m� ¼ 1

3
s� 1

2

	 

: ð35Þ

For stability purposes, the two-relaxation-time col-
lision scheme28 is used in the model. The moment-
based boundary method29,30 describes the flat
domain boundaries while the bounce-back
scheme describes the advancing solid front of the
growing crystal.

Problem Setup and Solution Procedure

The main advantage of the enthalpy method is
that it is derived without explicitly using the atomic
scale interface thickness, in contrast to traditional
phase-field methods. A single-cell-thick interface is
still required to track phase change; however, this
method can be used at both the macro- and micro-
scales. In the context of this work, the method can
encompass a wide range of undercoolings. However,
the drawback is that the method suffers from two
errors that are a consequence of using a single cell
to represent the interface and related to the cell size
and the problem considered. If the cell size is too
large, then the error analogous to using too coarse of
a mesh becomes significant; however, if the cell size
is too small, the so-called narrow band error feature
appears. The latter has a significant effect on
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calculating interfacial features, namely curvature,
where with refinement the local features become
either flat or a corner representing either a zero or a
very large curvature, respectively. Consequently,
this causes the formation of an unrealistic faceted-
like structure. To address this problem, the authors
developed an adaptive cell size method for the
enthalpy method, where the tip radius was defined
by a fixed number of cells. However, as the tip
radius is unknown, so too is the cell size, and it
becomes a solved variable. For brevity, the full
method is not repeated here, but in summary,
through an iterative approach, a steady-state solu-
tion for a given undercooling was found when the
cell size, tip radius (hence curvature) and tip
velocity all became constant in time. The same
approach is used here, but with the addition of
forced convection. Aside from resolving the fluid
flow, no significant changes are necessary for this
adaptive cell size method. There are three key
solvers that are weakly coupled with each solved
sequentially. A single time step consists of first
resolving the thermal transport (24), which deter-
mines the local free energy for solidification, which
is resolved by the enthalpy equation with input from
the Gibbs-Thompson condition (26), and finally fluid
flow is calculated. The fluid velocity then feeds into
the transport equation. Therefore, while fluid flow
has a significant effect on solidification, it does not
directly feed into the calculation of tip velocity,
curvature or the update of the cell size.

The numerical model represents a square domain
of 1200 � 1200 cells with a dendrite tip growing
from the origin along the positive x-axis. Due to the
symmetry of the problem along the x-axis, only half
of the problem is solved with the negative y
boundary acting as a symmetry plane. The far field
boundary conditions (positive x and positive y
boundaries) are set to the bulk undercooling and
mean fluid flow values. The negative x boundary
acts as a zero Neumann condition. To prevent the

dendrite tip from growing too close and being
influenced by the far field boundaries, a moving
mesh technique is used that keeps the dendrite in
the same relative position within the domain. Both
the numerical model and analytic solution use the
same physical parameters given in Table I.

RESULTS AND CONCLUSIONS

An example of a steady-state solution for 1.08 m/s
incident flow is given in Fig. 2, showing the dendrite
tip morphology and the x and y components of the
velocity profile (u and v in Fig. 2a and b respec-
tively). As the dendrite is solid, fluid flow must go
around, and this leads to a stagnation point at the
very tip with higher velocities inside the thermal
boundary layer. However, as the relative velocity at
the interface is zero, a viscous boundary layer forms
between the interface and the higher velocity
region.

Figure 3 shows a comparison of the thermal field
for DT ¼ 106 K with an incident flow of 0 m/s, 1.08
m/s and 8.66 m/s. In the presence of an incident
fluid flow, advective thermal transport causes the
isotherms to bunch up, leading to an increase in
thermal gradient in the liquid. This in turn allows
for a higher diffusion rate of temperature back into
the liquid and therefore an increase in free energy.
In all cases with increasing flow velocity, there is an
increase in tip velocity and consequently a reduction
in tip radius; the latter leads to an increase in tip
undercooling, highlighted by Fig. 3d, e and f. In
Figs. 2 and 3, the axes are in terms of cell numbers,
where the adaptive cell size method10 has the tip
radius defined as eight cells, and therefore with
increasing velocity the steady-state cell size
decreases. Figures 2 and 3 are also focused on the
lower left corner of the computational domain
encompassing the first 360 cells in x and y. The full
domain is much larger so that the far field bound-
aries do not have any direct influence on the tip
dynamics.

Table I. Physical and numerical parameters used in the present analytical calculations and numerical
simulations for the pure nickel

Parameter Symbol Calc. EnthM Units

Melting temperature Tm 1728 1728 K
Adiabatic temperature TQ 435 435 K
Thermal diffusivity DT 1 1 �10�5 m2=s
Density ql 7.9 7.9 �103 kg=m3

Capillary length d0 4 4 �10�10 m
Anisotropy strength b 0.018 0.018 –
Selection parameter a1 0.5 – –
Selection constanta b 0.1 – –
Selection constanta r0 0.03 – –

Here, Calc. means the calculated sharp interface model, and EnthM means the enthalpy methoda Note that the selection constant b is
chosen on the basis of our previous works21,31 while another constant r0 represents a fitting parameter
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The stability criterion (20) and undercooling
balance condition (21) represent a set of two non-
linear equations. Solving these two simulatneous
equations gives the tip velocity V and tip diameter q
as functions of the melt undercooling DT. The
solution of these is compared with the enthalpy
method in Fig. 4 for pure nickel at different flow
velocities U. The results show a good agreement
between the theoretical and numerical models over
a broad range of fluid velocities for fixed values of
selection constants r0 and b listed in Table I.

Analyzing a series of curves shown in Fig. 4, we
conclude that the dendrite tip radius q=2 decreases
and the tip velocity V increases with increasing the
fluid velocity U at a fixed value of undercooling DT.
This means that the dendritic crystals become
narrower and grow faster as a forced flow of melt
rises.

This article tests the convective theory of
stable dendritic growth with computer simulation
data for pure (impurity-free) melts. The results
highlight that the enthalpy-based method, along

Fig. 2. Incident fluid flow velocity of 1.08 m/s onto the dendrite tip for DT ¼ 106 K. a Absolute of x-component of velocity. b y-component of
velocity.

Fig. 3. Thermal field for DT ¼ 106 K with incident flow velocity of a, d 0 m/s, b, e 1.08 m/s and c, f 8.66 m/s. d–f Reduced temperature scaled to
highlight tip undercooling. The circle in d corresponds to the defined tip radius for all cases.
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with an adaptive cell size approach, is capable of
accurately predicting the behavior of dendritic
growth in the presence of forced convection. In
practice, fluid flow is generally present in terrestial
experiments. Consequently, further understanding
its effect is necessary to bridge knowledge between
solidification under terrestrial and microgravity
conditions.

The next step is to test the theory for binary
systems with the modified stability criterion and
undercooling balance written out with allowance for
impurity effects (see, for details, the theory devel-
oped in Refs. 14,22,23,32 for a binary melt). Fur-
thermore, the effects of non-equilibrium
crystallization occurring at high growth rates
should be tested against experimental data accord-
ing to the theory developed in Ref. 33. Finally, a full
three-dimensional approach will allow for direct
comparison of the numerical model, analytic theory
and experimental evidence.
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