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BB-UNet: U-Net with Bounding Box Prior
Rosana El Jurdi, Caroline Petitjean, Paul Honeine, Fahed Abdallah

Abstract—Medical image segmentation is the process of
anatomically isolating organs for analysis and treatment. Leading
works within this domain emerged with the well-known U-Net.
Despite its success, recent works have shown the limitations of U-
Net to conduct segmentation given image particularities such as
noise, corruption or lack of contrast. Prior knowledge integration
allows to overcome segmentation ambiguities. This paper intro-
duces BB-UNet (Bounding Box U-Net), a deep learning model
that integrates location as well as shape prior onto model training.
The proposed model is inspired by U-Net and incorporates priors
through a novel convolutional layer introduced at the level of
skip connections. The proposed architecture helps in presenting
attention kernels onto the neural training in order to guide
the model on where to look for the organs. Moreover, it fine-
tunes the encoder layers based on positional constraints. The
proposed model is exploited within two main paradigms: as
a solo model given a fully supervised framework and as an
ancillary model, in a weakly supervised setting. In the current
experiments, manual bounding boxes are fed at inference and as
such BB-Unet is exploited in a semi-automatic setting; however,
BB-Unet has the potential of being part of a fully automated
process, if it relies on a preliminary step of object detection.
To validate the performance of the proposed model, experiments
are conducted on two public datasets: the SegTHOR dataset
which focuses on the segmentation of thoracic organs at risk
in computed tomography (CT) images, and the Cardiac dataset
which is a mono-modal MRI dataset released as part of the
Decathlon challenge and dedicated to segmentation of the left
atrium. Results show that the proposed method outperforms
state-of-the-art methods in fully supervised learning frameworks
and registers relevant results given the weakly supervised domain.

Index Terms—U-Net, shape prior, location prior, attention
maps, weakly supervised segmentation, deep learning

I. INTRODUCTION

EVER since machine learning emerged as a leading tool
for technological development, major breakthroughs have

been achieved in various domains such as pattern recogni-
tion, natural language processing, classification and image
segmentation. Semantic segmentation in image processing
is the process of making per-pixel predictions with regards
to every pixel in an image, through deriving meaningful
segments, contour regions and boundaries. Since the process
involves indicating not only what is present in an image
but also where, semantic segmentation considers a trade-off
between contextual and spatial understanding. First approaches
to segmentation with deep learning emerged with the Fully
Convolutional Networks (FCNs) [1]. FCNs are structures
derived from typical deep models such as VGG16, AlexNet
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or GoogLeNet by removing the corresponding classification
layers, replacing their fully connected layers with convolu-
tional ones and adding an up-sampling layer that is dedicated
to transforming coarse outputs into dense predictions. Despite
their good performance, FCNs fail to consider global and
spatial information, and often result in fuzzy coarse-grained
predictions [2]. A pioneering approach is the U-Net model
[3], especially popular in medical imaging. U-Net has a
symmetric encoder/decoder structure with skip connections.
The encoder part is a contracting path composed of stacked
convolutional and max pooling layers, whereas the decoder
part is an expanding path composed of de-convolutional or
bilinear upsampling layers. Layers within the encoder are
dedicated to capturing contextual information in order to detect
objects/classes present in an image. The decoder layers, on
the other hand, help precise localization of patterns including
contours and boundaries. As an image moves further into
the contracting layers, it decreases in size but increases in
depth of its learnt contextual features. In contrast, the decoder
layers increase its input size but decrease its depth, thus
retaining the model’s localization ability. To make use of both
contextual and positional features, skip connections between
the downsampling (encoder) and upsampling (decoder) paths
are utilized. Skip connections concatenate symmetrical fea-
tures from opposing convolution and de-convolution layers.
Through end-to-end training, the U-Net takes on as input an
image of any size and produces a segmentation map of similar
dimensions. Thus, due to these enhanced properties, U-Net
gained a high level of success and has been applied in various
segmentation tasks [4], [5].

Taking advantage of U-Net’s success, multiple variants
emerged in order to increase model performance given differ-
ent tasks [6], [7]. Despite good performance, such networks
often require large amounts of annotated training data, which is
not easy to obtain given particular domains such as the medical
one. Rather, unannotated or partially labeled data are more
easily available or less computationally expensive to obtain.
For this reason, recent approaches within the machine learning
domain aim to make use of these “not-so-accurate” labels in
order to derive proper segmentation masks, thus embracing the
weakly supervised learning paradigm.

Within this framework, dataset labels may be incomplete,
inexact or inaccurate. Weak labels can come in different forms
such as bounding boxes encompassing the understudied organ
[8], [9], image tags [10], seeds generated from object center
of mass [11], randomly or by erosion [12]. The objective of
weakly supervised segmentation models is to make use of
these coarse-grained annotations to derive proper and accu-
rate predictions at the pixel level. Weakly supervised image
segmentation can be conducted in two different ways: (i) a
two-step iterative approach where initial label estimates are
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Fig. 1. CT images from the SegTHOR dataset with manual segmentation and
bounding boxes overlaid on multiple organs.

generated from weak labels in the first step, and fine-tuned
through a deep learning model in the second step [9], [8]; and
(ii) through direct modification of the network (e.g. insertion
of customized segmentation layers) to take into account weak
labels [10], [13].

In medical imaging, organ segmentation comes with partic-
ular challenges, such as low contrast and high noise levels.
Given this, recent works aim to exploit anatomical priors with
regards to organ shape and position [2], [14], [11].

Generally, anatomical priors refer to expert knowledge and
domain expertise that capture spatial as well as location
guidelines with respect to the understudied organs. The basic
motivation behind the prior-based approaches is that a convo-
lutional neural network (CNN) might suffer from difficulties
in differentiating two distinct objects that are consistently in
two specific parts of the scan, if they have the same intensity
and context.

In this paper, we propose a new model inspired by U-Net
that integrates prior information in-between local and global
features. We call the proposed model BB-UNet (Bounding Box
U-Net) since it uses weak labels and bounding filters to guide
the training process onto convergence. The proposed model
allows to take advantage of positional and shape features as
means of guiding the neural network to find consistent organ
contours. We exploit this model within two strategies: one, a
fully supervised semantic segmentation strategy that utilizes
prior information to overcome noise and low contrast; two,
a weakly supervised strategy where training of BB-UNet is
initially conducted on a very tiny sample of the dataset. The
learnt weights are then used to generate initial label estimates
for a much larger weakly supervised dataset.

The proposed model is validated on two segmentation
problems. First, we consider a multi-label segmentation prob-
lem in computed tomography (CT) imaging. Experiments
are conducted on the SegTHOR dataset, which consists of
CT images of patients suffering from non-small cell lung
cancer. The four organs of interest, which are the heart, aorta,
esophagus and trachea, have variable shapes and share same
gray-scale intensity values with neighboring tissues as shown
in Fig. 1. As a result, it is hard to identify the organs from
neighboring tissues or properly separate them. Secondly, a
single-label segmentation problem having a multi-component
complex organ in magnetic resonance imaging (MRI) scans.
Experiments are conducted on the Cardiac dataset, which
consists of MR images covering the entire atrium (see Fig. 2).
The understudied organ within this dataset is characterized
with large variability. Aside from the large range of organ
size that varies across slices, the organ is also characterized
with multiple components within the same slice that are in

Fig. 2. MR images from the Cardiac dataset with manual segmentation and
bounding boxes segmentation overlaid on the left atrium.

close proximity of each other and of different sizes.
The main contributions of this paper are as follows:
1) we propose a novel deep learning model that integrates

location and shape constraints into the network architec-
ture in order to overcome segmentation ambiguities;

2) we show that the proposed approach achieves excellent
performance in comparison with the state of the art when
trained in a fully supervised framework;

3) we incorporate the proposed novel model in a semi-
weakly supervised framework where only bounding box
tags are present and achieve comparable results with
respect to the fully supervised models;

4) we shed light on the role of embedding prior knowledge
onto model training relative to data augmentation and
post-processing alternatives.

The rest of the paper is organized as follows. Section II
provides a brief overview of the state of the art in fully as
well as weakly supervised learning for image segmentation.
Section III elaborates on the proposed BB-UNet model as
well as the multiple frameworks and paradigms explored.
Section IV presents the datasets as well as the evaluation
metrics and experiment setting. Section V reveals model
performance within experiments where all labels are present.
Section VI evaluates the robustness of BB-UNet performances
across bounding box size variations and dataset distributions.
Section VII elaborates on BB-UNet performance using the
provided prior information as weak labels. Finally, Section
VIII concludes with future works and perspectives.

II. RELATED WORK

A. Segmentation under full supervision with prior knowledge

Primary work on segmentation within deep learning
emerged with the fully convolutional neural networks (FCNs)
[1]. Since then, FCNs and its variants were applied to many
segmentation tasks including non-medical [15], [16] and med-
ical ones [17], [18]. In 2015, U-Net architecture emerged as
a powerful structure not only for medical image segmentation
but also for natural image segmentation, regression, face
alignment and recognition [3]. The main reason that U-Net
has registered such a success is its ability to process the image
as a whole, thus incorporating global features rather than just
local ones. This is mainly due to its symmetrical properties and
equivalent distribution of convolutional and de-convolutional
layers, as well as skip connections.

Despite this breakthrough, U-Net and its variants are limited
in incorporating domain expertise such as location information
and explicit anatomical priors [14]. For example, a U-Net may
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have some difficulties in differentiating two distinct organs that
are consistently lying in two specific parts of the scan but are
characterized with same intensity values [14]. For this reason,
U-Net performance can be further enhanced given methods
that exploit prior knowledge such as shape or position.

Segmentation approaches based on CNN integrate prior
information either through topological [19] or shape-based loss
functions [20] or through adding regularization techniques that
conforms predicted shapes with a set of allowed ones [2].
For instance, in [2], a non-linear shape regularization model
is trained jointly along U-Net. The main function of their
adjoint network is to learn projections of arbitrary shapes onto
a manifold space. It then incorporates a loss function that
updates the segmentation network (U-Net) parameters based
on the regularized predicted segments, the rough predicted
segments as well as the ground-truth labels. The authors of
[21] adopt a similar regularization approach to that in [2].
However, they target the decoder layer with their U-Net-
like structure and train the up-sampling layers through super
resolution ground-truth maps.

Another approach to incorporate shape prior is through the
use of loss functions that update model training. Both [22] and
[2] adopt this approach in order to update their U-Net model
parameters. However, whereas the former aims to minimize
the Euclidean distance between the predicted and the ground-
truth shape, the latter aims, through the loss function, to drive
U-Net predictions to be as close as possible to the shape
manifold representing allowed shapes while still preserving
the variations between the actual ground truth shapes and
the learnt shape space. Similar to [2], the authors in [23]
demonstrate a manifold of permissible nuclei shapes prepared
by a domain expert and incorporate this prior information
in the form of a regularizing term that encourages detection
inside nuclei boundary while simultaneously penalizing false
positives.

Methods in [24] and [11] extend upon U-Net by proposing a
novel structure that learns good features for predicting proper
segmentation masks of their understudied organ by properly
computing organ center of mass from intermediate U-Net-
like layers. In [24], a regression model is introduced at the
bottleneck level of its U-Net-like structure in order to extract
the center of mass corresponding to their understudied organ.
The extracted feature map is then merged with that of the
decoder layer, then segmentation maps are derived. To avoid
anatomically impossible shapes, the authors of [24] extend
upon their work to further estimate a probability distribution
from the training data with regards to the occurrence proba-
bility of the understudied organ. This predefined shape prior
is further concatenated with the center of mass feature map
and the decoder output [11].

Whereas U-Net was firstly dedicated to medical images,
multiple U-Net variants emerged in order to increase model
performance in applications that are non-related to the medical
field [16], [25]. However, whether for medical or non-medical
purposes, such networks usually require large amounts of
annotated training data in order to gain their generalization
ability, which is not often available. For this reason, prior
knowledge such as bounding box or image tags can be consid-

ered as a case of weak labels, thus casting the medical image
segmentation problem onto the weakly supervised learning
domain. In the following, a review of some recently proposed
work that take into account these weak labels is presented.

B. Segmentation under weak supervision

Among weakly supervised segmentation methods, one can
identify two main approaches: those based on a two-step
iterative process that mimics full supervision, and those based
on classification model training with modified upper layers
[10], [12]. Despite their different concepts, the two approaches
use weak labels to derive accurate segmentation maps.

Weakly supervised segmentation through a two-step
iterative process that mimics full supervision is a com-
mon approach that synthesizes full pixel-level labeled training
masks from the available weak labels. Typically, such proposal
based techniques iterate two steps: label estimate generation
(the proposals) and fully supervised CNN training. Weak
labels may be of different types: bounding box labels, image
labels, or a mixture of bounding box and image labels.

Image Labels. The EM-Adapt model in [13] implements
this two-step iterative process in an Expectation-Maximization
(EM) framework where pixel-level annotations are considered
as latent variables to be estimated from known image-level
labels (E-step). The method then updates the neural network
parameters through stochastic gradient descent and a proba-
bility distribution that incorporates a pixel distribution and an
adaptive bias (M-step). As explained in [12], the EM-Adapt
method is generally limited when it comes to leveraging the
full power of weak labels. The authors further explain that this
problem is generally non-convex and requires Lagrangian dual
optimizations which is computationally very expensive. Their
proposed method finds a way around the dual Lagrangian
optimization by integrating the constraint at network output
level. Instead of the EM approach, the authors cast the seg-
mentation task onto a constraint optimization problem where
the parameters of the CNN network are found given particular
constraint Q with respect to the weak labels.

Bounding Box + Image Labels. In [26], the EM-Adapt
method is extended through proposing a good initialization
approach of the EM algorithm, with the goal of avoiding
local maxima. Thus, instead of an initialization based on a
classification task as is usually done, method in [26] focuses
on exploiting a combination of saliency and attention maps to
kick-start the algorithm.

Bounding Box Labels. Both BoxSup [9] and Simple Does
It (SDI) [8] use an iterative training approach to gradually
improve generated label estimates. However, whereas SDI
exploits a GrabCut-like algorithm [27] for the initial label
estimate generation, BoxSup exploits an unsupervised region
proposal method such as Multiscale Combinatorial Grouping
(MCG) [28]. Moreover, whereas BoxSup modifies the training
procedure in order to denoise intermediate outputs, SDI leaves
the training algorithm unmodified and focuses on externally
denoising input labels through exploiting prior knowledge.
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Fig. 3. BB-UNet structure with a bounding filter inserted at the BB-ConV
layers. Four possible bounding filters are illustrated: BB: Bounding box
filter, CC: Circular filters, BB∩CT: intersection between bounding box and
image, CC∩CT: intersection between circular filter and image.

III. PROPOSED BB-UNET STRUCTURE

In this section, we present the proposed BB-UNet model.
We first elaborate on its different building blocks and then
clarify the different prior information used. In Section III-E,
we focus on the BB-UNet principle and training strategies.
Finally, a comparison is presented in Section III-F between
the proposed BB-UNet and similar state-of-the-art models.

A. BB-UNet architecture

In the proposed architecture, we extend U-Net to include
not just global and local features, but also ones related to
position as well as shape priors. As previously stated, U-
Net is a symmetric encoder/decoder structure with equivalent
distribution of convolutional and de-convolutional layers. In
order to make use of local and global information, U-Net
utilizes skip connections that concatenate down-sampling fea-
tures from the contracting path with up-sampling ones from
the expanding path. Our main contribution within the BB-
UNet structure lies at skip connection levels. Thus, instead
of directly concatenating the features from both paths as in
U-Net, a third component layer that takes into consideration
shape and location information is introduced. This layer is
called the BB-ConV layer as shown in Fig. 3. A BB-ConV
layer is composed of a 2D-max pooling layer followed by
two consecutive convolutional ones. The input to this layer
is a bounding map (bounding filter) representing a coarse-
grained area where the organs are supposedly located. In
summary, the BB-ConV layer takes as input a bounding filter
and outputs a feature map that allows the network to enhance
its estimation to where an organ can be. This learnt feature map
can be considered as a per-pixel weighting factor, enhancing

discriminative features over non-significant ones. Overall, BB-
UNet is taking two inputs, the CT-image and the bounding
filter. Since the filters are inserted at the link between the
contextual and location information, we are able to adapt what
the model learns, focusing on the attention areas that we are
yielding, i.e., enhancing features detection within particular
sections of the image.

B. BB-UNet main principle

The proposed BB-UNet considers two inputs, the CT image
and the bounding filter. Whereas the CT image is fed to the
encoder layers in the contracting path for contextual feature
extraction as is done within a regular U-Net, the bounding
filter is fed independently to the BB-ConV layer for shape
and location feature extraction. Within each skip connection,
the intersection between the unpooled map from a level
contracting layer and the location feature map from the BB-
ConV layer is then obtained, and further concatenated with
the features from the up-sampling layers. The bounding filter
provided to the BB-ConV layer is a binary map indicating the
attention area corresponding to the position of the organ(s)
under consideration. For single-organ segmentation, a single
channel indicating the possible area where the organ may be
located is provided to the BB-ConV layer. For the multi-organ
segmentation, filters of the different organs are independently
fed to the BB-ConV layer in the form of a multi-channel binary
map. This multi-channel map is then convolved within the BB-
ConV layers for feature extraction. The output of BB-UNet is
a segmentation mask derived from learnt relations between the
bounding filters as well as the image.

C. Generating Bounding Boxes

Bounding boxes can be generated through 2D or 3D ap-
proaches. In 2D, bounding boxes can be generated either
through region proposal approaches [29] or through regres-
sion/classification based approaches [30]. 3D-bounding box
generation can be done by training an end-to-end convolutional
network for 3D-object extraction [31], or by extrapolation
from 2D bounding box generation techniques as surveyed in
[32]. In our implementation, we have considered the case
where bounding boxes were generated automatically from
the ground truth and defined as the smallest bounding box
encompassing the understudied organ with interval ε . Despite
the fact that we have used manually-obtained bounding boxes
for both our training and inference tasks, automatically obtain-
ing coarse grained bounding areas could be considered given
current object detection advances in medical imaging [33].
In this case, BB-UNet performance will depend on the shift
between detected vs ground-truth bounding box distributions.
Ideally in the automatic framework, detected bounding boxes
would have to be used for training and testing.

D. Prior information

We have designed several types of bounding filters. We
have considered rectangular bounding boxes denoted as BB
for bounding box filter.
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Fig. 4. Weakly supervised segmentation process with BB-UNet. BB: Bound-
ing Box, CT: CT image. GT: Ground Truth segmentations (full annotation).

Noting that the objects of interest (organs) do not have
corners or edges, we also considered a circular filter, denoted
as CC. CC filters are the smallest circles encompassing the
bounding boxes. Since organs may share similar intensity
values, filters that include the intersection between both the
bounding mask as well as the CT image are investigated.
Henceforth, the BB∩CT and CC∩CT filters are introduced
in Fig. 3. The proposed model is trained in such a way that
it extracts features specific only to the organ understudy with
respect to the other relative organs or tissues. This can include
shape, size, or organ smoothness.

E. Supervision strategies

In order to study how well the proposed model performs as
a standalone structure, the BB-UNet is firstly trained within
a fully supervised framework. Labels used within this frame-
work are the ground truth segmentations provided for each
organ respectively. Given this framework, separate channels
are fed to the BB-ConV layer relative to each organ inde-
pendently. In the case of multi-component organs, a unified
bounding box encompassing all organ elements is taken into
consideration. With respect to BB-UNet output, we consider
five classes thus distinguishing between the 4 organs as well
as the background. The BB-UNet may also be implemented
within a weakly supervised framework. We adopt the iterative
method as done in our previous work [34]; however, instead of
using the GrabCut algorithm to generate initial label estimates,
we focus on training the BB-UNet on a very tiny sample of
the training set (ancillary set) in a fully supervised manner.
We then used the BB-UNet weights in order to derive proper
label estimates for a much larger weakly supervised dataset -
the Primary training set. A U-Net model is then trained on the
label estimates provided for the Primary-train set. The process
is described in Fig. 4.

F. Comparison to state-of-the-art models

Fully Supervised Framework. Models most relevant to
our work are those developed in [2] and [35]. The SR-UNet
in [2] introduces regularization factors by jointly adding an
external network to the U-Net model. The main objective
of this network is to take into consideration the incomplete,
over- or under-segmented shape masks provided by the U-
Net and map it to a manifold of training shapes. Despite

the importance of regularization, the addition of an adjoint
complex model while training will increase model complexity
and thus affect model performance. For this reason, we aim
to add the regularization structure within the U-Net level, thus
fine-tuning the encoder spatial considerations intern without
the need for a manifold space.

The Attention-UNet in [35] is most similar to ours in terms
of adding attention blocks at the skip-connection level. Thus,
both BB-UNet and Attention-UNet focus on imposing convo-
lutional filters midway between encoder and decoder paths. In
doing so, both models are able to distinguish between relevant
and irrelevant features while training. However, the means to
which each model obtains the constraints to these attention
maps differ considerably. Whereas [35] aims at exploiting
coarse-grained features obtained from U-Net bottleneck as
input constraints to the convolutional layers at skip connection
levels, our model imposes external activation inputs based
on prior knowledge of the dataset. One can think of both
models as functioning in different directions within the skip
connections. Whereas we impose external activation inputs to
guide the network on to where to look and move downwards
through the network until bottleneck, [35] exploits inputs
provided by the bottleneck output and moving upward through
the skip connections.

Weakly Supervised Framework. Models most relevant to
our work are those developed in [36] and [8]. The authors
of [36] elaborate on a simple to complex (STC) framework,
where an initial deep CNN is learnt on simple images and
their corresponding saliency maps. An enhanced CNN is learnt
on the output of the initial ancillary model as well as the
image label. Our work shares similarity with STC in that both
methods train a primary U-Net based on the predictions of an
ancillary model, which is the BB-UNet in our work. However,
the BB-UNet does not use saliency maps or simple data, rather
our intuition lies in the idea of developing a robust model that
can make full use of the information given a tiny subset of
dataset that is fully supervised, so as to derive good initial label
estimates for the much larger weakly supervised framework.
Whereas STC’s main contribution is the use of simple images
to infer labels for a much larger weakly supervised dataset,
our contribution is to make use of a very small amount of
data in order to perform the aforementioned task.

As in SDI [8], we aim to generate good initial label
estimates within just one generation step. However, SDI uses
M ∩ G+, which is an intensity-based estimator representing
the intersection between multi-scale combinatorial grouping
segment proposals [28] and GrabCut [27], as an initial label
estimator. We have shown in our previous work [34] that the
use of intensity-based algorithms such as M ∩G for example,
does not provide proper label representatives. Instead, we aim
to generate suitable initial label segments by exploiting a
network (ancillary model) trained on a very tiny sample of
a fully supervised dataset.

IV. EXPERIMENTAL SETTING

SegTHOR dataset: This dataset consists of 60 CT scans
of patients characterized with non-small cell lung cancer
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TABLE I
SLICE AND SIZE DISTRIBUTION OF THE SEGTHOR DATASET.

Train Train Ancillary Train Primary Validation Evaluation Organ Size (pixels)
Patients 36 6 30 4 20 Average Min Max
Heart 1444 219 1225 155 726 9574 245 23588
Aorta 3363 554 2809 391 1824 1023 81 6336
Trachea 1767 293 1474 220 953 340 72 1244
Esophagus 3510 565 2945 410 1862 226 60 2528
Total 4153 699 3454 497 2281

and referred for radiotherapy. The dataset was acquired at
the cancer center Centre Henri Becquerel in Rouen, France.
Organs at risk in CT images including the heart, trachea,
aorta and esophagus, were manually segmented by an expert
radiotherapist. CT images are 512×512 voxels, and number
of slices ranging from 150 to 284 per patient. The dataset
was released publicly in a competition conducted at the IEEE
International Symposium for Biomedical Imaging 20191.

In these images, some organs share similar gray-scale
intensity values with each other as well as neighboring tissues,
which makes the segmentation particularly challenging. This
phenomenon renders common intensity-based thresholding
methods useless and justifies the need for learning-based
techniques for segmentation. Moreover, target organs are very
close. As a result, bounding filters suffer from a high overlap
between neighboring organs (see Fig. 1), which may enhance
organ imbalance thus affecting model performance, as is later
shown.

Following the SegTHOR challenge, the training considered
40 patients subdivided into a training set of 36 patients and a
validation set of 4 patients. The test set includes the remaining
20 patients. Given a weakly supervised framework, further
divisions are made as stated in VII. The patient and slice
distributions are shown in TABLE I. The average, minimum
and maximum organ size is also provided, over the entire set
of patients.

Taking a closer look at the organ slice frequencies in
TABLE I, one can notice that the slice organ distribution
suffers from high class imbalance. Thus, the heart as well
as the trachea have a small number of slices (≈ 1000 slices)
compared to the aorta and esophagus (≈ 3000 slices). Taking
a closer look at the organ size, the trachea and esophagus are
the smallest in size (200 to 340 pixels in average) relative to
the heart and aorta (≈ 10000 pixels in average).

Using body contours provided for each CT slice, images
were cropped and resized to a resolution of 512×512 pixels.
Image intensities were bound to values between -1000 and
3000, normalized by subtraction of the mean and division by
standard deviation at image level. Slices were filtered to keep
only images with at least one organ present.

Cardiac Dataset: The Cardiac dataset is part of the De-
cathlon medical image segmentation challenge [39]. It consists
of 20 mono-modal MRI scans covering the entire atrium
which were segmented through an automated tool followed
by manual correction. MR images are 320×320 voxels and a

1The SegTHOR dataset is available at https://competitions.codalab.org/
competitions/21145.

number of slices ranging between 54 and 76 slice per patient.
The dataset was split into 10 patients (670 ± 5 slices) for
training, 4 patients (66±1 slices) for validation and 6 patients
(416 slices) for testing. The dataset is characterized, as stated
in the challenge, by being small, 1351 slices in total, with large
variability. Thus, the atrium has a large size range that varies
from 3 to 1921 pixels with up to 3 connected components.

Aside from the low contrast that these images are character-
ized with, the segmentation process is particularly challenging
due to many factors, among which the high organ size imbal-
ance over the different slices. Thus, whereas some slices have
a considerably large atrium, others contain a segment which
is very small. Moreover, the atrium is generally composed of
multiple components within the bounding box. Therefore, the
model must learn to distinguish between the different parts of
the atrium present in the same bounding box.

Model Training and Architecture. The BB-UNet has two
main components: the Base U-Net model and the BB-ConV
layer. The U-Net implementation in this work is the one pro-
vided by a PyTorch implementation of the original U-Net [40].
Feature dimensions extend till 256 feature maps within the bot-
tleneck which is composed of 2 simple convolutional layers.
The BB-ConV is composed of a 2D-pooling layer followed
by two consecutive convolutions with batch normalization
(momentum = 0.1) and dropout (factor = 0.4). Bounding boxes
relative to different organs are fed independently through
a multi-channel input onto the BB-ConV layer. Moreover,
to overcome the size imbalance between organs versus the
background, we distinguish between classes corresponding to
the understudied organs (4 organs for SegTHOR, 1 organ for
Cardiac) and the background class. To guide the training, a loss
approximation of the Dice similarity factor as elaborated in [6]
was adopted. Moreover, we have used the Adam optimizer
with an initial learning rate of 10−3 and a cosign annealing
scheduler. Network diagram is presented in Fig. 3.

V. FULLY SUPERVISED SEGMENTATION EXPERIMENTS

In this section, we present results for both SegTHOR and
Cardiac datasets. SegTHOR results are compared relative to 3
fully supervised segmentation models: the original U-Net with
and without data augmentation [3], and VB-Net, the winner
of the ISBI SegTHOR challenge [37]. With regards to Cardiac
dataset, we compare to regular U-Net. In addition, we compare
for both datasets U-Net performance after post-processing by
filtering predicted segments with bounding box prior (U-Net
+ Post.). The proposed models are evaluated with the Dice
similarity index, defined as twice the intersection divided by
the union between ground-truth and predicted segments [41].

https://competitions.codalab.org/competitions/21145
https://competitions.codalab.org/competitions/21145
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TABLE II
AVERAGE DICE RATIO FOR FULLY SUPERVISED MULTI-ORGAN SEGMENTATION. FIRST ROWS REPRESENT NON-FILTERED MODEL PERFORMANCE AND

LAST ROWS SHOWS RESULTS AFTER POST PROCESSING USING BOUNDING BOXES

Heart Aorta Trachea Esophagus
State of the Art
VB-Net [37] 0.94 0.93 0.91 0.84
U-Net (+ data augmentation) [38] 0.93 0.92 0.86 0.81
U-Net (+ background) 50.37 ± 15.28 85.172 ± 2.21 82.48 ± 5.27 76.56 ± 0.10
U-Net (+ background) + Post. 96.89 ± 1.38 93.20 ± 0.62 97.59 ± 0.24 84.761 ± 1.09
Proposed Models
BB-UNet-BB 98.32 ± 0.29 96.02 ± 0.46 97.82 ± 0.10 91.56 ± 0.12
BB-UNet-BB + Post. 98.59 ± 0.10 96.02 ± 0.46 97.82 ± 0.10 91.56 ± 0.12
BB-UNet-BB ∩ CT 97.57 ± 1.52 95.95 ± 0.31 97.82 ± 0.34 91.74 ± 0.17
BB-UNet-BB ∩ CT + Post. 98.63 ± 0.10 95.95 ± 0.31 97.97 ± 0.30 91.74 ± 0.17
BB-UNet-CC 93.07 ± 5.8 95.54 ± 0.10 93.526 ± 0.17 90.01 ± 0.28
BB-UNet-CC + Post. 98.07 ± 0.27 95.77 ± 0.23 97.74 ± 0.25 90.29 ± 0.31
BB-UNet-CC ∩CT 82.89 ± 4.8 95.30 ± 0.25 93.41 ± 0.24 89.79 ± 0.34
BB-UNet-CC ∩ CT + Post. 98.1 ± 0.06 95.54 ± 0.26 96.65 ± 0.14 90.07 ± 0.37

A. SegTHOR Multi-Organ segmentation

From the results in TABLE II, we observe that the proposed
model outperforms regular U-Net (3rd row) by about 15 %
on the esophagus and trachea, 11 % for the aorta, and by a
large margin on the heart. This indicates the ability of the
proposed model to learn discriminative features both specific
for the organs at hand and also relative to their location. With
respect to previous leading work that utilize data augmentation
(1st and 2nd row), BB-UNet admits comparable results with
respect to both VB-Net, the ISBI challenge winner as well
as well as U-Net with data augmentation. In fact, model
performance between them vary mildly with BB-UNet taking
the lead for the esophagus, the trachea, and the aorta given
all proposed experiments and in 3 out of 4 experiments in
the case of the heart. These results shed light on the role
of prior embedded structures in obscuring the need for data
augmentation.

In comparison to the state-of-the-art models, bounding
boxes within U-Net are required in both training and inference
phase. Since we used bounding box prior at test time, it is
logical to impose such prior on the reference model (U-Net)
and compare the obtained results relative to ours. Filtering
the segmentations using the bounding boxes within U-Net, we
obtain the post-processed results in row "U-Net (+background)
+ Post" from TABLE II. Comparing these results with ours,
we realize that indeed the proposed models provide compara-
ble results (2 ∼ 3% higher) than the post-processed U-Net
segmentations, while outperforming the "U-Net + Post" in
the case of the esophagus. This indicates the importance of
properly integrating prior knowledge onto the model structure
while training.

Comparing the different proposed structures in TABLE I, we
gather that the BB-UNet with bounding box filters, regardless
of whether it is solely the bounding box or the bounding box
intersected with the CT image, perform better than circular
ones contrary to the binary case. This is due to the fact that
circular filters have larger shared areas generated due to the
closeness of organs with respect to each other. Thus, attention
areas are more overlapping in the case of circular filters
than that of bounding boxes. The variation between model

Fig. 5. Evolution Curve of the proposed models as well as U-Net for the
validation set. Same Legend as Fig. 3

performance given bounding box filters (BB and BB∩CT)
relative to circular filters (CC and CC∩CT) is significant to
note since it opens up the discussion of the dependency of
models’ performance relative to the approximate area where
the organ is estimated to exist in. For example, given segmen-
tation of the aorta which according to TABLE I is the second
largest organ (1023 pixels) and the second most common organ
present in slice distribution (3363 slices), the variation in the
approximated prior area has no effect on model performance
which is stable at ≈0.96.

Taking a closer look at the evolution of the validation Dice
losses relative to the number of epochs, we derive the role of
prior with respect to model convergence Fig. 5. It is evident
that BB-UNet models tend to converge onto lower losses than
regular U-Net during validation, which seems to be losing
its generalization ability or sustaining its limited performance
with epoch evolution.

B. Cardiac Multi-Component Organ Segmentation

Results with respect to the Atrium are benchmarked in
TABLE III. A closer look at TABLE III, we realize that
the utilization of BB-UNet has direct effect on segmentation
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TABLE III
AVERAGE DICE ACCURACY FOR FULLY SUPERVISED ORGAN

SEGMENTATION OF THE ATRIUM.

Av. Dice (%) Av. Hausdorff (mm)
State of the Art
U-Net + (background) 77.95±1.38 2.51±0.11
U-Net + (background) + Post 82.59 ± 0.61 2.33 ± 0.04
Proposed Models
BB-UNet-BB 89.94 ± 1.54 2.17 ± 0.13
BB-UNet-BB +Post 89.936 ± 1.256
BB-UNet-BB∩CT 91.83 ± 0.22 2.05 ± 0.014
BB-UNet-BB∩CT +Post 89.403 ± 0.781
BB-UNet-CC 88.97 ± 0.35 2.10 ± 0.01
BB-UNet-CC +Post 89.592 ± 0.176
BB-UNet-CC∩CT 88.82 ± 0.26 2.10 ± 0.02
BB-UNet-CC∩CT +Post 89.262 ± 0.281

quality. Thus, BB-UNet in all its modalities outperform regular
U-Net by over 12 % with BB ∩CT model registering highest
Dice accuracy scores relative to its peers. The significance of
BB-UNet is relatively evident when comparing with respect
to U-Net Post-processing results (2nd row). Thus, even when
we integrate bounding box filters at inference time onto U-
Net predictions, BB-UNet still has a leading increase in about
6 % in Dice accuracy. This is also verified by the Hausdorff
distances of U-Net and U-Net with post-processing relative
to the proposed models. Thus, BB-UNet models register a
decrease in Hausdorff distances relative to regular U-Net by
about 13.54 % in worst case scenarios (BB-UNet-BB: 2.51→
2.17) and by about 18 % in best case scenarios (BB-UNet-BB
∩ CT: 2.51 → 2.05). After Post-Processing with bounding
boxes onto U-Net segments, the proposed models register a
decrease in Hausdorff distance by about 7 % in worst case
scenarios (BB-UNet-BB: 2.33→ 2.17) and about 12 % in best
case scenarios BB-UNet-BB: 2.33→ 2.05. The above results,
re-signifies on the importance of the BB-ConV layer as well as
the importance of integrating prior embedded structures onto
segmentation problems.

Comparing internally the proposed models, we realize that
despite the fact that the change is slight, the utilization of
intersection filters with bounding boxes (BB-UNet-BB ∩ CT)
is slightly more beneficial. This is explained by the fact that
with the atrium organ, segments are often rather composed
of multiple components that vary in size and position. Since
the bounding box utilized is a unified box that includes
all the organ components, the utilization of the intersection
filters allows the model to distinguish between the different
components while still posing attention on the particular area
where the components can be.

VI. ROBUSTNESS ASSESSMENT OF THE PROPOSED MODEL

From the previous results, we have shown that the utilization
of BB-ConV layer at the level of the skip connections allows
the network to learn intrinsic properties relative to the organs
under-study. In this section, we validate the robustness of the
BB-UNet performance through two steps. Firstly, we study
the invariance of BB-UNet performance given its different
modalities when imposing Bounding Box Filtering. Secondly,

TABLE IV
EFFECT OF BOUNDING BOX SIZE VARIATION ON DICE ACCURACY. EACH

SIDE OF THE BOUNDING BOX IS INCREASED BY l PIXELS, AS SHOWN IN
COLUMN BB. VAR. THE NEW BOUNDING BOX AREA IS ×h GREATER THAN

THE INITIAL BOUNDING BOX AS INDICATED IN BB. AREA INC.. THE
RESULTING NEW DICE ACCURACY IN % IS IN COLUMN DA. COMPARISON

TO UNET WITHOUT POST-PROCESSING, COLUMN UNET.

Organ UNet BB. Var BB. Area Inc. DA BB-UNet

Heart 0.66

bb + 50px × 4.11 0.72
0.98bb + 10px × 1.44 0.94

bb + 5px × 1.20 0.98

Aorta 0.95
bb + 10px × 2.67 0.92

0.957bb + 5px × 1.72 0.95
bb + 1px × 1.12 0.97

Trachea 0.88
bb + 10px × 4.05 0.96

0.98bb + 5 px × 2.27 0.98
bb + 1px × 1.21 0.98

Esophagus 0.76
bb + 10px × 5.29 0.60

0.92bb + 5px × 2.73 0.79
bb + 1px × 1.27 0.93

we conduct a sensitivity analysis with regards to the effect of
varying the bounding box size on model performances.

A. Post-Processing Comparison

In this experiment, we have applied the same post-
processing step that we did with U-Net in the previous section
onto the different BB-UNet modalities. The main objective
was to determine whether the BB-ConV layer eliminated the
need for post-processing. Results are benchmarked relative to
both SegTHOR and Cardiac in TABLE II and TABLE III
under the name (Model +Post.). An ideal case would be a
zero gap between the BB-UNet model performance vs BB-
UNet +Post. This would mean that imposing bounding box
post-processing will not affect the BB-UNet performances
across its different modalities. From TABLE III, we gather
that post-processing indeed resulted in little to no variation
in Dice accuracy for Cardiac. This means that even given
the variation of the shape/type of filter utilized, the BB-UNet
still maintained its agreeable performance and does not require
Post-processing. With regards to SegTHOR (see TABLE II),
the same conclusion can be drawn when comparing relative
to the Aorta and the esophagus. Thus for both organs, the gap
between BB-UNet vs BB-UNet + Post. is almost null. This is
not the case for the heart and trachea. Thus, a considerable gap
(BB-UNET-CC∩CT : 16 %, BB-UNET-CC: 6 %) is registered
relative to the heart and about 3 to 4 % for both models
relative to the Trachea. Incidentally, going back to TABLE I
that presents the slice distribution per organ and dataset size,
the heart as well as the trachea are the smallest in slice size.
On the other hand, the esophagus as well as the aorta are
the richest ones. This provides us with intuition regarding the
impact of BB-ConV relative to dataset size.

B. Sensitivity Analysis

One way to validate the proposed model is through de-
termining the effect of bounding box variation on model
performance. To do so, we vary the size of the bounding box
with respect to its initial size which is the smallest bounding
box that encompasses the organ. We increase the boundaries of
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TABLE V
AVERAGE DICE RESULTS (IN %) FOR WEAKLY SUPERVISED

SINGLE-ORGAN (HEART) SEGMENTATION.

mean std max min
Baselines
U-Net with Circular Labels 54.43 22.46 77.91 0.0
U-Net with GrabCut Labels [34] 64.37 32.67 92.93 0.0
State of the art
Simple Does It with GrabCut [8] 84.67 3.94 90.57 67.86
EM-Adapt without CRF [13] 25.97 9.61 50.72 0.3
Proposed models
BB-UNet-BB 83.19 13.32 96.36 9.09
BB-UNet-BB∩CT 84.47 5.97 95.96 60.62
BB-UNet-CC 91.69 11.27 98.77 23.82
BB-UNet-CC∩CT 86.79 15.03 98.54 5.12
Full supervision baseline
BB-UNet Full Supervision 95.29 3.51 98.55 75.65
U-Net Full Supervision [40] 91.53 11.12 98.79 10.67

each side of the bounding box by xpx pixels denoted by +xpx
in TABLE IV. TABLE IV shows that given small variations
in bounding boxes (increasing bounding box size by 20 %
heart, 12 % aorta, 20 % trachea and 27 % esophagus) did not
reveal any significant change in model performance. In fact,
these small variations may have slightly improved the already
present accuracies. Conducting further variations for up to 50
% of initial bounding box size resulted in slight variation in
model performance while still outperforming the U-Net results
by a considerable margin.

VII. TOWARDS WEAKLY SUPERVISED SEGMENTATION

In this section, the overall proposed pipeline is presented for
weakly supervised training using BB-UNet, in a single organ
setting (the heart). For this framework, the training set was
further divided into a much smaller training set called train-
ancillary, consisting of 6 patients (200 slices); and a primary
training set called train-primary, containing 30 patients (1244
slices). While the ancillary set has the full labels, we consider
only bounding box labels in the primary set (TABLE I). The
overall process is shown in Fig. 4.

Baselines. A naive circular baseline is established as a
starting point for our implementations. Given an image and
a bounding box, a circular shape encompassed within the
bounding box is considered as the label estimate to our model.
We also compared with our previous work on SegTHOR where
we adopted a similar two-step iterative process, but generated
initial label estimates using GrabCut algorithms. Moreover,
comparison is done with other common weakly supervised
state-of-the-art methods, such as Simple Does It (SDI) [8],
and EM-Adapt [13].

As an upper baseline, we resort to the fully supervised
setting where all labels as well as the bounding boxes are
present. We study two fully supervised scenarios: one, a
regular U-Net is trained using fully annotated segmentation
maps; two a fully supervised framework enhanced with prior
bounding box knowledge, where we train the BB-UNet model
with circular filters.

Experimental setup. For weakly supervised segmentation
processes, we adopt a similar approach to the one we im-
plemented within [34]. We elaborated on a two-step iterative
process where we generated initial label estimates basing on
GrabCut-like algorithms. We then fine-tuned using regular U-
Net training. In this current work, we replace the GrabCut
label estimator by the ancillary BB-UNet model. We train the
BB-UNet on a tiny fully supervised sample of the dataset – the
ancillary training set, and then use the learnt weights in order
to infer label estimates with regards to the much larger weakly
supervised dataset – the primary training set (see Fig. 4).

Results analysis. As one can see from Table V, the pro-
posed models outperform state of the art by a considerable
margin, with BB-UNet with circular filters taking the lead by
an increase in performance of 6% with respect to our previous
work [34] and other state of the art methods. This leads us
to believe that the proposed model is a viable solution when
compared to the fully supervised framework. In this way one
can avoid expensively annotating large datasets by making use
of only a small partition of full annotation to conduct training.

VIII. CONCLUSION

In this paper, we have proposed a new model, the BB-UNet
model, that is inspired by U-Net and that integrates shape
and location prior by incorporating bounding areas as filters
within the middle of skip connections. The proposed model
outperforms the state of the art in both multi-organ and multi-
component segmentation settings. We further implemented this
BB-UNet within a weakly supervised framework. Promising
results indicate the relevance of the proposed method relative
to its peers within the state of the art.

Given the fully supervised domain, future steps are to be
taken in order to relieve the BB-Unet dependency on bounding
areas at inference. This can be done through addressing the
feature distribution shift resulting from the augmented BB-
ConV layer. Moreover, diagnostic as well as interventional
imagery often consist of 3D images. Hence, exploration of
the possibility of developing a BB-VNet that can perform 3D
segmentation is also an aim that we hope to achieve.

Future work for the weakly supervised approach includes
developing training methods suitable for weakly supervised
learning using only the BB-UNet model and independent
of ancillary vs primary training. This may be done through
training the BB-UNet within an unsupervised framework or
through an Expectation maximization setting. Moreover, a
thorough study should be carried out in order to find suitable
loss functions that infer relations between the bounding boxes
and the corresponding label segments.
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