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A fundamental concept in statistics is the concept of Fréchet sample mean. While its computation is a simple task in Euclidian space, the same does not hold for less structured spaces such as the space of graphs, where concepts of distance or mid-point can be hard to compute. We present some work in progress regarding new distance measures and new algorithms to compute the Fréchet mean in the space of Graphs.

Introduction

In a wide range of scientific domains, graphs provide a powerful tool of representation. However, the computation of some fundamental data analysis concepts such as the distance between two elements or the central element of a collection remain challenging tasks in the space of graphs. The main difficulty when dealing with these tasks is the absence of canonical vectorial representations for graphs, in other words, a single graphs can be represented by an exponential number of different adjacency matrices, that correspond to all possible permutations of the set of vertices. Therefore, measuring a distance between two graphs requires first some method of alignment. A popular approach is based on the so called Graph Edit Distance (GED), defined as the minimal cost of an edit path between two graphs, where an edit path is a series of edit operations (insertions, deletions and label substitutions) on both edges and nodes. It was shown in [START_REF] Bougleux | A quadratic assignment formulation of the graph edit distance[END_REF] that under natural assumptions on the edit costs, there is a bijection between the space of minimal edit paths and the space of node-maps, that assign or align, each vertex of the first graph to either a vertex of the second, or to a dummy vertex that corresponds to a deletion operation. Based on such a measure, the computation of a median element, called Generalized Median Graph [START_REF] Jiang | On median graphs: properties, algorithms, and applications[END_REF] was proposed through genetic algorithms [START_REF] Ferrer | Median graphs: A genetic approach based on new theoretical properties[END_REF], recursive computation of pairwise weighted mean graphs [START_REF] Ferrer | Generalized median graph computation by means of graph embedding in vector spaces[END_REF] and Block Coordinate Update [START_REF] Boria | Generalized median graph via iterative alternate minimizations[END_REF].

In this work, we focus on a different approach, motivated by machine learning applications. While the generalized median graph provides a good representative element of a collection, it does not provide a generative model for it, which is a fundamental element to compute in machine learning, as it allows to sample new elements for the collection. The graph mean -or graph Fréchet mean is very different in nature as it can be considered as a the parameter of a probability distribution on graphs. Indeed, while the median element of a collection is part of the same space as the elements of the collection (e.g. the generalized median graph is indeed a graph), the Fréchet mean of a collection is an element of the convex hull of the underlying space. In this sense, the graph Fréchet mean provides a generative model for a collection of graphs.

The paper is organized as follows: section 2 provides some basic definitions on graph matching, and presents our assumptions on graph generative models, section 3 introduces our general model for Fréchet mean computation and evaluation based on Block coordinate update, section 4 presents some empirical evaluations of our methods, through generative model inference and classification. Finally section 5 gives some conclusions and perspectives for future works.

Preliminaries

Problem Definition and Formulations

We first consider a collection G = {G 1 , ..., G N } of connected simple and unlabeled graphs represented by their adjacency matrices A = {A 1 , ..., A N }, and suppose w.l.o.g that all matrices in A have the same size n = max

|G i | : G i ∈ G.
Adjacency matrices of graphs with order smaller than n are spanned with 0 lines and columns. For simplicity, in the rest of the paper we do not distinguish graphs and their matrix representations, so that A i may denote either an adjacency matrix or the graph it represents. Let Π n denote the space of permutation matrices of size n. Recall that Π n = P n ∩ O n where P n and O n denote respectively the spaces of bistochastic and orthogonal matrices of size n.

We define the distance between two graphs A and B as follows:

d(A, B) = min P ∈Πn P T AP -B 2 F = min P ∈Πn AP -P B 2 F (1) 
As remarked in [START_REF] Lyzinski | Graph matching: Relax at your own risk[END_REF], the two formulations are equivalent over the set of permutation matrices but are not equivalent when relaxed. Note that this definition of distance is invariant over permutations of A and B. Following this definition of distance, the Fréchet variance of a matrix B with respect to collection

A is Ψ(B, A) = Ai∈A d 2 (A i , B).
The Fréchet mean then consists in minimizing the Fréchet variance of B (and simultaneously over P i ). The distance defining in Eq. 1 is formulated as a Quadratic assignment problem. Hence, this sub-problem of the Fréchet mean being computationally already very challenging, we will relax the constraints over P i . Namely, instead of requiring P i to be a permutation matrix, we will only require it be a bistochastic matrix, which -as mentionned earlier -results in two different formulations of the problem:

min Pi∈Pn B∈Bn Ai∈A P T i A i P i -B 2 F (2) min Pi∈Pn B∈Bn Ai∈A A i P i -P i B 2 F (3) B A i P i i=1,...,n
Fig. 1: Generative model implied by the Fréchet mean over graphs.

Where B n denotes the convex hull of adjacency matrices of order n. As noted in [START_REF] Lyzinski | Graph matching: Relax at your own risk[END_REF], the relaxed version of the initial problem expressed by Eq. 3 is convex in each P i (and also in convex in B but not jointly). Hence, in what follows we will denote this formulation as the biconvex formulation, while we will denote the one expressed by Eq. 2 as the base formulation. Moreover, for a fixed set of bistochastic matrices P i 's, both these formulations admit a closed form for the value of B that optimizes them. For the base formulation, the optimal B is:

B * = 1 |A| i P T i A i P i (4) 
While for the convex formulation, the optimal B is as

B * = i P T P -1 i P T i A i P i (5) 
It is shown in [START_REF] Lyzinski | Graph matching: Relax at your own risk[END_REF] that the biconvex formulation, while it is easier to solve, will almost certainly yield a suboptimal matching when the resulting bistochastic matrix is projected onto the space of permutation matrices.

Underlying generative model

The Fréchet mean induces a generative model on the set of graphs where each adjacency matrix A i would be sampled from an inhomogeneous Erdős-Rényi graph1 (ERG) shuffled by the permutation P i . B contains the probability of the ERG model. As illustrated in Figure 1, the variables B and P i are independent in the model and it suggests the use of an EM-like algorithm that would alternate between the estimation of B and P i .

Block-coordinate descent

Most algorithms proposed in the literature [START_REF] Brijnesh | Statistical graph space analysis[END_REF] make use of possibly costly graph matching heuristics in order to align each graph of the collection to the current mean. In what follows, a separate gradient descent on each P i will act as our graph matching heuristic, and we denote it by GM*.

In order to avoid the cost induced by the use of GM*, we devise the following Block-coordinate descent (BCD) algorithm for the problem at hand:

Algorithm 1: Algorihtm BCD k,s (A)
Result: a sample Fréchet mean B of collection A initialize B ← A 1 ; initialize P i 's using LSAP based on degrees of vertices ; while not converged do foreach P i do perform k gradient steps on P i ; project P i onto P n using [START_REF] Duchi | Efficient projections onto the l 1-ball for learning in high dimensions[END_REF] ; sample s permutations graph from P i , and denote by P * i the one with minimal norm w.r.t B ; P i ← P * i end Update B using either Eq. 4 or Eq. 5 based on the considered model; end Moreover, the formulation in 3 being convex in P i and B advocates the use of a block-coordinate descent (which will converge to a local minimum).

Experiments

Synthetic data models

In order to evaluate the capacity of our methods to infer underlying generative models, we based our experiments on synthetic data, so that the underlying model is known. We developed a stochastic model generator, and tuned it to generate 15 models, based on three shapes : A hamiltonian path (model P ), a star (model S), and a sparse union of a hamiltonian path and a star (model P S). For each shape, 5 models with different level of noise σ were generated as represented in Table 1.

Experimental Setting

We tested 3 different tunings of BCD k,s along with two algorithms found in the literature. The three versions of BCD k,s are BCD 2,50 , BCD+ 2,50 (where where initial P i 's are generated using GM* instead of LSAP) and BCD 100,50 where P i 's are fully optimized at each iteration using GM* (similarily to MMM algorithm proposed in [START_REF] Brijnesh | Statistical graph space analysis[END_REF]). The two algorithms also found in [START_REF] Brijnesh | Statistical graph space analysis[END_REF] are DM (Direct Mean) which consists of a single iteration of BCD 100,50 , IAM (Incremental Arithmetic Mean): Given a random ordering of the graphs, perform an iterative computation of weighted means between the current solution and the next graph in the ordering. Weighted mean is computed using GM* for alignment. Each algorithm was tested using both the base formulation of the distance (M1) and the biconvex one (M2) 2. Table 3 provides the time needed to compute Fréchet means averaged on all classes and all runs only for the slowest and fastest algorithm due to space constraints. Typically, BCD 2,50 was two times faster than the second fastest algorithm (usually IAM), and ten times faster than BCD 100,50 . Moreover, it is interesting to note that among all algorithms, BCD 2,50 is the only one which running time was not affected by the difficulty of the mean computation, represented by parameter σ. We also note that, although the quality of the classification through BCD 2,50 means is always outperformed by BCD 100,50 , the difference in accuracy, does not seem significant enough to justify the difference in computation time. When comparing each model for a fixed choice of solver, we observe that the base formulation seems to perform slightly better than the biconvex formulation. This relates to [START_REF] Lyzinski | Graph matching: Relax at your own risk[END_REF] where a non-convex relaxation was favoured over a convex one for computing a graph matching.

σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5 P S PS

Conclusion

In this work, we have proposed a relaxation for the problem of finding the Fréchet mean of a set of unlabelled graphs, and we have shown empirically that aligning graphs to the means in a progressive way (using few gradient steps at a time) proves an efficient method. The extension of this work to labelled graphs and its application to chemoinformatic (as carried out in [START_REF] Boria | Generalized median graph via iterative alternate minimizations[END_REF]) is in progress. This work is a first step toward new ways for handling non-Euclidean data [START_REF] Bellet | A survey on metric learning for feature vectors and structured data[END_REF][START_REF] Michael M Bronstein | Geometric deep learning: going beyond euclidean data[END_REF]. σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5 M1-BCD 
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 3 Classification experimentsFor each considered value σ, we sampled 30 graphs from each model P, S and PS, which constitute the three classes of our synthetic dataset. A training set of 20 graphs was randomly chosen in each class, and used to compute the mean graph for each class. The remainder of the dataset was classified using a simple Mininum Distance classifier (each graph was classified in the same class as the closest class representative). Each experiment was repeated 20 times, and average classification accuracies on all runs are presented in Table

Table 1 :

 1 Generative models

Table 2 :

 2 Classification accuraciesσ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5 M1-BCD 2,50

	2,50	0.970	0.861	0.742	0.605	0.698
	M1-BCD+ 2,50	0.975	0.887	0.798	0.587	0.664
	M1-BCD 100,50	0.988	0.877	0.801	0.629	0.7
	M1-DM	0.970	0.898	0.774	0.551	0.646
	M1-IAM	0.977	0.888	0.722	0.646	0.620
	M2-BCD 2,50	0.929	0.816	0.766	0.601	0.661
	M2-BCD+ 2,50	0.977	0.868	0.794	0.6	0.631
	M2-BCD 100,50	0.966	0.848	0.768	0.605	0.672
	M2-DM	0.977	0.861	0.761	0.566	0.625
	M2-IAM	0.966	0.905	0.764	0.622	0.624
		19.12	21.73	23.94	21.22	18.25
	M1-BCD 100,50	227.2	253.2	317.9	374.0	360.5
	M2-BCD 2,50	20.28	18.83	19.29	21.89	24.71
	M2-BCD 100,50	284.9	272.7	322.7	364.8	345.8

Table 3 :

 3 Training times

In an inhomogenous ERG, the edge between kl appears with a probability B kl .
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