
HAL Id: hal-02612282
https://normandie-univ.hal.science/hal-02612282v2

Submitted on 24 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring Kinase Inhibition Properties of
9H-pyrimido[5,4-b]- and [4,5-b]indol-4-amine Derivatives

Yvonnick Loidreau, Carole Dubouilh-Benard, Marie-Renée Nourrisson,
Nadège Loaëc, Laurent Meijer, Thierry Besson, Pascal Marchand

To cite this version:
Yvonnick Loidreau, Carole Dubouilh-Benard, Marie-Renée Nourrisson, Nadège Loaëc, Laurent Mei-
jer, et al.. Exploring Kinase Inhibition Properties of 9H-pyrimido[5,4-b]- and [4,5-b]indol-4-amine
Derivatives. Pharmaceuticals, 2020, 13 (5), pp.89. �10.3390/ph13050089�. �hal-02612282v2�

https://normandie-univ.hal.science/hal-02612282v2
https://hal.archives-ouvertes.fr


pharmaceuticals

Communication

Exploring Kinase Inhibition Properties of
9H-pyrimido[5,4-b]- and
[4,5-b]indol-4-amine Derivatives

Yvonnick Loidreau 1, Carole Dubouilh-Benard 1, Marie-Renée Nourrisson 2, Nadège Loaëc 3,
Laurent Meijer 3,4, Thierry Besson 1,* and Pascal Marchand 2,*

1 Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France;
yvonnick.loidreau@gmail.com (Y.L.); carole.dubouilh@univ-rouen.fr (C.D.-B.)

2 Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155,
F-44000 Nantes, France; marie-renee.nourrisson@univ-nantes.fr

3 Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France;
nadege.loaec@univ-brest.fr (N.L.); meijer@perha-pharma.com (L.M.)

4 Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
* Correspondence: thierry.besson@univ-rouen.fr (T.B.); pascal.marchand@univ-nantes.fr (P.M.);

Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)

Received: 10 April 2020; Accepted: 8 May 2020; Published: 9 May 2020
����������
�������

Abstract: We previously highlighted the interest in 6,5,6-fused tricyclic analogues of 4-aminoquinazolines
as kinase inhibitors in the micromolar to the nanomolar range of IC50 values. For the generation of
chemical libraries, the formamide-mediated cyclization of the cyanoamidine precursors was carried
out under microwave irradiation in an eco-friendly approach. In order to explore more in-depth the
pharmacological interest in such tricyclic skeletons, the central five member ring, i.e., thiophène or furan,
was replaced by a pyrrole to afford 9H-pyrimido[5,4-b]- and [4,5-b]indol-4-amine derivatives inspired
from harmine. The inhibitory potency of the final products was determined against four protein kinases
(CDK5/p25, CK1δ/ε, GSK3α/β, and DYRK1A). As a result, we have identified promising compounds
targeting CK1δ/ε and DYRK1A and displaying micromolar and submicromolar IC50 values.
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1. Introduction

Protein kinases are an important family of enzymes able to phosphorylate tyrosine (Tyr)
and serine (Ser)/threonine (Thr) residues present in various proteins [1]. Abnormal protein kinase
regulation and phosphorylation are now associated with numerous diseases including cancer [2,3],
and neurodegenerative disorders [4–6]. In the last decade, about 300 protein kinase inhibitors were
involved in clinical trials and 49 have been recently approved by the US Food and Drug Administration
(FDA), mostly tyrosine kinase inhibitors, and mainly for cancer therapy [7]. In the same period,
our groups have been particularly invested in the development of efficient and eco-compatible
chemical methodologies allowing rapid access to libraries of potent bioactive arenes and their
heteroarenes analogues. Studying ancestral thermal-sensitive reactions for which usual methods
require forcing conditions or prolonged reaction times (e.g., Niementowski reaction [8,9] and Dimroth
transposition [10]), microwave-assisted syntheses of novel benzo[b]thieno[3,2-d]pyrimidin-4-amines
(series A) [11,12] and their pyrido (series B) and pyrazino analogues (series C) [13,14] have been
successfully described (Figure 1). In this context, more than one hundred derivatives of the heterocyclic
systems have been studied. Among them, the pyrido[b]thieno[3,2-d]pyrimidin-4-amine derivatives
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(series B) have shown the most interesting selectivity and inhibitory potency towards CK1δ/ε over the
other tested enzymes (CDK5/p25, GSK3α/β, and Dyrk1A) [14].Pharmaceuticals 2019, 12, x FOR PEER REVIEW 2 of 12 

 

 

Figure 1. Previous benzo[b]thieno[3,2-d]pyrimidin-4-amines (A) and their pyrido (B) and pyrazino 
(C) analogues (left). The 9H-pyrimido[5,4-b]indol-4-amine derivatives (1 and 2) and their 
9Hpyrimido[4,5-b]indole isomers (3 and 4) described in this work (right). 

In an effort to expand the chemical space and to highlight efficient kinase inhibitors, the 
synthesis of indole counterparts of the previously-described series has been envisaged. Such 
compounds are considered as analogues of harmine (see 11a in scheme 2), a natural alkaloid that still 
generates a lot of work in the hope of developing therapies for Alzheimer’s disease (AD) and Down 
syndrome (DS) [15,16]. This paper describes simple and convenient synthetic routes to 9H-
pyrimido[5,4-b]indol-4-amine derivatives (series 1 and 2) and their 9Hpyrimido[4,5-b]indole isomers 
(series 3 and 4). The chemistry described in this paper was mainly carried out under microwave 
irradiation in an eco-friendly approach. Kinase inhibition of the products obtained was evaluated on 
an array of four Ser/Thr kinases (CDK5/p25, CK1δ/ε, DYRK1A, and GSK3α/β), all members of the 
CMGC kinase family, chosen for their strong implication in various cellular regulation processes [17–
25]. 

2. Results 

2.1. Chemistry 

Synthesis of series 1, 2, 3, and 4 was inspired from our previous works on various benzo-, pyrido-, 
and pyrazino[b]thieno[3,2-d] pyrimidines (see series A, B and C in Figure 1) [11–14]. The nitrogen 
ring in pyridine and in pyrazine may be considered to be deactivated compared with benzene. It is 
sometimes compared with nitrobenzene as the molecules behave similarly in relation to the deficit of 
electron density. This consideration guided the choice of the nitro substitution (R1) on the starting 
indole derivatives for completion of the structure-activity relationship (SAR) study. The N’-(cyano-
1H-indolyl)-N,N-dimethyl formimidamide precursors (7a–d, 8a–d, 9a–d, and 10a–d) were heated at 
170–200 °C under microwaves in the presence of an excess of formamide (40 equiv.) (for reaction 
times and yields see Table 1). 

Functionalized indoles (7a–d, 8a–d, 9a–d, and 10a–d) were previously obtained from 3-amino-
1H-indole-2-carbonitriles (5a,b) or their 5-nitro-3-amino-1H-indole-2-carbonitrile isomers (6a,b) 
which were condensed with 10 equiv. of DMF-dialkylacetals like N,N-dimethylformamide dimethyl 
acetal (DMF-DMA), N,N-dimethylformamide diethyl acetal (DMF-DEA), and N,N-
dimethylformamide dibenzyl acetal (DMF-DBA), respectively (Scheme 1). A strict control of the 
experimental conditions in terms of temperature and reaction time allowed access to the expected 
compounds in good to excellent yields (for details on suggested mechanism and experimental details 
see ref. [26]). 
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analogues (left). The 9H-pyrimido[5,4-b]indol-4-amine derivatives (1 and 2) and their 9Hpyrimido[4,5-b]
indole isomers (3 and 4) described in this work (right).

In an effort to expand the chemical space and to highlight efficient kinase inhibitors, the synthesis
of indole counterparts of the previously-described series has been envisaged. Such compounds are
considered as analogues of harmine (see 11a in Scheme 2), a natural alkaloid that still generates a lot of
work in the hope of developing therapies for Alzheimer’s disease (AD) and Down syndrome (DS) [15,16].
This paper describes simple and convenient synthetic routes to 9H-pyrimido[5,4-b]indol-4-amine
derivatives (series 1 and 2) and their 9Hpyrimido[4,5-b]indole isomers (series 3 and 4). The chemistry
described in this paper was mainly carried out under microwave irradiation in an eco-friendly approach.
Kinase inhibition of the products obtained was evaluated on an array of four Ser/Thr kinases (CDK5/p25,
CK1δ/ε, DYRK1A, and GSK3α/β), all members of the CMGC kinase family, chosen for their strong
implication in various cellular regulation processes [17–25].

2. Results

2.1. Chemistry

Synthesis of series 1, 2, 3, and 4 was inspired from our previous works on various benzo-, pyrido-,
and pyrazino[b]thieno[3,2-d] pyrimidines (see series A, B and C in Figure 1) [11–14]. The nitrogen
ring in pyridine and in pyrazine may be considered to be deactivated compared with benzene.
It is sometimes compared with nitrobenzene as the molecules behave similarly in relation to the
deficit of electron density. This consideration guided the choice of the nitro substitution (R1) on
the starting indole derivatives for completion of the structure-activity relationship (SAR) study.
The N’-(cyano-1H-indolyl)-N,N-dimethyl formimidamide precursors (7a–d, 8a–d, 9a–d, and 10a–d)
were heated at 170–200 ◦C under microwaves in the presence of an excess of formamide (40 equiv.)
(for reaction times and yields see Table 1).

Functionalized indoles (7a–d, 8a–d, 9a–d, and 10a–d) were previously obtained from
3-amino-1H-indole-2-carbonitriles (5a,b) or their 5-nitro-3-amino-1H-indole-2-carbonitrile isomers (6a,b)
which were condensed with 10 equiv. of DMF-dialkylacetals like N,N-dimethylformamide dimethyl
acetal (DMF-DMA), N,N-dimethylformamide diethyl acetal (DMF-DEA), and N,N-dimethylformamide
dibenzyl acetal (DMF-DBA), respectively (Scheme 1). A strict control of the experimental conditions in
terms of temperature and reaction time allowed access to the expected compounds in good to excellent
yields (for details on suggested mechanism and experimental details see ref. [26]).
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Table 1. Synthesis of series 1, 2, 3, and 4: temperature, reaction time, and isolated yields.
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microwave-assisted heating in sealed vials (10 mL) in the presence of 10 equiv. of DMF-DMA, DMF-
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Scheme 1. Synthesis of 9H-pyrimido[5,4-b]indol-4-amines (series 1a–d and 2a–d) and their 9H-pyrimido
[4,5-b]indoles isomers (series 3a–d and 4a–d).

To compare the biological results of harmine (11a) and some of its N9-alkylated derivatives
(11b–d) with the pyrimidoindoles prepared in this work (series 1, 2, 3, and 4, Table 1), we decided to
explore the capacity of DMF-dialkylacetals to transfer an alkyl group to nucleophilic atoms, as an
interesting alternative to previous methods [27–30]. Then, harmine was heated under controlled
microwave-assisted heating in sealed vials (10 mL) in the presence of 10 equiv. of DMF-DMA,
DMF-DEA, or DMF-DBA. The corresponding N9-alkylated 7-methoxy-1-methyl-β-carbolines (11b–d)
were obtained in good yields (Scheme 2, Table 2).
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Table 2. Synthesis of compounds 11b–d: experimental conditions and isolated yields.

N,N-dimethylformamide
(DMF)-dialkylacetal (R) Temperature (◦C) Product Yield (%)

DMF-DMA (Me) 140 11b 79
DMF-DEA (Et) 160 11c 80
DMF-DBA (Bn) 160 11d 62

2.2. Biological Evaluation

The inhibitory potency of the synthesized pyrimido[4,5-b]indol-4-amines and pyrimido[5,4-b]
indol-4-amines towards CDK5/p25, CK1δ/ε, DYRK1A, and GSK-3α/β was investigated according
preceding procedures [11–14]. Data are listed in Table 3 including results obtained with harmine (11a) and
its congeners (11b–d).

Table 3. Kinase inhibitory potencies (IC50 in µM) 1 for compounds of the series 1, 2, 3, and 4.
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All the tested compounds were inactive against CDK-5/p25 and GSK3α/β. 8-Nitro-5H-pyrimido
[5,4-b]indol-4-amines (2a–d) were also inactive against the two other tested kinases, except compound 2a
which exhibited a micromolar range IC50 value (7.6 µM) against DYRK1A. General comparison of series 1,
3, and 4 revealed a similar inhibitory activity against the array of four kinases. Values were mainly in the
micromolar range against CK1δ/ε, except compounds 1d and 3a which disclosed submicromolar IC50

values (0.6 and 0.7 µM, respectively). It can be noted that 1d seemed more specific for CK1δ/ε in view of
its lack of activity against DYRK1A, whilst 3a maintained a micromolar affinity (IC50 = 3.1 µM) against
this biological target.

Considering CK1δ/ε kinase inhibition, the introduction of a nitro group was deleterious for series
1 vs. series 2, whereas inhibitory activity remained for series 3 vs. series 4, depending of the orientation
of the aminopyrimidine ring in the fused system and its relative position to the nitro group. On the other
hand, for the unsubstituted tricyclic derivatives on indole (series 1 and 3) the position of the amino
group does not seem critical since micromolar CK1 inhibition was conserved within the two series.

Interestingly, a loss of DYRK1A inhibitory activity was observed for the compounds bearing a
N-methyl or a N-benzyl chain compared to their NH or N-ethyl analogues, except for the inactive
series 2 and the very active compounds 11a–d.

Tested as a positive control under the same conditions as series 1–4, harmine (11a) was definitely
inactive against CDK5/p25 and GSK3α/β. This natural product shows interesting activity against
DYRK1A and a weak inhibition of CK1δ/ε (IC50 = 1.5 µM) as previously mentioned in various
papers relating the use of harmine for treatment of neurodegenerative diseases [31,32]. The N-methyl,
N-ethyl, and N-benzyl derivatives (11b, 11c, and 11d) were totally inactive against the three kinases
CDK5/p25, CK1δ/ε, and GSK3α/β. Their affinity was focused on DYRK1A with interesting IC50 values,
quite close to the nanomolar range IC50 obtained for the lead harmine (11a) (see Table 3), confirming
recently-published results [29].

3. Discussion

Results described above confirm the interest in developing chemical methods that allow easy
access to libraries of various potentially bioactive molecules. This is particularly noticeable in the
case of compounds 1a and 1b, which are the only derivatives of these new series that were already
synthesized via multistep processes (2–4 steps), in long time reactions (6–20 h) and sometimes difficult
operating conditions, using toxic reagents (e.g., POCl3) [33]. The combination of microwave-assisted
heating and the use of DMF-dialkylacetals provided in all cases short reaction times and comfortable
operating conditions.

The two unsubstituted isomeric forms (series 1a–d and 3a–d) expressed a similar average activity
against the two kinases CK1δ/ε and DYRK1A. Moreover, the data obtained for the two series of
pyrimidoindoles bearing a nitro group, demonstrate that the pyrimido[4,5-b]indol-4-amines (series
4a–d) are more active than their pyrimido[5,4-b]indol-4-amine isomers (series 2a–d). In case of the
first series (1a–d and 2a–d), the data suggest that addition of a nitro group significantly decreases the
inhibitory activity. In contrast, the two sets of pyrimido[4,5-b]indol-4-amines (3a–d and 4a–d) exhibit
similar micromolar range IC50 values which are independent of the substitution pattern on the benzene
moiety of the indole ring.

Figure 2 focuses on the two kinases mainly inhibited in this study and the IC50 values towards
CK1δ/ε and DYRK1A protein kinases are reported for selected pyrimido[4,5-b or 5,4-b]indol-4-amines
(1a, 2a, 3a, and 4a). Inhibitory activity is compared with the biological data already published for
thieno[2,3-d]pyrimidin-4-amine analogues described as potential Ser/Thr kinases inhibitors [12–14].
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Figure 2. Comparison between selected pyrimido[4,5-b or 5,4-b]indol-4-amines described in this
work and some of their thieno[2,3-d]pyrimidin-4-amine congeners (12, 13, 14 and 15) described in
preceding work.

It can be observed that the replacement of the sulfur atom, in the structure of compound 12, by a
nitrogen atom (NH, more exactly, in compound 1a) resulted in increasing DYRK1A inhibitory potency
(from 33 to 2.2 µM) and keeping CK1 activity. The major difference between the two compounds lies in
the nature of the hydrogen bonding (acceptor for S vs. donor for NH) that would allow a particular
binding mode and interaction with the target protein, explaining this trend. When comparing the
activity of nitroindole derivative 2a with the deactivated analogues 13, 14, and 15, due to the presence
of a pyrazine or a pyridine ring, opposite selectivity towards CK1δ/ε and DYRK1A was observed.
Indeed, the last ones displayed micromolar and submicromolar activity against CK1 and no activity on
DYRK1A, whereas compound 2a exhibited no inhibition against CK1δ/ε and low micromolar activity
towards DYRK1A. Again, the four compounds behave identically in terms of electronic deficiency
but, for three of them, we assumed that the presence of a nitrogen atom could bring an additional
possibility of interaction with the protein through the lone pair of electrons.

4. Materials and Methods

4.1. General Information

All reagents were purchased from commercial suppliers and were used without further purification,
except for DMF, which was stored under argon and activated molecular sieves. All reactions were
monitored by thin-layer chromatography with silica gel 60 F254 (Merck KGaA, Darmstadt, Germany)
precoated aluminium plates (0.25 mm). Visualization was performed with a UV light at wavelengths
of 254 nm. Purifications were conducted with a flash column chromatography system equipped
with a dual UV/vis spectrophotometer (200–600 nm), a fraction collector (176 tubes), a dual piston
pump (1 to 200 mL/min, Pmax = 15 bar), which allowed quaternary gradients, and an additional
inlet for air purge ((Puriflash, Interchim, Montluçon, France). Melting points of solid compounds
were measured with a SMP3 melting point instrument (STUART, Bibby Scientific Ltd., Roissy, France)
with a precision of 1.5 ◦C. IR spectra were recorded with a Spectrum 100 Series FTIR spectrometer
(PerkinElmer, Villebon S/Yvette, France). NMR spectra (1H and 13C) were acquired at 295 K using
an AVANCE 300 MHz spectrometer (Bruker, Wissembourg, France) at 300 and 75.4 MHz, using
trimethylsilane (TMS) as an internal standard. Coupling constants J are in Hz, and chemical shifts
are given in ppm. Mass spectrometry was performed by the Mass Spectrometry Laboratory of the
University of Rouen. The mass spectra electrospray ionization (ESI), electron impact ionization (EI),
and field desorption (FD) were recorded with an LCP 1er XR spectrometer (WATERS, Guyancourt,
France). Microwave experiments were carried out at atmospheric pressure in 50–250 mL round bottom
flasks fitted with a reflux condenser, in a RotoSYNTHTM (Milestone S.r.l., Milano, Italy), a multi-mode
cavity microwave reactor designed for synthetic chemistry (0–1200 W). Microwave reactions in sealed
tubes (10 mL) were performed with a InitiatorTM microwave synthesis instrument (Biotage, Uppsala,
Sweden) (0–400 W). Temperatures of the reactions were monitored via IR-sensors. The percentage of



Pharmaceuticals 2020, 13, 89 7 of 12

purity of all tested products was more than 95% determined by high pressure liquid chromatography
(HPLC) analysis. 1H-NMR and 13C-NMR spectra of new compounds are available in Supplementary
Materials Section Figures S1–S16.

4.2. Chemistry

All details conerning the synthesis of N’-(3-Cyano-1-alkyl-1H-indol-2-yl)-N,N-dimethylformimidamide
intermediates (7a–d, 8a–d, 9a–d, and 10a–d) are described in a preceding work [26].

Compounds 1a and 1b were already described and data given in the corresponding patent are
only 1H NMR spectra [33]. Harmine derivatives 11b, 11c, and 11d were described in a preceding
work [28] cited in some recent studies [29,30].

4.2.1. General Procedure for the Synthesis of 5H-Pyrimido[5,4-b]indol-4-amines (Series 1 and 2) and
5H-Pyrimido[4,5-b]indol-4-amines (Series 3 and 4).

Formamide (40 equiv.) was added to the formimidamide precursor (7b–d, 8b–d, 9b–d, or 10b–d)
(1 mmol) and the mixture was heated under microwave irradiation (200 W). On completion, the reaction
was cooled to room temperature and water was added. The solid was filtered off, washed with water,
and dried. The crude solid was purified by silica gel column chromatography using PE/EtOAc (100:0
to 0:100, v/v) as the eluent to give the desired compounds.

5H-Pyrimido[5,4-b]indol-4-amine (1a): brown powder (0.149 g, 81%) obtained from 7a after 30 min
of irradiation at 170 ◦C according to the general procedure; mp > 320 ◦C; IR (neat) νmax(cm−1): 3047,
1616, 1600, 1559, 1498, 1462, 1428, 1354, 1343, 1316, 1295, 1234, 1207, 1119, 756, 745; 1H NMR (300 MHz,
DMSO-d6): δ 10.98 (br s, 1H, NH), 8.29 (s, 1H, H-2), 8.05 (d, 1H, J = 8 Hz, H-8), 7.63 (d, 1H, J = 8 Hz,
H-6), 7.50 (td, 1H, J1 = 2 Hz, J2 = 8 Hz, H-7), 7.22 (td, 1H, J1 = 2 Hz, J2 = 8 Hz, H-6), 6.95 (s, 2H, NH2);
13C NMR (75 MHz, DMSO-d6): δ 150.8, 149.9, 141.9, 138.8, 127.7, 120.9, 120.4, 119.5, 117.4, 112.5; HRMS
calcd for C10H9N4 [M + H]+ 185.0827 found 185.0822

5-Methyl-5H-pyrimido[5,4-b]indol-4-amine (1b): brown powder (0.115 g, 58%) obtained from 7b
after 30 min of irradiation at 170 ◦C according to the general procedure; mp 201–202 ◦C; IR (neat)
νmax(cm−1): 3074, 1657, 1623, 1590, 1537, 1493, 1462, 1431, 1400, 1352, 1329, 1244, 962, 842, 789, 737; 1H
NMR (300 MHz, DMSO-d6): δ 8.29 (s, 1H, H-2), 8.06 (d, 1H, J = 8 Hz, H-9), 7.69 (d, 1H, J = 8 Hz, H-6),
7.58 (td, 1H, J1 = 2 Hz, J2 = 8 Hz, H-7), 7.24 (td, 1H, J1 = 2 Hz, J2 = 8 Hz, H-8), 6.93 (s, 2H, NH2), 4.08 (s,
3H, CH3); 13C NMR (75 MHz, DMSO-d6): δ 151.4, 149.7, 140.9, 128.0, 120.4, 120.3, 119.5, 114.2, 110.4,
106.3, 31.7; HRMS calcd for C11H11N4 [M + H]+ 199.0984 found 199.0981.

5-Ethyl-5H-pyrimido[5,4-b]indol-4-amine (1c): brown powder (0.136 g, 64%) obtained from 7c after
30 min of irradiation at 170 ◦C according to the general procedure; mp 161–162 ◦C; IR (neat) νmax(cm−1):
3349, 1641, 1589, 1532, 1402, 1382, 1334, 1226, 1046, 1024, 988, 827, 729; 1H NMR (300 MHz, DMSO-d6):
δ 8.31 (s, 1H, H-2), 8.08 (d, 1H, J = 8 Hz, H-9), 7.72 (d, 1H, J = 8 Hz, H-6), 7.58 (td, 1H, J1 = 2 Hz, J2 = 8
Hz, H-7), 7.22 (td, 1H, J1 = 2 Hz, J2 = 8 Hz, H-8), 6.90 (s, 2H, NH2), 4.61 (q, 2H, J = 7 Hz, CH2), 1.21 (t,
3H, J = 7 Hz, CH3); 13C NMR (75 MHz, DMSO-d6): δ 150.9, 149.7, 140.1, 128.1, 120.7, 120.5, 119.6, 118.2,
112.1, 110.4, 39.7, 16.0; HRMS calcd for C12H13N4 [M + H]+ 213.1140 found 213.1133.

5-Benzyl-5H-pyrimido[5,4-b]indol-4-amine (1d): yellow powder (0.143 g, 52%) obtained from 7d
after 40 min of irradiation at 170 ◦C according to the general procedure; mp 219–220 ◦C; IR (neat)
νmax(cm−1): 3062, 1641, 1619, 1581, 1530, 1494, 1453, 1403, 1378, 1330, 1254, 1207, 1193, 954, 754, 734;
1H NMR (300 MHz, DMSO-d6): δ 8.33 (s, 1H, H-2), 8.10 (d, 1H, J = 8 Hz, H-9), 7.79 (d, 1H, J = 8 Hz,
H-6), 7.55 (td, 1H, J1 = 2 Hz, J2 = 8 Hz, H-7), 7.28-7.17 (m, 4H, H-8, and H-ar), 7.00 (dd, 2H, J1 = 1 Hz,
J2 = 8 Hz, H-ar), 6.90 (s, 2H, NH2), 5.87 (s, 2H, CH2); 13C NMR (75 MHz, DMSO-d6): δ 151.0, 150.0,
143.8, 141.0, 138.3, 128.5 (2C), 128.3, 127.2, 126.2 (2C), 120.9, 120.5, 120.0, 118.0, 111.1, 46.9; HRMS calcd
for C17H15N4 [M + H]+ 275.1297 found 275.1295.

8-Nitro-5H-pyrimido[5,4-b]indol-4-amine (2a): brown powder (0.149 g, 65%) obtained from 8a after
60 min of irradiation at 170 ◦C according to the general procedure; mp > 320 ◦C; IR (neat) νmax(cm−1):
3102, 1692, 1627, 1597, 1548, 1512, 1474, 1453, 1377, 1321, 1303, 1233, 1131, 1044, 816, 733; 1H NMR
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(300 MHz, DMSO-d6): δ 11.73 (br s, 1H, NH), 8.89 (d, 1H, J = 1 Hz, H-9), 8.40 (s, 1H, H-2), 8.35 (dd, 1H,
J1 = 1 Hz, J2 = 8 Hz, H-7), 7.85 (d, 1H, J = 8 Hz, H-6), 7.22 (s, 2H, NH2); 13C NMR (75 MHz, DMSO-d6):
δ 151.4, 151.3, 142.6, 141.4, 140.5, 122.5, 120.4, 119.4, 117.2, 113.3; HRMS calcd for C10H8N5O2 [M + H]+

230.0678 found 230.0682.
5-Methyl-8-nitro-5H-pyrimido[5,4-b]indol-4-amine (2b): yellow powder (0.182 g, 75%) obtained from

8b after 40 min of irradiation at 170 ◦C according to the general procedure; mp > 320 ◦C; IR (neat)
νmax(cm−1): 3087, 1617, 1585, 1510, 1472, 1327, 1302, 1259, 1235, 1083, 1026, 915, 844, 791, 729; 1H
NMR (300 MHz, DMSO-d6): δ 8.89 (d, 1H, J = 1 Hz, H-9), 8.40 (dd, 1H, J1 = 1 Hz, J2 = 8 Hz, H-7),
8.39 (s, 1H, H-2), 7.90 (d, 1H, J = 8 Hz, H-6), 7.21 (s, 2H, NH2), 4.14 (s, 3H, CH3); 13C NMR (75 MHz,
DMSO-d6): δ 151.9, 151.1, 143.5, 143.0, 140.3, 122.7, 120.5, 119.7, 117.1, 111.3, 32.4; HRMS calcd for
C11H10N5O2 [M + H]+ 244.0834 found 244.0827.

5-Ethyl-8-nitro-5H-pyrimido[5,4-b]indol-4-amine (2c): yellow powder (0.185 g, 72%) obtained from
8c after 30 min of irradiation at 170 ◦C according to the general procedure; mp 299–300 ◦C; IR (neat)
νmax(cm−1): 3072, 1617, 1586, 1507, 1475, 1456, 1329, 1302, 1257, 1227, 1090, 944, 805, 753, 735; 1H NMR
(300 MHz, DMSO-d6): δ 8.91 (d, 1H, J = 1 Hz, H-9), 8.42 (s, 1H, H-2), 8.40 (dd, 1H, J1 = 1 Hz, J2 = 8 Hz,
H-7), 7.97 (d, 1H, J = 8 Hz, H-6), 7.23 (s, 2H, NH2), 4.70 (q, 2H, J = 7 Hz, CH2), 1.27 (t, 3H, J = 7 Hz,
CH3); 13C NMR (75 MHz, DMSO-d6): δ 152.4, 152.3, 144.1, 142.3, 140.5, 122.9, 120.1, 119.3, 117.2, 111.3,
40.1, 16.1; HRMS calcd for C12H12N5O2 [M + H]+ 258.0991 found 258.0986.

5-Benzyl-8-nitro-5H-pyrimido[5,4-b]indol-4-amine (2d): yellow powder (0.252 g, 79%) obtained from
8d after 30 min of irradiation at 170 ◦C according to the general procedure; mp > 320 ◦C; IR (neat)
νmax(cm−1): 3052, 1643, 1620, 1586, 1513, 1473, 1451, 1400, 1331, 1315, 1203, 1076, 1045, 939, 804, 791,
732; 1H NMR (300 MHz, DMSO-d6): δ 8.94 (d, 1H, J = 1 Hz, H-9), 8.44 (s, 1H, H-2), 8.41 (dd, 1H,
J1 = 1 Hz, J2 = 8 Hz, H-7), 8.03 (d, 1H, J = 8 Hz, H-6), 7.28-7.18 (m, 5H, NH2, and H-ar), 7.01 (dd,
2H, J1 = 1 Hz, J2 = 8 Hz, H-ar), 5.99 (s, 2H, CH2); 13C NMR (75 MHz, DMSO-d6): δ 151.5 (2C), 144.3,
143.3, 140.9, 137.4, 128.7 (2C), 127.5, 126.1 (2C), 123.2, 120.4, 119.7, 117.2, 111.9, 47.4; HRMS calcd for
C17H14N5O2 [M + H]+ 320.1147 found 320.1145.

9H-Pyrimido[4,5-b]indol-4-amine (3a): cream-coloured powder (0.131 g, 71%) obtained from
N’-(3-cyano-1H-indol-2-yl)-N,N-dimethylformimidamide 9a after 40 min of irradiation at 200 ◦C
according to the general procedure; mp > 320 ◦C; IR (neat) νmax(cm−1): 3068, 1637, 1624, 1604, 1580,
1569, 1302, 1255, 981, 798, 750, 705; 1H NMR (300 MHz, DMSO-d6): δ 11.81 (br s, 1H, NH), 8.27 (d, 1H,
J = 8 Hz, H-5), 8.24 (s, 1H, H-2), 7.43 (d, 1H, J = 8 Hz, H-8), 7.34 (td, 1H, J1 = 1 Hz, J2 = 8 Hz, H-7), 7.22
(td, 1H, J1 = 1 Hz, J2 = 8 Hz, H-6), 7.13 (s, 2H, NH2); 13C NMR (75 MHz, DMSO-d6): δ 157.6, 155.6, 154.8,
136.2, 124.4, 121.2, 120.0, 119.8, 110.8, 95.2; HRMS calcd for C10H9N4 [M + H]+ 185.0827 found 185.0820.

9-Methyl-9H-pyrimido[4,5-b]indol-4-amine (3b): brown powder (0.168 g, 85%) obtained from 9b
after 30 min of irradiation at 200 ◦C according to the general procedure; mp 189–190 ◦C; IR (neat)
νmax(cm−1): 3059, 1622, 1588, 1556, 1507, 1463, 1449, 1326, 1309, 1300, 1194, 978, 795, 731; 1H NMR
(300 MHz, DMSO-d6): δ 8.32 (d, 1H, J = 8 Hz, H-5), 8.31 (s, 1H, H-2), 7.59 (d, 1H, J = 8 Hz, H-8), 7.43 (td,
1H, J1 = 1 Hz, J2 = 8 Hz, H-7), 7.29 (td, 1H, J1 = 1 Hz, J2 = 8 Hz, H-6), 7.22 (s, 2H, NH2), 3.82 (s, 3H,
CH3); 13C NMR (75 MHz, DMSO-d6): δ 157.7, 155.2, 154.9, 137.5, 124.7, 124.4, 121.2, 120.3, 119.3, 109.2,
28.1; HRMS calcd for C11H11N4 [M + H]+ 199.0984 found 199.0974.

9-Ethyl-9H-pyrimido[4,5-b]indol-4-amine (3c): brown powder (0.204 g, 96%) obtained from 9c after
30 min of irradiation at 200 ◦C according to the general procedure; mp 137–138 ◦C; IR (neat) νmax(cm−1):
3062, 1623, 1558, 1448, 1464, 1329, 1113, 798, 736, 708; 1H NMR (300 MHz, DMSO-d6): δ 8.34 (d, 1H,
J = 8 Hz, H-5), 8.32 (s, 1H, H-2), 7.63 (d, 1H, J = 8 Hz, H-8), 7.45 (td, 1H, J1 = 1 Hz, J2 = 8 Hz, H-7), 7.26
(td, 1H, J1 = 1 Hz, J2 = 8 Hz, H-6), 7.21 (s, 2H, NH2), 4.41 (q, 2H, J = 7 Hz, CH2), 1.31 (t, 3H, J = 7 Hz,
CH3); 13C NMR (75 MHz, DMSO-d6): δ 157.5, 154.8, 154.5, 136.3, 124.5, 121.4, 120.3, 119.6, 109.3, 94.8,
35.7, 14.0; HRMS calcd for C12H13N4 [M + H]+ 213.1140 found 213.1130.

9-Benzyl-9H-pyrimido[4,5-b]indol-4-amine (3d): cream-coloured powder (0.184 g, 67%) obtained
from 9d after 30 min of irradiation at 200 ◦C according to the general procedure; mp 217–218 ◦C;
IR (neat) νmax(cm−1): 3051, 1620, 1585, 1568, 1556, 1458, 1445, 1428, 1297, 799, 753, 740; 1H NMR
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(300 MHz, DMSO-d6): δ 8.34 (d, 1H, J = 8 Hz, H-5), 8.33 (s, 1H, H-2), 7.55 (d, 1H, J = 8 Hz, H-8), 7.37
(td, 1H, J1 = 1 Hz, J2 = 8 Hz, H-7), 7.29-7.21 (m, 8H, H-6, NH2, and H-ar), 5.60 (s, 2H, CH2); 13C NMR
(75 MHz, DMSO-d6): δ 157.6, 155.0, 137.5, 136.6, 128.5 (2C), 127.3, 127.1 (2C), 124.6, 121.4, 120.6, 119.6,
117.2, 109.8, 94.8, 44.0; HRMS calcd for C17H15N4 [M + H]+ 275.1297 found 275.1292.

7-Nitro-9H-pyrimido[4,5-b]indol-4-amine (4a): brown powder (0.153 g, 67%) obtained from 10a after
30 min of irradiation at 200 ◦C according to the general procedure; mp > 320 ◦C; IR (neat) νmax(cm−1):
3052, 1621, 1529, 1500, 1471, 1375, 1304, 1287, 1257, 1204, 1124, 1071, 884, 820, 753, 734; 1H NMR
(300 MHz, DMSO-d6): δ 12.42 (br s, 1H, NH), 8.53 (d, 1H, J = 9 Hz, H-5), 8.34 (s, 1H, H-2), 8.25 (d, 1H,
J = 2 Hz, H-8), 8.11 (dd, 1H, J1 = 2 Hz, J2 = 9 Hz, H-6), 7.62 (s, 2H, NH2); 13C NMR (75 MHz, DMSO-d6):
δ 158.4, 157.9, 156.8, 143.8, 135.4, 125.5, 121.2, 115.2, 106.5, 94.9; HRMS calcd for C10H8N5O2 [M + H]+

230.0678 found 230.0689.
9-Methyl-7-nitro-9H-pyrimido[4,5-b]indol-4-amine (4b): yellow powder (0.195 g, 80%) obtained from

10b after 30 min of irradiation at 200 ◦C according to the general procedure G; mp 309–310 ◦C; IR
(neat) νmax(cm−1): 3031, 1568, 1513, 1482, 1331, 1309, 1284, 1273, 1193, 987, 875, 853, 811, 726; 1H NMR
(300 MHz, DMSO-d6): δ 8.55 (d, 1H, J = 9 Hz, H-5), 8.51 (d, 1H, J = 2 Hz, H-8), 8.39 (s, 1H, H-2), 8.12
(dd, 1H, J1 = 2 Hz, J2 = 9 Hz, H-6), 7.67 (s, 2H, NH2), 3.91 (s, 3H, CH3); 13C NMR (75 MHz, DMSO-d6):
δ 158.2, 157.3, 156.7, 144.0, 136.7, 124.9, 121.1, 115.5, 105.5, 94.5, 27.9; HRMS calcd for C11H10N5O2 [M +

H]+ 244.0834 found 244.0831.
9-Ethyl-7-nitro-9H-pyrimido[4,5-b]indol-4-amine (4c): brown powder (0.162 g, 63%) obtained from

10c after 30 min of irradiation at 200 ◦C according to the general procedure; mp 285–286 ◦C; IR (neat)
νmax(cm−1): 3109, 1618, 1582, 1563, 1509, 1485, 1448, 1322, 1276, 1184, 1135, 820, 743, 732; 1H NMR
(300 MHz, DMSO-d6): δ 8.58 (d, 1H, J = 2 Hz, H-8), 8.55 (d, 1H, J = 9 Hz, H-5), 8.39 (s, 1H, H-2), 8.12
(dd, 1H, J1 = 2 Hz, J2 = 9 Hz, H-6), 7.69 (s, 2H, NH2), 4.53 (q, 2H, J = 7 Hz, CH2), 1.32 (t, 3H, J = 7 Hz,
CH3); 13C NMR (75 MHz, DMSO-d6): δ 158.3, 156.8, 156.7, 144.1, 135.6, 125.1, 121.3, 115.4, 105.4, 94.5,
36.2, 14.1; HRMS calcd for C12H12N5O2 [M + H]+ 258.0991 found 258.0999.

9-Benzyl-7-nitro-9H-pyrimido[4,5-b]indol-4-amine (4d): yellow powder (0.214 g, 67%) obtained from
10d after 30 min of irradiation at 200 ◦C according to the general procedure; mp 241–242 ◦C; IR (neat)
νmax(cm−1): 3031, 1558, 1508, 1477, 1448, 1319, 1268, 1170, 1086, 801, 733; 1H NMR (300 MHz, DMSO-d6):
δ 8.60 (d, 1H, J = 2 Hz, H-8), 8.49 (d, 1H, J = 9 Hz, H-5), 8.43 (s, 1H, H-2), 8.13 (dd, 1H, J1 = 2 Hz, J2 = 9
Hz, H-6), 7.76 (s, 2H, NH2), 7.32-7.21 (m, 5H, H-ar), 4.53 (s, 2H, CH2); 13C NMR (75 MHz, DMSO-d6):
δ 158.4, 157.4, 156.9, 144.1, 137.0, 135.9, 128.7 (2C), 127.5, 127.0 (2C), 125.3, 121.4, 115.8, 105.7, 94.5, 44.2;
HRMS calcd for C17H14N5O2 [M + H]+ 320.1147 found 320.1133.

4.2.2. General Procedure for the Synthesis of N-alkylated Harmine Derivatives (Compounds 11b–d).

A mixture of starting harmine (11a, 212 mg, 1 mmol) and corresponding DMF-dialkylacetal
(DMF-DMA, DMF-DEA, or DMF-DBA) (10 mmol) in DMF (10 mmol) was irradiated (atmospheric
pressure) at various temperatures (800 W). On completion, the solution was cooled to room temperature
and crude products were extracted with ethylacetate. The organic layers were washed with cold
water, dried over Na2SO4, filtered, and evaporated in vacuo. Purification by silica gel column
chromatography using a gradient of dichloromethane/ethylacetate (100:0 to 0:100, v/v) as the eluent
gave the desired products.

7-Methoxy-1,9-dimethyl-β-carboline (11b): Yield: 79%, obtained from DMF-DMA after 60 min of
irradiation at 140 ◦C according to the general procedure; mp 125–126 ◦C; 1H NMR (300 MHz, DMSO-d6):
δ 8.14 (d, 1H, J = 5 Hz, H-3), 8.09 (d, 1H, J = 8 Hz, H-5), 7.86 (d, 1H, J = 5 Hz, H-4), 7.20 (d, 1H, J = 2 Hz,
H-8), 6.86 (dd, 1H, J1 = 2 Hz, J2 = 8 Hz, H-6), 4.13 (s, 3H, NCH3), 3.92 (s, 3H, OCH3), 3.01 (s, 3H, CH3);
HRMS calcd for C14H15N2O [M + H]+ 227.1184 found 227.1180.

9-Ethyl-7-methoxy-1-methyl-β-carboline (11c): Yield: 80%, obtained from DMF-DEA after 60 min
of irradiation at 160 ◦C according to the general procedure; mp 109–110 ◦C; 1H NMR (300 MHz,
DMSO-d6): δ 8.16 (d, 1H, J = 5 Hz, H-3), 8.09 (d, 1H, J = 8 Hz, H-5), 7.87 (d, 1H, J = 5 Hz, H-4), 7.20
(d, 1H, J = 2 Hz, H-8), 6.87 (dd, 1H, J1 = 2 Hz, J2 = 8 Hz, H-6), 4.62 (q, 2H, J = 7 Hz, CH2), 3.92 (s,
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3H, OCH3), 2.96 (s, 3H, CH3), 1.35 (t, 3H, J = 7 Hz, CH2CH3); HRMS calcd for C15H17N2O [M + H]+

241.1341 found 241.1338.
9-Benzyl-7-methoxy-1-methyl-β-carboline (11d): Yield: 62%, obtained from DMF-DBA after 60 min

of irradiation at 160 ◦C according to the general procedure; mp 131–132 ◦C; 1H NMR (300 MHz,
DMSO-d6): δ 8.18 (d, 1H, J = 5 Hz, H-3), 8.14 (d, 1H, J = 8 Hz, H-5), 7.94 (d, 1H, J = 5 Hz, H-4), 7.38-7.19
(m, 5H, H-8, and H-ar), 6.94-6.89 (m, 2H, H-6, and H-ar), 5.90 (s, 2H, CH2), 3.82 (s, 3H, OCH3), 2.74 (s,
3H, CH3); HRMS calcd for C20H19N2O [M + H]+ 303.1497 found 303.1499.

4.3. In Vitro Kinase Preparation and Assays

Buffers, kinase preparations, and assays were performed as described in ref. [12–14] according
methods initially published in previous works [34–36].

Supplementary Materials: The following materials are available online at http://www.mdpi.com/1424-8247/13/5/
89/s1. Figures S1–S16. 1H- & 13C-NMR Spectra for Compounds 1a–d, 2a–d, 3a–d and 4a–d.
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