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Introduction

Understanding the processes that regulate the abundance of wild populations is a primary goal in ecology, with direct implications for species conservation and sustainable management of exploited living resources [START_REF] Hixon | Population regulation: historical context and contemporary challenges of open vs. closed systems[END_REF][START_REF] Koons | Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics[END_REF]. In coastal and estuarine ecosystems, individuals from many fish species concentrate during the juvenile stage in spatially restricted nurseries [START_REF] Beck | The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas[END_REF]. Although there is strong evidence that this concentration results in density-dependent regulation [START_REF] Myers | Density-dependent juvenile mortality in marine demersal fish[END_REF][START_REF] Iles | The concentration hypothesis: the statistical evidence[END_REF][START_REF] Minto | Survival variability and population density in fish populations[END_REF], the underlying processes remain poorly understood [START_REF] Hixon | Competition, predation, and density-dependent mortality in demersal marine fishes[END_REF][START_REF] Van Poorten | Revisiting Beverton-Holt recruitment in the presence of variation in food availability[END_REF].

Competition for limiting resources and predation are often cited as the ultimate factors that cause density-dependent growth and survival [START_REF] Post | Density-dependent processes in structured fish populations: interaction strengths in whole-lake experiments[END_REF]. Since predation pressure on juvenile fish is generally accepted as low in coastal nurseries [START_REF] Bergman | Plaice nurseries: effects on recruitment[END_REF][START_REF] Nash | The influence of nursery ground processes in the determination of year-class strength in juvenile plaice Pleuronectes platessa L. in Port Erin Bay, Irish Sea[END_REF][START_REF] Gibson | Ontogenetic changes in depth distribution of juvenile flatfishes in relation to predation risk and temperature on a shallowwater nursery ground[END_REF][START_REF] Litvin | What Makes Nearshore Habitats Nurseries for Nekton? An Emerging View of the Nursery Role Hypothesis[END_REF], competition for limiting resources, particularly food, seems more likely.

Competition occurs when individuals of one or more species utilize common resources that are in short supply [START_REF] Birch | The meanings of competition[END_REF]). Hence, it is closely related to the carrying capacity of ecosystems [START_REF] Hollowed | Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems?[END_REF], which is determined by the strength of intra-and interspecific density dependence [START_REF] Brown | The assessment of fishery status depends on fish habitats[END_REF]. In marine ecosystems, most bentho-demersal fish species are considered opportunistic predators [START_REF] Hunsicker | Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues and emerging concepts[END_REF]. Even though food partitioning exists and may reduce competition among fish [START_REF] Besyst | Feeding ecology of juvenile flatfishes of the surf zone of a sandy beach[END_REF][START_REF] Darnaude | Food partitioning among flatfish (Pisces: Pleuronectiforms) juveniles in a Mediterranean coastal shallow sandy area[END_REF]), many species likely share a common pool of prey, particularly during their juvenile stage [START_REF] Dolbeth | Feeding patterns of the dominant benthic and demersal fish community in a temperate estuary[END_REF][START_REF] Schückel | Diet overlap among flatfish species in the southern North Sea[END_REF]. Therefore, the amount of food available to each individual is ultimately affected by what the others consume, suggesting both intra-and interspecific competition in fish nurseries [START_REF] Nunn | The foraging ecology of larval and juvenile fishes[END_REF]. However, evidence that food supply actually limits juvenile fish production is rare, and the "food limitation hypothesis" remains controversial (Le [START_REF] Pape | The food limitation hypothesis for juvenile marine fish[END_REF].

In temperate ecosystems, juvenile marine fish concentrate in nursery grounds from late spring to early fall, when the biomass of macrobenthic prey peaks [START_REF] Beukema | Seasonal changes in the biomass of the macro-benthos of a tidal flat area in the Dutch Wadden Sea[END_REF][START_REF] Saulnier | Seasonality in coastal macrobenthic biomass and its implications for estimating secondary production using empirical models[END_REF].

Nonetheless, because the food supply varies annually, notably due to environmental fluctuations [START_REF] Holland | Long-term variation in mesohaline Chesapeake Bay macrobenthos: spatial and temporal patterns[END_REF][START_REF] Dolbeth | Long-term changes in the production by estuarine macrobenthos affected by multiple stressors[END_REF], it may regulate production of juvenile fish, at least when settlement is high and/or prey availability is low [START_REF] Nash | Dynamics of shallow-water juvenile flatfish nursery grounds: application of the self-thinning rule[END_REF][START_REF] Pape | The food limitation hypothesis for juvenile marine fish[END_REF].

Population regulation operates through changes in life-history traits such as growth, condition and survival [START_REF] Andersen | When in life does density dependence occur in fish populations?[END_REF]. Therefore, many studies investigated whether food was limiting by comparing the growth rate observed in the field to optimal growth rates predicted by experimental or bioenergetic models [START_REF] Amara | Feeding ecology and growth of O-group flatfish (sole, dab and plaice) on a nursery ground (Southern Bight of the North Sea)[END_REF][START_REF] Van Der Veer | Food limitation in epibenthic species in temperate intertidal systems in summer: analysis of 0-group plaice Pleuronectes platessa[END_REF][START_REF] Freitas | Food conditions of the sand goby Pomatoschistus minutus in shallow waters: An analysis in the context of Dynamic Energy Budget theory[END_REF][START_REF] Selleslagh | Effect of starvation on condition and growth of juvenile plaice Pleuronectes platessa: nursery habitat quality assessment during the settlement period[END_REF]). However, this approach has some disadvantages. For example, observed growth rates often remain nearly optimal, even when food is limiting, because slow-growing individuals have lower survival and are thus rarely sampled (Le [START_REF] Pape | The food limitation hypothesis for juvenile marine fish[END_REF]. Another approach is to correlate time-series of food supply and fish abundance, fish condition or survival [START_REF] Beaugrand | Plankton effect on cod recruitment in the North Sea[END_REF][START_REF] Okamoto | Fluctuations in food supply drive recruitment variation in a marine fish[END_REF][START_REF] Latour | Spatiotemporal trends and drivers of fish condition in Chesapeake Bay[END_REF]), but long-term datasets with both prey and predator indices are rarely available. Alternatively, the extent to which food is limiting can be inferred directly from the proportion of prey production that is consumed by their predators [START_REF] Evans | Production, predation and food niche segregation in a marine shallow soft-bottom community[END_REF][START_REF] Boisclair | Rates of food exploitation by littoral fishes in a mesotrophic north-temperate lake[END_REF][START_REF] Collie | Food consumption by yellowtail flounder in relation to production of its benthic prey[END_REF][START_REF] Vinagre | Prey consumption by the juvenile soles, Solea solea and Solea senegalensis, in the Tagus estuary, Portugal[END_REF]).

In the present study, we used this third approach to investigate whether competition for food may limit juvenile fish production in coastal and estuarine nurseries. We focused on the outer Seine estuary and the eastern Bay of Seine, in western Europe. This area is an important nursery ground for many species that support commercial fisheries [START_REF] Rochette | Effect of nursery habitat degradation on flatfish population: Application to Solea solea in the Eastern Channel (Western Europe)[END_REF][START_REF] Rochette | A hierarchical Bayesian model for embedding larval drift and habitat models in integrated life cycles for exploited fish[END_REF][START_REF] Archambault | Adult-mediated connectivity affects inferences on population dynamics and stock assessment of nurserydependent fish populations[END_REF].

Like many estuarine ecosystems, this area experiences strong natural and anthropogenic stress [START_REF] Elliott | The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas[END_REF], especially due to pollution and coastal development [START_REF] Dauvin | Effects of heavy metal contamination on the macrobenthic fauna in estuaries: the case of the Seine estuary[END_REF][START_REF] Tecchio | The mosaic of habitats of the Seine estuary: Insights from food-web modelling and network analysis[END_REF]. In particular, its area of essential shallow and productive habitats has decreased significantly over the past century due to the progressive extension of Le Havre harbor, dike construction and channel dredging [START_REF] Dauvin | Recent changes in estuarine benthic and suprabenthic communities resulting from the development of harbour infrastructure[END_REF][START_REF] Pape | Convergent signs of degradation in both the capacity and the quality of an essential fish habitat: state of the Seine estuary (France) flatfish nurseries[END_REF]. Despite recent efforts to reverse some anthropogenic changes [START_REF] Ducrotoy | Estuarine conservation and restoration: The Somme and the Seine case studies (English Channel, France)[END_REF], this lasting morphological alteration likely decreased the carrying capacity of the Seine estuary (e.g. for the common sole Solea solea, [START_REF] Rochette | Effect of nursery habitat degradation on flatfish population: Application to Solea solea in the Eastern Channel (Western Europe)[END_REF][START_REF] Archambault | Using a spatially structured life cycle model to assess the influence of multiple stressors on an exploited coastal-nursery-dependent population[END_REF]) and may have exacerbated competition among juvenile fish.

To this case study, we applied a bioenergetics-based approach recently developed to investigate the food limitation hypothesis in estuarine and coastal nurseries [START_REF] Tableau | Novel approach for testing the food limitation hypothesis in estuarine and coastal fish nurseries[END_REF].

Rather than searching for potential changes in life-history traits induced by food limitation (e.g. condition, growth), this approach directly estimates whether the food supply is sufficient to support the energy requirements of the predator community. Using literature and field data from scientific surveys, we estimated an exploitation efficiency (EE), defined as the ratio of food consumption (FC) by epibenthic predators to macrobenthic food production (FP). This ratio was used as an index of food limitation in coastal nurseries. While the method originally focused on juvenile fish, we extended it to include the amount of food consumed by epibenthic predatory invertebrates commonly found in estuarine and coastal ecosystems. Our goal was three-fold: (1) assess interannual (2008)(2009)(2010) and spatial (among strata) variations in FP and FC by epibenthic predators, (2) compare the FC by juvenile fish and predatory invertebrates and (3) quantify how much food was consumed annually by the epibenthic predator community, thus providing new insight into food limitation for juvenile fish in coastal and estuarine nurseries.

Materials and methods

Study area

The outer Seine Estuary and the adjacent eastern Bay of Seine are located in the English Channel on the northwest coast of France, western Europe (Fig. 1). This macrotidal area (the "Seine nursery"), has a tidal range of ~7 m near Le Havre harbor and a mean river flow of ~470 m 3 .s -1 at the entrance of the estuary, with high intra-and inter-annual variations in river discharge [START_REF] Dauvin | Does the hydrodynamic, morphometric and sedimentary environment explain the structure of softbottom benthic assemblages in the Eastern Bay of Seine (English Channel)?[END_REF][START_REF] Romero | Modeling the biogeochemical functioning of the Seine estuary and its coastal zone: Export, retention, and transformations[END_REF]). The study site covers a subtidal shallow (mean depth = 8.2 m) area of 360 km², characterized by muddy-fine sand sediments and composed mostly of polyhaline waters in the outer estuary and euhaline waters in the bay [START_REF] Thiébaut | Spatio-temporal persistence of the Abra alba-Pectinaria koreni muddy-fine sand community of the eastern Bay of Seine[END_REF][START_REF] Savoye | Dynamics of particulate organic matter δ15N and δ13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France)[END_REF]. The mean annual sea bottom temperature during our study period was 12.8°C.

Data collection and selection

Epibenthic predators and their macrobenthic prey were sampled from 2008-2010 in late summer using a stratified random sampling design, with stratification based on bathymetry and sediment composition [START_REF] Tecchio | The mosaic of habitats of the Seine estuary: Insights from food-web modelling and network analysis[END_REF]. The study site was divided into four strata that covered the area sampled each year from 2008-2010: FN and FS in the outer Seine estuary and E4 and E14 in the eastern Bay of Seine (Fig. 1). The navigation channel, separating FN and FS, was excluded since it was sampled only in 2008. All strata were sampled using both grab and trawl devices. 

Grab sampling survey

Macrobenthic invertebrates were sampled using a 0.1 m² grab (Van Veen or Smith-MacIntyre) at 38 stations in 2008 (early October) and 2009 (early September) and 32 stations in 2010 (12 in early September, 20 in late November). Three to five replicates were collected at each station and sieved on board through a 1 mm mesh sieve using seawater. The material retained was fixed with a 10% buffered formaldehyde solution. In the laboratory, retained organisms were identified to the lowest possible taxonomic level (usually species), counted and weighed. Dry mass per taxon was determined by weighing the samples after drying at 60°C for 72 h. Then, ash-free dry mass (AFDM) was determined as dry mass minus ash mass after combusting the dried samples in a muffle furnace at 500°C for 6 h. Biomass and abundance were recorded in 2008 and 2010, while only abundance was recorded in 2009. Thus, biomass per taxon in 2009 was estimated for each sample as B = A • W , where B and A are the biomass and abundance of taxon i, respectively, and W is the mean individual body mass of taxon i averaged over all samples collected in both 2008 and 2010. Replicates were pooled for each station, and biomass was expressed as g AFDM.m -2 and abundance as individuals.m -2 . We verified that the results obtained in 2009 were robust and were not an artefact of the method used to estimate the macrobenthic biomass that year (Supplement S1).

Prey selection

Juvenile fish and epibenthic invertebrate predators are considered opportunistic feeders [START_REF] Besyst | Feeding ecology of juvenile flatfishes of the surf zone of a sandy beach[END_REF][START_REF] Cabral | Trophic niche overlap between flatfishes in a nursery area on the Portuguese coast[END_REF][START_REF] Van Der Veer | Longterm trends in juvenile flatfish indicate a dramatic reduction in nursery function of the Balgzand intertidal, Dutch Wadden Sea[END_REF]. Thus, we used a conservative approach by considering all macrobenthic taxa found in grab samples as potential prey, except for Asterias rubens, Echinocardium cordatum, and Crepidula fornicata, which were never observed in gut contents (unpubl. data). We also excluded rare taxa (sampled at a single station and/or during a single year), which added little to the analysis. We also excluded shrimp-like species (e.g. Crangon crangon, Processa spp.), even though these taxa were more frequent (occurrence ≥ 2), because their abundance and biomass were always extremely low due to grab's difficulty in catching these mobile invertebrates. Finally, we excluded taxa with a mean body mass ≥ 0.1 g AFDM (~ equivalent to a length ≥ 16 mm; Supplement S2) at each station since they were considered too large to be prey [START_REF] Tableau | Available Benthic Energy Coefficient (ABEC): a generic tool to estimate the food profitability in coastal fish nurseries[END_REF]. Overall, we retained 147 prey taxa that represented, on average, 81% by mass and 99% by abundance of the total catch (excluding A. rubens, E. cordatum and C. fornicata).

Trawl sampling survey

The epibenthic predator community was sampled at 38 stations using a 2.9-m beam trawl with a 20-mm mesh in the cod-end and one tickler chain (in late September in 2008[START_REF] Reiss | Effects of fishing disturbance on benthic communities and secondary production within an intensively fished area[END_REF], and late August in 2010)). Each haul, performed during daytime with the same trawl towed by a research vessel at a mean speed of 2.5 knots, covered a mean area of 3250 m², except in the FN strata, where it was replaced with a 2-m beam trawl with the same characteristics (20-mm mesh in the cod-end, 1 tickler chain) to sample four shallow stations. In 2009, the hauling operation failed at one station, and the corresponding haul was thus excluded. All individuals caught in the net were identified, counted and weighed by species on board. Fish were measured to the nearest 1 cm total length and separated into age groups by reading otolith increments (for commercial species) or using length-frequency distributions (Supplement S5).

Predator selection

We focused on the dominant epibenthic predators of the Seine nursery that feed at least partly on macrobenthic invertebrates. To this end, we selected seven bentho-demersal fish species (common sole S. solea, European plaice Pleuronectes platessa, common dab Limanda limanda, common dragonet Callionymus lyra, whiting Merlangius merlangus, bib Trisopterus luscus and sand goby Pomatoschistus minutus) observed mostly at the juvenile stage (young-of-the-year (G0) and G1) and seven predatory invertebrate species (common sea star A. rubens, brown shrimp C. crangon, shore crab Carcinus maenas, swimming crabs Liocarcinus holsatus, Liocarcinus vernalis and Liocarcinus depurator, and velvet crab Necora puber). These species represented, on average, 80% and 90% of the total catch of bentho-demersal fish and predatory invertebrates by mass, respectively.

For fish species, we restricted analysis to the size range corresponding to the period during which fish actively feed on macrofauna. FC by fish < 5 cm was thus ignored, since they feed primarily on meiofauna [START_REF] Pihl | Food selection and consumption of mobile epibenthic fauna in shallow marine areas[END_REF][START_REF] Gee | An ecological and economic review of meiofauna as food for fish[END_REF][START_REF] Del Norte-Campos | Daily activity, feeding and rations in gobies and brown shrimp in the northern Wadden Sea[END_REF][START_REF] Amara | Feeding ecology and growth of O-group flatfish (sole, dab and plaice) on a nursery ground (Southern Bight of the North Sea)[END_REF]. All predatory invertebrates caught in the net were assumed to be large enough to feed actively on macrofauna.

Estimating macrobenthic food production

FP of macrobenthic prey (kJ.yr -1 ) was estimated as follows:

FP = CR • B • P: B • 1 + R ∈ :
• E

where CR is a seasonal ratio (unitless) that converts macrobenthic biomass into mean annual biomass (estimated from [START_REF] Saulnier | Seasonality in coastal macrobenthic biomass and its implications for estimating secondary production using empirical models[END_REF]; Supplement S3), B is the total biomass observed during the survey (g AFDM), P: B is the production-to-biomass ratio (yr -1 ) estimated using an empirical model [START_REF] Brey | A multi-parameter artificial neural network model to estimate macrobenthic invertebrate productivity and production[END_REF], R is a regeneration coefficient (unitless) that represents somatic regeneration after sublethal predator cropping [START_REF] Tableau | Available Benthic Energy Coefficient (ABEC): a generic tool to estimate the food profitability in coastal fish nurseries[END_REF]) and E is the energy density (kJ.g AFDM -1 ) from a global database [START_REF] Brey | Body composition in aquatic organisms -A global data bank of relationships between mass, elemental composition and energy content[END_REF]) that converts biomass into energy for prey species j.

For each species j, total biomass B (g AFDM) in the study area was estimated as follows:

B = ∑ B ," • α " " ∈ :$
where B ," is the mean biomass (g AFDM.m -2 ) of species j recorded during the survey in stratum k, and α " is the area (m 2 ) of stratum k.

To calculate FP, we implicitly assumed that juvenile fish and large epibenthic invertebrates shared a single pool of macrobenthic prey, since these predatory species are considered opportunistic feeders (van der Veer et al. 2011).

Estimating food consumption by epibenthic predators

FC corresponds to the amount of macrobenthic food items consumed annually by the epibenthic predators in the nursery grounds. FC (kJ.yr -1 ) is derived from the production of each predator and the proportion of macrofauna in its diet, as follows:

FC = P • DC • E • & ' ∈ :( )*+,
where P is the production of predator i (g.yr -1 ), DC is the proportion of benthic macrofauna in its diet, E is its energy density (kJ.g -1 ) and K is its gross conversion efficiency, defined as its production:consumption ratio [START_REF] Christensen | Ecopath with Ecosim: a user's guide[END_REF]. Parameters DC , E and K were derived from the literature (Table 1, Supplement S6). Two methods were used to calculate the P of juvenile fish and predatory invertebrates, depending on their residence time in the nursery and the availability of cohort data.

Production of juvenile fish

Many fish species use coastal shallow waters as a nursery ground during the juvenile stage before moving offshore after maturation [START_REF] Beck | The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas[END_REF]. They feed on macrobenthic prey only during a certain period. For instance, they prey primarily upon meiofauna shortly after settlement and progressively shift to macrofauna as they grow (e.g. [START_REF] Gee | An ecological and economic review of meiofauna as food for fish[END_REF][START_REF] Amara | Feeding ecology and growth of O-group flatfish (sole, dab and plaice) on a nursery ground (Southern Bight of the North Sea)[END_REF]. Following [START_REF] Tableau | Novel approach for testing the food limitation hypothesis in estuarine and coastal fish nurseries[END_REF], we calculated fish production using a cohort-based method that explicitly includes ontogenic feeding shifts and residence time in the nursery. The P (g.m -2 ) of each fish cohort in the nursery was calculated as follows:

P = n )/ + n ) 2 . (w )/ -w ) )
)∈) 6 :7

where d 9 and D are the first and the last day of its growth period, respectively, during which fish feed on macrofauna, n )/ and n ) are the number of individuals (m -2 ) on days d + 1 and d, and w )/ and w ) are mean individual body weight (g) on the same consecutive days.

Date d 9 was estimated as:

d 9 = L ) 6 -L G + s
where s is the date of the survey, L ) 6 is the mean length (mm) of a fish cohort on day d 9 , L is its mean length (mm) observed on day s and G is the mean daily growth rate (mm.day -1 ) of the fish species derived from the literature (Table 1, Supplement S6).

Date D corresponds to the end of the main growth period in the nursery, which is autumn in temperate ecosystems [START_REF] Van Der Veer | On the ecology of the dragonet Callionymus lyra L. in the southern North Sea[END_REF][START_REF] Rogers | Population density and growth rate of juvenile sole Solea solea (L.)[END_REF][START_REF] Bouchereau | Comparison of three Gobiidae (Teleostei) life history strategies over their geographical range[END_REF] and was set to 31 October [START_REF] Jung | Longterm shifts in intertidal predator and prey communities in the Wadden Sea and consequences for food requirements and supply[END_REF]). Length L ) 6 was set to 50 mm for G0 fish (see section 2.2.). Assuming negligible growth during winter, L ) 6 of G1 fish was set to the L 7 of G0 fish in the previous year, where L 7 is the length estimated on day D for each species. Since no data were available in 2007, L ) 6 of G1 fish in 2008 was set to the L 7 of G0 fish averaged over 2008-2010.

For each cohort, the number of individuals n ) and mean body weight w ) on day d were calculated using catch efficiency, daily growth rate and daily mortality rate from the literature (Table 1, Supplement S6) and survey data, as follows:

n ) = C q . e ?()? ).@
where C is the total number of individuals in the study area on day s, q is the catch efficiency (unitless) and Z is the daily mortality rate (day -1 ).

The total number of individuals C in the study area was estimated as follows:

C = ∑ C B ," • α " " ∈ :$
where C B ," is the mean density (ind.m -2 ) recorded during the survey in stratum k and α " is the area of stratum k (m 2 ).

Mean body weight w ) (g) was calculated as follows:

w ) = a. [L + (d -s). G] F
where a and b are coefficients of the length-weight relationship estimated using local survey data, L

is the mean length (mm) of a fish cohort collected during the survey on day s, and G is the mean daily growth rate of a fish species during its main growth period (mm.day -1 ).

Production of epibenthic predatory invertebrates

Unlike the size of juvenile fish, that of epibenthic predatory invertebrates was not measured during the surveys, which prevented application of a cohort-or size-based method to calculate their annual production. Instead, we calculated the annual production P (g.y -1 ) of each invertebrate species using a population-based method, as follows:

P = 1 q • B • P: B
where q is catch efficiency (unitless) obtained from the literature (Table 1, Supplement S6), B is the total biomass of the species in the study area during the survey (g) and P: B is its production-tobiomass ratio (y -1 ) estimated using an empirical model [START_REF] Brey | A multi-parameter artificial neural network model to estimate macrobenthic invertebrate productivity and production[END_REF]; Supplement S4).

For each species, total biomass B (g) in the study area was estimated as:

B = ∑ B " • α " " ∈ :$
where B " is mean biomass (g.m -2 ) of the species recorded during the survey in stratum k and α " is the area (m 2 ) of stratum k.

Unlike the biomass of macrobenthic prey, that of predatory invertebrates recorded in late summer was not corrected for seasonality since it was unclear whether it varies seasonally in nearshore areas [START_REF] Hinz | Seasonal and annual variability in an epifaunal community in the German Bight[END_REF]Reiss and Kröncke 2004, and local unpubl. data).

Exploitation efficiency and uncertainty analysis

We quantified the percentage of macrobenthic production consumed annually by the main epibenthic predators from 2008-2010 as EE (%), equal to (FC FP ⁄ ) • 100. We also performed Monte-Carlo simulations to quantify uncertainty in estimates of EE. Variables and parameters used to estimate EE were separated into three categories [START_REF] Tableau | Novel approach for testing the food limitation hypothesis in estuarine and coastal fish nurseries[END_REF]. Those with high and quantifiable uncertainty were defined using probability distributions (Supplement S7). They included fish abundance Cs, biomass B and P:B ratios of invertebrate predators and macrobenthic prey, the seasonal coefficient CR, and the energy density E and gross conversion efficiency K of epibenthic predators. Other variables or parameters were set to fixed values, either because their uncertainty was assumed to be low (e.g., local survey data collected at the species level; second category) or not quantifiable due to the lack of literature data (third category). For the third category, we used a conservative approach by selecting values that would underestimate EE. Finally, we calculated EE by randomly sampling from the probability distributions of each variable and parameter (10 000 iterations). We calculated EE of the young-of-the-year fish community (G0), all juvenile fish (G0 and G1) and all epibenthic predators (fish and invertebrates). All analyses were performed using the statistical software R (version 3.3.3, R Core Team 2017). 

Results

Macrobenthic food production

Macrobenthic FP showed a clear interannual pattern from 2008-2010 in the Seine nursery, being ~2-3 times higher in 2008 and 2010 (752 and 673 kJ.m -2 .yr -1 , respectively) than in 2009 (262 kJ.m -2 .yr -1 ). This pattern was relatively pronounced but observed in all strata (Fig. 2) and obvious at the scale of the study site (Fig. 3a). The largest variation in FP was recorded in stratum E4, which was the most productive (FP of ~1100 kJ.m -2 .yr -1 in 2008 and 2010). Since stratum E4 is also the largest (160 km 2 ), it produced most of the macrobenthic food (62-74% of total FP from 2008-2010).

In addition to its spatial heterogeneity, FP also showed strong dominance of certain taxa (Fig. 2, Fig. 3a), especially annelids (mainly sedentary polychaetes) and, to a lesser extent, mollusks (mainly bivalves). Hence, the interannual pattern in FP observed from 2008-2010 was driven by interannual variations of a few macrobenthic species (Table S4), especially the tube-dwelling polychaete Owenia fusiformis, whose production represented 45%, 23% and 60% of total FP in 2008, 2009 and 2010, respectively. Collectively, the polychaetes Lagis koreni, Magelona johnstoni and Lanice conchilega and the bivalves Abra alba and Phaxas pellucidus also represented a high percentage of total FP in the Seine nursery (19%, 31% and 14% in 2008, 2009 and 2010, respectively). Conversely, the FP of crustaceans (e.g. amphipods) and echinoderms (e.g. ophiurids)

was marginal (< 6% and < 3%, respectively, from 2008-2010). Thick and thin gray lines represent 50% and 95% confidence intervals, respectively, estimated using Monte-Carlo simulations.

Food consumption by epibenthic predators

FC by epibenthic predators showed significant but contrasting interannual variations among predator groups (fish vs. invertebrates) and fish cohorts (G0 vs. G1). Interestingly, the pattern of FC by G0 fish was relatively similar to that of FP (Fig. 3a,b), marked by a ~6-fold decrease from 2008 to 2009 (down to 5.2 kJ.m -2 .yr -1 in 2009), followed by a ~2-fold increase from 2009 to 2010. Conversely, the FC by G1 fish had an opposite pattern, peaking at 30.3 kJ.m -2 .yr -1 in 2009 (Fig. 3d), while the FC by predatory invertebrates gradually increased from 29.2 kJ.m -2 .yr -1 in 2008 to 49.8 kJ.m -2 .yr -1 in 2010 (Table 2, Fig. 3c). This latter increase in FC by predatory invertebrates occurred in all strata (Fig. S4).

Conversely, interannual variations in FC by the fish community (G0 and G1) showed no common pattern among strata (results not shown).

Like their prey, the epibenthic predator community was dominated by a few species. FC by the dragonet C. lyra was the highest among fish for all years and both cohorts, representing 46-66% and 53-60% of total FC by G0 and G1 fish, respectively, from 2008-2010. The European plaice P. platessa and common sole S. solea were the second and third greatest fish consumers, respectively, followed by the common dab L. limanda. FC by these three flatfish represented 32-49% and 39-45% of total FC by G0 and G1 fish, respectively, from 2008-2010. Bib T. luscus and whiting M. merlangus were observed only at the G0 stage, and their combined FC was extremely low (< 5%) from 2008-2010.

Since the gobies P. minutus were < 5 cm at the G0 stage, only their FC at the G1 stage was estimated. It represented 8% of total FC by G1 fish in 2008 but was marginal (< 1%) from 2009-2010 (Fig. 3d). For predatory invertebrates, the common sea star A. rubens was the greatest consumer, with FC ranging from 53-69% of total FC by invertebrate species from 2008-2010, followed by swimming crabs Liocarcinus spp., shore crab C. maenas (particularly in 2010) and, to a lesser extent, the brown shrimp C. crangon and velvet crab N. puber (Fig. 3c).

FC was distributed heterogeneously across the study site, and its spatial distribution varied among species (Supplement S9). FC by the fish C. lyra and L. limanda and the invertebrates A.

rubens, Liocarcinus spp. and N. puber was concentrated in the bay (strata E4 and E14), while that by the invertebrates C. crangon and C. maenas occurred mostly in the outer estuary (strata FN and FS).

FC by the flatfish P. platessa and S. solea varied spatially among years, species and cohorts (G0 vs.

G1) (e.g. generally concentrated in the bay in 2009 at the G1 stage but in the outer estuary at the G0 stage, especially for the common sole) (Fig. S5,S6).

Interestingly, FC by predatory invertebrates lay in the same order of magnitude as that by juvenile fish (G0 and G1) and represented 44-63% of total FC from 2008-2010 (Table 2). 

Exploitation efficiency

EE of the epibenthic predators on their macrobenthic prey varied considerably depending on the predator group (Fig. 4), ranging from 2-4% for G0 fish, 5-14% for all fish (G0 and G1) and 9-27% for all predators (fish and invertebrates). Interannual variations in EE also depended greatly on the predator group. EE of G0 fish decreased ~2-fold from 2008-2009 but remained stable from 2009-2010 (Fig. 4). Conversely, EE of all fish and of all predators were ~2-3 times higher in 2009 than in 2008 and 2010. 

Discussion

Using a recent bioenergetics-based approach, we investigated whether food supply could limit juvenile fish production in three consecutive years (2008)(2009)(2010) in the Seine nursery, western Europe.

Our main results revealed a similar interannual pattern in FP and FC by G0 fish and highlighted the large amount of food consumed annually by the dominant predatory invertebrates. We also showed that the EE of the entire epibenthic predator community reached ~30% in 2009. Overall, these results

suggest that food was likely limiting in the Seine nursery, given our conservative approach.

Food production: a temporally variable but spatially stable pattern

Over the past three decades, the macroinvertebrate community in the eastern Bay of Seine and the outer Seine estuary has been studied extensively [START_REF] Ménard | Population dynamics and secondary production of Owenia fusiformis Delle Chiaje (Polychaeta) from the Bay of Seine (eastern English Channel)[END_REF][START_REF] Dauvin | Spatio-temporal variability in population structure of Owenia fusiformis Delle Chiaje (Annelida: Polychaeta) from the Bay of Seine (eastern English Channel)[END_REF][START_REF] Thiébaut | Spatio-temporal persistence of the Abra alba-Pectinaria koreni muddy-fine sand community of the eastern Bay of Seine[END_REF][START_REF] Mouny | Biological components from the Seine estuary: first results[END_REF][START_REF] Ghertsos | Identification of global and local components of spatial structure of marine benthic communities: example from the Bay of Seine (Eastern English Channel)[END_REF][START_REF] Dauvin | Effects of heavy metal contamination on the macrobenthic fauna in estuaries: the case of the Seine estuary[END_REF][START_REF] Dauvin | Does the hydrodynamic, morphometric and sedimentary environment explain the structure of softbottom benthic assemblages in the Eastern Bay of Seine (English Channel)?[END_REF]. The spatio-temporal patterns in macrobenthic production (as measured by FP) from 2008-2010 are strongly consistent with those previously reported, even though most studies focused on macrobenthic abundance or biomass. For instance, the estuarine stratum FN, which had the lowest FP estimates among the four strata (Fig. 2), has had long-lasting low macrobenthic abundance and biomass [START_REF] Mouny | Biological components from the Seine estuary: first results[END_REF][START_REF] Dauvin | Effects of heavy metal contamination on the macrobenthic fauna in estuaries: the case of the Seine estuary[END_REF], likely related to the high environmental (salinity variations) and anthropogenic (pollution, harbor extension) stresses that occur in this area [START_REF] Tecchio | The mosaic of habitats of the Seine estuary: Insights from food-web modelling and network analysis[END_REF].

Conversely, high macrobenthic abundance and biomass values have been recorded at sampling stations located mainly in marine stratum E4 [START_REF] Dauvin | Spatio-temporal variability in population structure of Owenia fusiformis Delle Chiaje (Annelida: Polychaeta) from the Bay of Seine (eastern English Channel)[END_REF][START_REF] Thiébaut | Spatio-temporal persistence of the Abra alba-Pectinaria koreni muddy-fine sand community of the eastern Bay of Seine[END_REF], where FP was the highest each year in the present study (Fig. 2). Estimates of FP in the Seine nursery were consistent with macrobenthic production estimates reported in several other temperate marine and coastal ecosystems (20-850 kJ.m -2 .yr -1 : [START_REF] Reiss | Effects of fishing disturbance on benthic communities and secondary production within an intensively fished area[END_REF][START_REF] Bolam | Macrofaunal production along the UK continental shelf[END_REF]; Brey 2012 and references therein).

In addition to its stable spatial pattern across the years studied, the macrobenthic community remained remarkably dominated by the same few taxa for 25 years, especially annelids [START_REF] Dauvin | Does the hydrodynamic, morphometric and sedimentary environment explain the structure of softbottom benthic assemblages in the Eastern Bay of Seine (English Channel)?[END_REF]. In particular, O. fusiformis was the most abundant species from 1986from -1988from and in 1991from (Thiébaut et al. 1997)). We showed that two decades later, annelids still largely dominated the macrobenthic community (Figs. 2 and3), with O. fusiformis still the most abundant and productive species (as measured by FP, Table S4). Mechanisms that could explain the stability in spatial organization and species dominance of the Seine macrobenthic community include larval retention near adult populations, sediment stabilization caused by high densities of O. fusiformis and the salinity gradient off the Seine estuary [START_REF] Thiébaut | Horizontal distribution and retention of Owenia fusiformis larvae (Annelida: Polychaeta) in the Bay of Seine[END_REF][START_REF] Thiébaut | Spatio-temporal persistence of the Abra alba-Pectinaria koreni muddy-fine sand community of the eastern Bay of Seine[END_REF].

Nonetheless, our results revealed substantial year-to-year variations in FP from 2008-2010 at both population and community levels (Fig. 3, Table S4). Mean annual Seine River flow decreased significantly from 2008 (525 m 3 .s -1 ) to 2009 (352 m 3 .s -1 ) and then increased moderately in 2010 (414 m 3 .s -1 ). The present study did not identify the exact causes of the macrobenthic variations from 2008-2010. They may have been caused by variations in local environmental conditions (e.g. river flow, wind regime) that determined larval drift and recruitment success of the dominant macrobenthic taxa, which have a bentho-pelagic life cycle [START_REF] Ménard | Population dynamics and secondary production of Owenia fusiformis Delle Chiaje (Polychaeta) from the Bay of Seine (eastern English Channel)[END_REF][START_REF] Thiébaut | Transport of Owenia fusiformis larvae (Annelida: Polychaeta) in the Bay of Seine. I. Vertical distribution in relation to water column stratification and ontogenic vertical migration[END_REF], 1996[START_REF] Dauvin | Cinétique de Abra alba (mollusque bivalve) de 1977 à 1991 en Manche-Mer du Nord, relation avec les facteurs climatiques[END_REF][START_REF] Core | R: A language and environment for statistical computing[END_REF][START_REF] Thiébaut | Distribution of Pectinaria koreni Larvae (Annelida: Polychaeta) in Relation to the Seine River Plume Front (Eastern English Channel)[END_REF]. Density-dependent mortality caused by competition for limited resources among macrobenthic populations likely also had an influence (e.g. [START_REF] Thiébaut | Spatio-temporal persistence of the Abra alba-Pectinaria koreni muddy-fine sand community of the eastern Bay of Seine[END_REF][START_REF] Henderson | A 25-year study of climatic and densitydependent population regulation of common shrimp Crangon crangon (Crustacea: Caridea) in the Bristol Channel[END_REF]. Conversely, top-down regulation exerted by epibenthic predators (juvenile fish, predatory invertebrates) has rarely been suggested as a cause for the interannual variations in the Seine nursery. However, dominant macrobenthic species are important prey for several juvenile fish. Gut content analyses revealed that these dominant species (e.g. O. fusiformis, L. koreni, L. conchilega, A.

alba) are major prey items for juvenile fish (especially plaice P. platessa, sole S. solea and dab L. limanda) in the Seine nursery (Morin et al. 1999 and unpubl. data), and in several other coastal areas in western Europe [START_REF] Amara | Feeding ecology and growth of O-group flatfish (sole, dab and plaice) on a nursery ground (Southern Bight of the North Sea)[END_REF][START_REF] Darnaude | Food partitioning among flatfish (Pisces: Pleuronectiforms) juveniles in a Mediterranean coastal shallow sandy area[END_REF][START_REF] Schückel | Diet overlap among flatfish species in the southern North Sea[END_REF]. Local data on predatory invertebrates' diets are lacking; however, these epibenthic predators likely consume dominant macrobenthic prey as well, given their opportunistic feeding behavior [START_REF] Norman | Influence of depth, season and moult stage on the diet of the velvet swimming crab Necora puber (Brachyura, Portunidae)[END_REF][START_REF] Van Der Veer | Longterm trends in juvenile flatfish indicate a dramatic reduction in nursery function of the Balgzand intertidal, Dutch Wadden Sea[END_REF]) and results from gut content analyses reported elsewhere (e.g. [START_REF] Allen | Feeding behaviour of Asterias rubens (L.) on soft bottom bivalves: a study in selective predation[END_REF][START_REF] Choy | Natural diet and feeding habits of the crabs Liocarcinus puber and L. holsatus (Decapoda, Brachyura, Portunidae)[END_REF][START_REF] Del Norte-Campos | Daily activity, feeding and rations in gobies and brown shrimp in the northern Wadden Sea[END_REF][START_REF] Freire | Feeding ecology of Liocarcinus depurator (Decapoda: Portunidae) in the Ria de Arousa (Galicia, north-west Spain): effects of habitat, season and life history[END_REF]). Further local gut content and/or stable isotope analyses would be useful to improve current FP estimates, and provide an indepth knowledge of food availability in the Seine nursery.

Relating food production to food consumption by epibenthic predators

Surprisingly, few studies have attempted to relate spatio-temporal patterns of the macrobenthic community to those of higher trophic levels in the Seine nursery. For instance, the abundance of several macrobenthic species decreased greatly in the eastern Bay of Seine from 2008-2009 [START_REF] Dauvin | Does the hydrodynamic, morphometric and sedimentary environment explain the structure of softbottom benthic assemblages in the Eastern Bay of Seine (English Channel)?[END_REF], but its potential effect on the epibenthic predator community was not investigated. Several trophic models (Ecopath, EwE; [START_REF] Christensen | Ecopath with Ecosim: a user's guide[END_REF] have quantified energy flows between multiple functional groups in the eastern Bay of Seine and the outer Seine estuary, but none focused on the nursery function of this ecosystem. This modeling approach was useful for understanding overall trophic functioning of the Bay of Seine and the Seine estuary [START_REF] Rybarczyk | An analysis of the trophic network of a macrotidal estuary: the Seine Estuary (Eastern Channel, Normandy, France)[END_REF][START_REF] Tecchio | The mosaic of habitats of the Seine estuary: Insights from food-web modelling and network analysis[END_REF] and for assessing past and future impacts of human activities [START_REF] Raoux | Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[END_REF][START_REF] Pezy | Before-After analysis of the trophic network of an experimental dumping site in the eastern part of the Bay of Seine (English Channel)[END_REF]. Nonetheless, such trophic models are not appropriate for investigating fine-scale and short-term (e.g. year-to-year) variations in predator-prey interactions [START_REF] Tableau | Novel approach for testing the food limitation hypothesis in estuarine and coastal fish nurseries[END_REF], as done in the present study.

Given the dramatic variations in annual prey production observed from 2008-2010, correlating

FP and FC may provide information about the food limitation hypothesis, despite the short duration of the present study (3 years). In particular, the similar interannual patterns in FP and FC by G0 fish suggest that food was limiting in the Seine nursery, at least at the G0 stage. These patterns in FP and FC were mainly driven by variations in prey biomass and fish abundance, but also accounted for interannual variations in mean body weight of each species. We acknowledge that estimates of FC by fish may have been less accurate, especially due to the lack of local length data for the dragonet C. lyra and goby P. minutus (Supplement S5), and because the beam trawl survey did not cover the entire spatial distribution of common sole S. solea. Common sole was also found in the upper estuary and on intertidal mud flats during high tide, particularly at the G0 stage [START_REF] Morin | Etude des nourriceries de la baie de Seine orientale et de l'estuaire de la Seine[END_REF].

Nonetheless, the interannual pattern in FC by G0 fish was considered similar to that in FP, given the limitations of our dataset. The similarity was particularly high for plaice P. platessa (Fig. 3), which is a main consumer of O. fusiformis in the Seine nursery [START_REF] Ménard | Population dynamics and secondary production of Owenia fusiformis Delle Chiaje (Polychaeta) from the Bay of Seine (eastern English Channel)[END_REF][START_REF] Morin | Etude des nourriceries de la baie de Seine orientale et de l'estuaire de la Seine[END_REF].

Interestingly, G1 fish showed an opposite interannual pattern, which is consistent with the patterns in FP and in FC by G0 fish with a one-year lag. This agrees with the hypothesis that the yearclass strength is determined at the G0 stage on nursery grounds, or even earlier, at the pelagic phase [START_REF] Hjort | Fluctuations in the great fisheries of northern Europe viewed in the light of biological research[END_REF][START_REF] Van Der Veer | Immigration, settlement, and density-dependent mortality of a larval and early postlarval 0-group plaice (Pleuronectes platessa) population in the western Wadden Sea[END_REF][START_REF] Leggett | Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages?[END_REF][START_REF] Houde | Emerging from Hjort's shadow[END_REF]). This opposite pattern could also suggest competition for food between G0 and G1 fish, with lower survival of and thus lower FC by G0 fish when the FC by G1 fish is high, as in 2009. However, correlation does not imply causation [START_REF] Hilborn | Correlation and causation in fisheries and watershed management[END_REF]. Hence, the lower FC by G0 fish in 2009 could have been due to lower food supply (bottom-up control), higher competition with G1 fish, higher predation pressure on G0 fish in the nursery (top-down control), lower fish larval supply caused by higher mortality during early-life stages (eggs and larvae) or a combination of some or all of these processes, which can occur simultaneously [START_REF] Hixon | Competition, predation, and density-dependent mortality in demersal marine fishes[END_REF]. The dataset and short duration of the present study did not enable us to distinguish these potential causes.

The completely different interannual variations in FC by predatory invertebrates was no surprise, because macrobenthic prey likely represent a much smaller percentage of predatory invertebrates' diets (Table 1, Supplement S6). In addition, FC by predatory invertebrates was clearly dominated by the common sea star A. rubens, which can live at least five years in the wild [START_REF] Guillou | La croissance d'Asterias rubens L. (Echinodermata Asteroida) en Baie de Douarnenez (Finistère)[END_REF]. Thus, even though macrobenthic food resources in the Seine nursery could limit the sea star population, the correlation between annual FP and annual FC would likely be weak because the population response would aggregate variations in food supply over several years.

Interannual variations in FC by G0 fish were generally the same among strata and in the entire study site (Fig. S5). This observation held for FC by predatory invertebrates in all strata and by G1 fish in marine strata (E4 and E14) (Fig. S4,S6). Conversely, species composition differed significantly among strata, especially according to the salinity tolerance of each species. For instance, euryhaline species such as the common sole S. solea, brown shrimp C. crangon, and shore crab C. maenas were found mainly in the outer estuary (FN and FS), while the common sea star A. rubens, common dab L. limanda and dragonet C. lyra, which tolerate salinity less, were concentrated in the bay (E4 and E14). However, spatial variations in the FC estimated in the present study must be interpreted with caution. Species distribution is not driven by a single factor (e.g. salinity) but instead results from the combination of several forces, both external (e.g. environmental forcing, food availability) and internal (e.g. population size) to the populations [START_REF] Planque | Understanding what controls the spatial distribution of fish populations using a multi-model approach[END_REF]. Since these forces change throughout the year, the spatial distribution of mobile epibenthic predators changes accordingly. Predatory invertebrates likely move much less than juvenile fish, but do move, particularly in late winter and late summer, when they migrate [START_REF] Venema | Seasonal migration of the swimming crab Macropipus holsatus in an estuarine area controlled by tidal streams[END_REF][START_REF] Boddeke | The seasonal migration of the brown shrimp Crangon crangon[END_REF][START_REF] Hinz | Seasonal and annual variability in an epifaunal community in the German Bight[END_REF]).

Including predatory invertebrates doubled estimates of food consumption

Given the high density of predatory invertebrates generally observed in coastal and estuarine nurseries [START_REF] Pihl | Food selection and consumption of the shrimp Crangon crangon in some shallow marine areas in western Sweden[END_REF][START_REF] Van Der Veer | Longterm trends in juvenile flatfish indicate a dramatic reduction in nursery function of the Balgzand intertidal, Dutch Wadden Sea[END_REF], they can exert substantial predation pressure on macrobenthic prey, even though macrofauna are a moderate percentage of their diet [START_REF] Evans | Production, predation and food niche segregation in a marine shallow soft-bottom community[END_REF][START_REF] Pihl | Food selection and consumption of mobile epibenthic fauna in shallow marine areas[END_REF][START_REF] Jung | Longterm shifts in intertidal predator and prey communities in the Wadden Sea and consequences for food requirements and supply[END_REF]. Our results agree with these previous findings. We showed that FC by predatory invertebrates lay in the same order of magnitude as FC by juvenile fish from 2008-2010 in the Seine nursery. Including the FC by predatory invertebrates provided a larger and probably more realistic estimate than that obtained for juvenile fish alone, as originally presented by [START_REF] Tableau | Novel approach for testing the food limitation hypothesis in estuarine and coastal fish nurseries[END_REF].

However, the approach we developed to estimate FC by predatory invertebrates has some limitations. In particular, FC is derived from an estimate of production that may be inaccurate.

Empirical models, such as the one we used to estimate production [START_REF] Brey | A multi-parameter artificial neural network model to estimate macrobenthic invertebrate productivity and production[END_REF], perform relatively well for an assemblage of species, but may have high prediction error for a single population (Brey 2001, much higher, since EE was estimated using a conservative approach. In particular, FC by epibenthic predators was underestimated for several reasons. First, estimates of FC by juvenile fish were based only on their requirements during the growing season, thus ignoring maintenance requirements for the rest of the year. Even though requirements in winter are generally assumed to be much lower, they may still be significant [START_REF] Creutzberg | An attempt to estimate the predatory pressure exerted by the lesser weever, Trachinus vipera Cuvier, in the southern North Sea[END_REF][START_REF] Van Der Veer | On the ecology of the dragonet Callionymus lyra L. in the southern North Sea[END_REF]). Second, most gross conversion efficiency estimates (K) found in the literature were obtained from laboratory experiments.

Thus, they were expected to be slightly higher than those in the wild, leading to underestimates of FC and thus EE [START_REF] Tableau | Novel approach for testing the food limitation hypothesis in estuarine and coastal fish nurseries[END_REF]. Third, catch efficiency estimates (q) were overestimated because they came from beam trawl surveys using a 4 mm mesh liner in the cod-end (e.g. [START_REF] Reiss | Estimating the catching efficiency of a 2-m beam trawl for sampling epifauna by removal experiments[END_REF], unlike scientific surveys performed in the Seine nursery that used a larger mesh (20 mm). Fourth, FC by G2 fish was not considered because few G2 individuals were found in the net, since they probably moved to deeper and offshore water before the scientific surveys occurred. Nonetheless, G2 fish may exert significant predation pressure on macrobenthic prey earlier in the year. Lastly, FC by predatory invertebrates was also likely underestimated, as explained. Hence, EE on total prey production likely exceeded 30% in 2009 in the Seine nursery.

It is unlikely that EE reaches 100% even when food limitation occurs, since predators can access only a portion of macrobenthic prey. For instance, a previous study estimated that juvenile fish in coastal nurseries in the Wadden Sea could access only 10% of the total macrobenthic biomass (van der Veer et al. 2011). Similarly, [START_REF] Tableau | Available Benthic Energy Coefficient (ABEC): a generic tool to estimate the food profitability in coastal fish nurseries[END_REF] estimated that the FP accessible to juvenile fish in another French coastal nursery (the Bay of Vilaine) was approximately one-eighth that of total FP in 2008. These values were likely overestimated, at least for the entire predator community in the Seine nursery. Predatory invertebrates likely access prey that are not accessible to juvenile fish given their different prey-handling abilities, and previous estimates of prey accessibility considered only juvenile fish [START_REF] Van Der Veer | Longterm trends in juvenile flatfish indicate a dramatic reduction in nursery function of the Balgzand intertidal, Dutch Wadden Sea[END_REF][START_REF] Tableau | Available Benthic Energy Coefficient (ABEC): a generic tool to estimate the food profitability in coastal fish nurseries[END_REF]. However, even a much lower and more reasonable ratio of total to accessible FP (e.g. 3) would lead to an EE close to 100% in 2009, indicating strong competition for food that year. Thus, we cannot exclude the possibility that food was limiting in the Seine nursery. In particular, the combination of a significant decrease in food supply (as measured by FP) and a significant increase in food consumption by epibenthic predators may have induced food limitation in 2009.

We focused mainly on annual FP and FC in the entire nursery. However, food limitation can be restricted to specific areas and/or periods of the year (e.g. [START_REF] Walters | Recruitment limitation as a consequence of natural selection for use of restricted feeding habitats and predation risk taking by juvenile fishes[END_REF]. Since the Seine nursery has been described as a mosaic of habitats [START_REF] Tecchio | The mosaic of habitats of the Seine estuary: Insights from food-web modelling and network analysis[END_REF], we estimated EE in each stratum (Fig. S7). The analysis revealed that EE varied among strata (up to 37% in E14 in 2009 and76% in FN in 2010), but caution in interpretation is required, since epibenthic predators move among habitats throughout the year. The annual scale may not be the most appropriate one at which to test the food limitation hypothesis. Resources may be limiting only during certain periods of the year, such as the sensitive post-settlement phase [START_REF] Geffen | The cost of metamorphosis in flatfishes[END_REF][START_REF] Geffen | Sub-cohort dynamics of 0-group plaice, Pleuronectes platessa L., in the Northern Irish Sea: Settlement, growth and mortality[END_REF]. Nevertheless, focusing on this early-life stage is more challenging, especially when sampling prey and predators, but seems crucial given its potential effect on fish recruitment [START_REF] Nash | Mortality through the early life-history of fish: What can we learn from European plaice (Pleuronectes platessa L.)?[END_REF][START_REF] Nagelkerken | The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna[END_REF].

A decline in growth rate of juvenile plaice P. platessa during late summer was also broadly reported [START_REF] Freitas | Latitudinal trends in habitat quality of shallow-water flatfish nurseries[END_REF]Ciotti et al. 2013b), and could be related to intra-or interspecific competition for food (Ciotti et al. 2013a;[START_REF] Van Der Veer | Possible causes for growth variability and summer growth reduction in juvenile plaice Pleuronectes platessa L. in the western Dutch Wadden Sea[END_REF]. However, the underlying causes of that pattern remain unclear [START_REF] Ciotti | Growth dynamics of European plaice Pleuronectes platessa L. in nursery areas: a review[END_REF].

In conclusion, two main findings suggest that food supply may have limited juvenile fish production in the Seine nursery, at least in 2009: (1) the similarity in the interannual patterns in FP and FC by G0 fish and (2) the relatively high EE estimated for all predators in 2009 (~30%) given the conservative calculation. Firmly validating or refuting the food limitation hypothesis in the Seine nursery lies beyond the scope of this study, and further studies are required to reach a conclusion. To this end, applying the bioenergetics-based approach to longer time-series and/or other nurseries would be useful [START_REF] Tableau | Novel approach for testing the food limitation hypothesis in estuarine and coastal fish nurseries[END_REF]. Finally, prey accessibility remains a key parameter that is particularly challenging to calculate; however, estimating it is critical to better understand food limitation [START_REF] Boisclair | Rates of food exploitation by littoral fishes in a mesotrophic north-temperate lake[END_REF].

the COLMATAGE project from which most data came, as well as Le Havre harbor for providing additional grab data collected in 2010.

Fig. 1 .

 1 Fig. 1. Location of the sampling stations (n = 38) in the four strata of the study site: FN, FS (outer Seine estuary), E4 and E14 (eastern Bay of Seine). Red dots indicate the mean coordinates of each trawl haul, where the grab was deployed.

Fig. 2 .

 2 Fig. 2. Food production (FP, kJ.m -2 .yr -1 ) by taxon in each stratum of the study site from 2008-2010.

Fig. 3 .

 3 Fig. 3. Food production (FP, kJ.m -2 .yr -1 ) by (a) taxon and food consumption (FC, kJ.m -2 .yr -1 ) by (b) young-of-the-year G0 fish, (c) predatory invertebrates, and (d) G1 fish in the Seine nursery from 2008-2010. Thick and thin gray lines represent 50% and 95% confidence intervals, respectively, estimated by Monte-Carlo simulations.

Fig. 4 .

 4 Fig. 4. Exploitation efficiency (EE, %) of (a) young-of-the-year G0 fish, (b) all fish and (c) all predators on their macrobenthic prey in the Seine nursery from 2008-2010. Thick and thin black lines represent 50% and 95% confidence intervals, respectively, estimated by Monte-Carlo simulations. Note the smaller scale of the y-axis of plot (a).

  

Table 1 .

 1 Parameters used to calculate food consumption by epibenthic predators. Most data came from Tableau et al. (2019), Jung et al. (2017),[START_REF] Reiss | Estimating the catching efficiency of a 2-m beam trawl for sampling epifauna by removal experiments[END_REF], and references therein. See Supplement S6 for details. DC: proportion of benthic macrofauna in the diet, E: energy density, K: gross conversion efficiency, q: catch efficiency, G: daily growth rate, and Z: daily mortality rate. DC, K and q are unitless.

	Group Species	Age group	DC	E (kJ.g -1 )	K	q	G (mm.d -1 )	Z (d -1 )
		Solea solea	0 -I	0.95	5.74	0.197 0.257	0.057	0.0179 -0.0103
		Pleuronectes platessa	0 -I	0.95	5.74	0.316 0.380	0.060	0.0171 -0.0096
		Limanda limanda	0 -I	0.95	5.74	0.316 0.380	0.049	0.0187 -0.0115
	Fish	Callionymus lyra	0 -I	0.95	5.78	0.321 0.450	0.052	0.0151 -0.0099
		Pomatoschistus minutus	I	0.35	5.78	0.321 0.580	0.015	0.0128
		Trisopterus luscus	0	0.15	4.66	0.385 0.500	0.083	0.0077
		Merlangius merlangus	0	0.15	4.66	0.385 0.500	0.079	0.0076
		Asterias rubens	-	0.30	2.41	0.330	0.46	-	-
	Invertebrates	Crangon crangon Carcinus maenas Liocarcinus spp.	---	0.30 0.40 0.40	4.13 3.22 3.22	0.201 0.258 0.258	0.40 0.20 0.20	---	---
		Necora puber	-	0.30	3.22	0.258	0.20	-	-

Table 2 .

 2 Food consumption (FC) by juvenile fish (G0 and G1) and predatory invertebrates in the Seine nursery from 2008-2010.

	Year FC by juvenile fish	FC by predatory invertebrates	Relative FC by predatory
		(kJ.m -2 .yr -1 )	(kJ.m -2 .yr -1 )	invertebrates (%)
	2008	37.6	29.2	44
	2009	35.5	34.6	49
	2010	29.1	49.8	63
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). Additionally, the same problem holds for macrobenthic prey, given the strong dominance of few species. To our knowledge, however, empirical models remain the best approach currently available for estimating secondary invertebrate production when data preclude the use of classic direct methods. Moreover, Brey models (2001Brey models ( , 2012) ) were shown to perform as well or even better than others [START_REF] Cusson | Global patterns of macroinvertebrate production in marine benthic habitats[END_REF][START_REF] Dolbeth | Annual production of estuarine fauna in different environmental conditions: an evaluation of the estimation methods[END_REF][START_REF] Petracco | Secondary production of sandy beach macrofauna: An evaluation of predictive models[END_REF]. Also, if production estimates of predatory invertebrates were inaccurate, they would more likely be underestimated rather than overestimated because only the larger individuals remained in the net. Since mean individual weight and P:B ratios are negatively correlated [START_REF] Schwinghamer | Partitioning of production and respiration among size groups of organisms in an intertidal benthic community[END_REF]), P:B ratios were much lower than those generally found in the literature (e.g. [START_REF] Kuipers | Production of Crangon crangon in the tidal zone of the Dutch Wadden Sea[END_REF][START_REF] Pihl | Food selection and consumption of the shrimp Crangon crangon in some shallow marine areas in western Sweden[END_REF][START_REF] Pihl | Food selection and consumption of mobile epibenthic fauna in shallow marine areas[END_REF]. Consequently, they likely resulted in underestimating FP and FC, which is in accordance with the conservative approach used in this study. Additionally, we used Monte-Carlo simulations to include the uncertainty in estimates of FP and to estimate prediction error, unlike most previous studies (e.g. [START_REF] Evans | Production, predation and food niche segregation in a marine shallow soft-bottom community[END_REF][START_REF] Evans | Energy budgets and predation impact of dominant epibenthic carnivores on a shallow soft bottom community at the Swedish west coast[END_REF][START_REF] Pihl | Food selection and consumption of mobile epibenthic fauna in shallow marine areas[END_REF][START_REF] Collie | Food consumption by yellowtail flounder in relation to production of its benthic prey[END_REF].

Food limitation: lessons from exploitation efficiency

Collectively, juvenile fish and predatory invertebrates consumed a large percentage of macrobenthic prey production in the Seine nursery, as revealed by calculating EE. First, EE automatically increased with the number of predators (G0 fish vs. all fish vs. all predators) for a given year because FC increased accordingly, while FP remained unchanged (Fig. 4). As previously suggested [START_REF] Collie | Food consumption by yellowtail flounder in relation to production of its benthic prey[END_REF][START_REF] Vinagre | Prey consumption by the juvenile soles, Solea solea and Solea senegalensis, in the Tagus estuary, Portugal[END_REF][START_REF] Tableau | Novel approach for testing the food limitation hypothesis in estuarine and coastal fish nurseries[END_REF], these results highlighted the importance of including all dominant benthic-feeding predators to estimate the overall predation pressure on macrobenthic prey when testing the food limitation hypothesis in coastal and estuarine nurseries. The interannual stability in EE of G0 fish from 2009-2010 logically results from the similarity of the interannual pattern of FP and that of FC (G0 fish), strengthening the idea that the food supply may have been limiting. In 2008, EE of all juvenile fish (5%) was similar to that (6%) in another French coastal nursery (the Bay of Vilaine) observed in the same year and calculated using the same approach [START_REF] Tableau | Novel approach for testing the food limitation hypothesis in estuarine and coastal fish nurseries[END_REF].

When all dominant predators were considered, our results revealed that EE on total prey production (as measured by FP) could be as high as ~30%. This consumption level might have been high enough to indicate that food limitation occurred [START_REF] Collie | Food consumption by yellowtail flounder in relation to production of its benthic prey[END_REF]. In addition, the true EE was likely