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Fréchet Mean Computation in Graph Space
through Projected Block Gradient Descent

Nicolas Boria, Benjamin Negrevergne and Florian Yger ∗

CNRS, LAMSADE, PSL-Université Paris Dauphine
Place du Marécal de Lattre de Tassigny, Paris, France

Abstract. A fundamental concept in statistics is the concept of Fréchet
sample mean. While its computation is a simple task in Euclidian space,
the same does not hold for less structured spaces such as the space of
graphs, where concepts of distance or mid-point can be hard to compute.
We present some work in progress regarding new distance measures and
new algorithms to compute the Fréchet mean in the space of Graphs.

1 Introduction

In a wide range of scientific domains, graphs provide a powerful tool of represen-
tation. However, the computation of some fundamental data analysis concepts
such as the distance between two elements or the central element of a collection
remain challenging tasks in the space of graphs. The main difficulty when dealing
with these tasks is the absence of canonical vectorial representations for graphs,
in other words, a single graphs can be represented by an exponential number of
different adjacency matrices, that correspond to all possible permutations of the
set of vertices. Therefore, measuring a distance between two graphs requires first
some method of alignment. A popular approach is based on the so called Graph
Edit Distance (GED), defined as the minimal cost of an edit path between two
graphs, where an edit path is a series of edit operations (insertions, deletions
and label substitutions) on both edges and nodes. It was shown in [1] that under
natural assumptions on the edit costs, there is a bijection between the space of
minimal edit paths and the space of node-maps, that assign or align, each vertex
of the first graph to either a vertex of the second, or to a dummy vertex that
corresponds to a deletion operation. Based on such a measure, the computation
of a median element, called Generalized Median Graph [2] was proposed through
genetic algorithms [3], recursive computation of pairwise weighted mean graphs
[4] and Block Coordinate Update [5].

In this work, we focus on a different approach, motivated by machine learning
applications. While the generalized median graph provides a good representative
element of a collection, it does not provide a generative model for it, which is
a fundamental element to compute in machine learning, as it allows to sample
new elements for the collection. The graph mean -or graph Fréchet mean is very
different in nature as it can be considered as a the parameter of a probability
distribution on graphs. Indeed, while the median element of a collection is part
of the same space as the elements of the collection (e.g. the generalized median
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graph is indeed a graph), the Fréchet mean of a collection is an element of the
convex hull of the underlying space. In this sense, the graph Fréchet mean
provides a generative model for a collection of graphs.

The paper is organized as follows: section 2 provides some basic definitions
on graph matching, and presents our assumptions on graph generative mod-
els, section 3 introduces our general model for Fréchet mean computation and
evaluation based on Block coordinate update, section 4 presents some empirical
evaluations of our methods, through generative model inference and classifica-
tion. Finally section 5 gives some conclusions and perspectives for future works.

2 Preliminaries

2.1 Problem Definition and Formulations

We first consider a collection G = {G1, ..., GN} of connected simple and unla-
beled graphs represented by their adjacency matrices A = {A1, ..., AN}, and
suppose w.l.o.g that all matrices in A have the same size n = max |Gi| : Gi ∈ G.
Adjacency matrices of graphs with order smaller than n are spanned with 0 lines
and columns. For simplicity, in the rest of the paper we do not distinguish graphs
and their matrix representations, so that Ai may denote either an adjacency ma-
trix or the graph it represents. Let Πn denote the space of permutation matrices
of size n. Recall that Πn = Pn ∩ On where Pn and On denote respectively the
spaces of bistochastic and orthogonal matrices of size n.

We define the distance between two graphs A and B as follows:

d(A,B) =

√
min
P∈Πn

‖PTAP −B‖2F =

√
min
P∈Πn

‖AP − PB‖2F (1)

As remarked in [6], the two formulations are equivalent over the set of permu-
tation matrices but are not equivalent when relaxed. Note that this definition
of distance is invariant over permutations of A and B. Following this definition
of distance, the Fréchet variance of a matrix B with respect to collection A is
Ψ(B,A) =

∑
Ai∈A d

2(Ai, B).
The Fréchet mean then consists in minimizing the Fréchet variance of B

(and simultaneously over Pi). The distance defining in Eq. 1 is formulated as
a Quadratic assignment problem. Hence, this sub-problem of the Fréchet mean
being computationally already very challenging, we will relax the constraints
over Pi. Namely, instead of requiring Pi to be a permutation matrix, we will
only require it be a bistochastic matrix, which - as mentionned earlier - results
in two different formulations of the problem:

min
Pi∈Pn
B∈Bn

∑
Ai∈A

∥∥PT
i AiPi −B

∥∥2

F (2)

min
Pi∈Pn
B∈Bn

∑
Ai∈A

‖AiPi − PiB‖2F (3)
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Fig. 1: Generative model implied by the Fréchet mean over graphs.

Where Bn denotes the convex hull of adjacency matrices of order n. As noted
in [6], the relaxed version of the initial problem expressed by Eq. 3 is convex in
each Pi (and also in convex in B but not jointly). Hence, in what follows we
will denote this formulation as the biconvex formulation, while we will denote
the one expressed by Eq. 2 as the base formulation. Moreover, for a fixed set of
bistochastic matrices Pi’s, both these formulations admit a closed form for the
value of B that optimizes them. For the base formulation, the optimal B is:

B∗ =
1

|A|
∑
i

PT
i AiPi (4)

While for the convex formulation, the optimal B is as follows:

B∗ =

(∑
i

PTP

)−1∑
i

PT
i AiPi (5)

It is shown in [6] that the biconvex formulation, while it is easier to solve,
will almost certainly yield a suboptimal matching when the resulting bistochastic
matrix is projected onto the space of permutation matrices.

2.2 Underlying generative model

The Fréchet mean induces a generative model on the set of graphs where each
adjacency matrix Ai would be sampled from an inhomogeneous Erdős–Rényi
graph1 (ERG) shuffled by the permutation Pi. B contains the probability of the
ERG model. As illustrated in Figure 1, the variables B and Pi are independent
in the model and it suggests the use of an EM-like algorithm that would alternate
between the estimation of B and Pi.

3 Block-coordinate descent

Most algorithms proposed in the literature [7] make use of possibly costly graph
matching heuristics in order to align each graph of the collection to the current

1In an inhomogenous ERG, the edge between kl appears with a probability Bkl.



mean. In what follows, a separate gradient descent on each Pi will act as our
graph matching heuristic, and we denote it by GM*.

In order to avoid the cost induced by the use of GM*, we devise the fol-
lowing Block-coordinate descent (BCD) algorithm for the problem at hand:

Algorithm 1: Algorihtm BCDk,s(A)

Result: a sample Fréchet mean B of collection A
initialize B ← A1 ;
initialize Pi’s using LSAP based on degrees of vertices ;
while not converged do

foreach Pi do
perform k gradient steps on Pi ;
project Pi onto Pn using [8] ;
sample s permutations graph from Pi, and denote
by P ∗i the one with minimal norm w.r.t B ;
Pi ← P ∗i

end
Update B using either Eq. 4 or Eq. 5 based on the considered model;

end

Moreover, the formulation in 3 being convex in Pi and B advocates the use
of a block-coordinate descent (which will converge to a local minimum).

4 Experiments

4.1 Synthetic data models

In order to evaluate the capacity of our methods to infer underlying generative
models, we based our experiments on synthetic data, so that the underlying
model is known. We developed a stochastic model generator, and tuned it to
generate 15 models, based on three shapes : A hamiltonian path (model P ),
a star (model S), and a sparse union of a hamiltonian path and a star (model
PS). For each shape, 5 models with different level of noise σ were generated as
represented in Table 1.

4.2 Experimental Setting

We tested 3 different tunings of BCDk,s along with two algorithms found in the
literature. The three versions of BCDk,s are BCD2,50, BCD+2,50 (where where initial
Pi’s are generated using GM* instead of LSAP) and BCD100,50 where Pi’s are fully
optimized at each iteration using GM* (similarily to MMM algorithm proposed
in [7]). The two algorithms also found in [7] are DM (Direct Mean) which consists
of a single iteration of BCD100,50, IAM (Incremental Arithmetic Mean): Given a
random ordering of the graphs, perform an iterative computation of weighted
means between the current solution and the next graph in the ordering. Weighted
mean is computed using GM* for alignment. Each algorithm was tested using both
the base formulation of the distance (M1) and the biconvex one (M2)



σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

P

S

PS

Table 1: Generative models

4.3 Classification experiments

For each considered value σ, we sampled 30 graphs from each model P, S and
PS, which constitute the three classes of our synthetic dataset. A training set
of 20 graphs was randomly chosen in each class, and used to compute the mean
graph for each class. The remainder of the dataset was classified using a sim-
ple Mininum Distance classifier (each graph was classified in the same class as
the closest class representative). Each experiment was repeated 20 times, and
average classification accuracies on all runs are presented in Table 2. Table 3
provides the time needed to compute Fréchet means averaged on all classes and
all runs only for the slowest and fastest algorithm due to space constraints. Typ-
ically, BCD2,50 was two times faster than the second fastest algorithm (usually
IAM), and ten times faster than BCD100,50. Moreover, it is interesting to note
that among all algorithms, BCD2,50 is the only one which running time was not
affected by the difficulty of the mean computation, represented by parameter
σ. We also note that, although the quality of the classification through BCD2,50

means is always outperformed by BCD100,50, the difference in accuracy, does not
seem significant enough to justify the difference in computation time.

When comparing each model for a fixed choice of solver, we observe that the
base formulation seems to perform slightly better than the biconvex formulation.
This relates to [6] where a non-convex relaxation was favoured over a convex one
for computing a graph matching.

5 Conclusion

In this work, we have proposed a relaxation for the problem of finding the Fréchet
mean of a set of unlabelled graphs, and we have shown empirically that aligning
graphs to the means in a progressive way (using few gradient steps at a time)
proves an efficient method. The extension of this work to labelled graphs and its
application to chemoinformatic (as carried out in [5]) is in progress. This work
is a first step toward new ways for handling non-Euclidean data [9, 10].



σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5
M1-BCD2,50 0.970 0.861 0.742 0.605 0.698
M1-BCD+2,50 0.975 0.887 0.798 0.587 0.664
M1-BCD100,50 0.988 0.877 0.801 0.629 0.7

M1-DM 0.970 0.898 0.774 0.551 0.646
M1-IAM 0.977 0.888 0.722 0.646 0.620

M2–BCD2,50 0.929 0.816 0.766 0.601 0.661
M2-BCD+2,50 0.977 0.868 0.794 0.6 0.631
M2-BCD100,50 0.966 0.848 0.768 0.605 0.672

M2-DM 0.977 0.861 0.761 0.566 0.625
M2-IAM 0.966 0.905 0.764 0.622 0.624

Table 2: Classification accuracies

σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5
M1-BCD2,50 19.12 21.73 23.94 21.22 18.25

M1-BCD100,50 227.2 253.2 317.9 374.0 360.5
M2–BCD2,50 20.28 18.83 19.29 21.89 24.71

M2-BCD100,50 284.9 272.7 322.7 364.8 345.8

Table 3: Training times
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