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Abstract 1 

We present the results of a hydraulic tomography led on a 60 × 40 m² fractured and karstic field 2 

in Southern France in order to image, in a model, its transmissivity field. The dataset employed 3 

for the tomography consists in drawdown responses to cross-boreholes pumping tests reaching 4 

pseudo steady-state, with 8 different pumping wells and 22 measurement boreholes. The 5 

inversion of the dataset was led on a 2D model coupling a discrete network and a continuum, 6 

by following the Discrete Network Deterministic Inversion (DNDI) method. This method 7 

permits an optimization of both the transmissivity distribution and the structural geometry of 8 

the discrete network, which represents in this case the interconnected fractures and conduits in 9 

the aquifer. The optimized model obtained after inversion allows reproducing the observed 10 

drawdown in the field, and proposes a contrasted imaging of the hydraulic properties, as awaited 11 

in such fractured site. The fracture network in the optimized model also shows coherent 12 

orientations of fracturing, compared to the orientations effectively observed on the field, even 13 

though this information was not included in the inversion. A comparison of the results obtained 14 

with this coupled model to results obtained on the same data with equivalent porous media 15 

model (without integration of a discrete network) shows that the integration of a discrete 16 

network in the model greatly improves the ability of the model to reproduce the flows existing 17 

in such fractured fields, and thus the observed drawdowns.  18 
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1. Introduction 19 

Characterization of the subsurface field hydraulic properties represents an important 20 

problematic for the hydrogeologists and engineers. In fact, the spatial distribution of the values 21 

of hydraulic properties, such as transmissivity, strongly influences the subsurface flows. The 22 

assessment of these underground properties usually requires to analyze responses to a 23 

solicitation of the field, such as drawdown responses to a groundwater pumping (Batu 1998), 24 

or other solicitations such as injections, slug tests, tracers as described in Butler (2005). 25 

Therefore, the spatialization of the transmissivity values can be caught, among other methods, 26 

by simultaneously analyzing the responses to pumping tests led in different boreholes from the 27 

same field. This is typically realized by a hydraulic tomography approach (Yeh and Lee 2007). 28 

In this approach, a large set of responses to cross-borehole pumping tests is associated with an 29 

inversion process, in order to map a transmissivity field in a model which is then able to 30 

reproduce the observed drawdowns when solving the flow equation (Illman et al. 2009; Cardiff 31 

and Barrash 2011; Cardiff et al. 2013; Fischer et al. 2017a). 32 

Hydraulic tomography appears as a powerful tool for the characterization of fractured fields 33 

hydraulic properties. In fact, in fractured aquifers, the groundwater flow paths are mostly 34 

constrained in the network of fractures, because these fractures generate a local increase in the 35 

conductivity field. This leads to high contrasts in hydraulic properties, with a high conductivity 36 

fracture network surrounded by a lower conductivity rock matrix. Illman (2014) reviewed and 37 

highlighted the advantages brought by hydraulic tomography for the assessment of these 38 

contrasts in fractured site. The scientific literature contains several works of hydraulic 39 

tomography on fractured fields, some of these works being listed hereafter. One main difference 40 

between these works concerns the representation of the heterogeneity within the transmissivity 41 

field in the model. 42 
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One of the approaches is to represent this heterogeneity with a single continuum in which the 43 

fractures and matrix properties are approximated with an equivalent hydraulic conductivity 44 

field. In this case, the solution of the inversion should be constrained in order to produce the 45 

expected contrast in the transmissivity field. Thus, Hao et al. (2008) and Sharmeen et al. (2012) 46 

have used the Sequential Successive Linear Estimator developed by Yeh and Liu (2000) to 47 

image the conductivity fields of, respectively, a synthetic fractured case and a fractured rock 48 

block in laboratory. The same approach was also tested more recently by Mohammadi and 49 

Illman (2019) on a synthetic karstic conduit network. Other possible inversion constraints for 50 

single continuum modeling have been tested on a same dataset from a fractured and karstified 51 

field in France: the transitional-probability generation (Wang et al. 2017), the sparse non-linear 52 

optimizer (Wang et al. 2016) and a cellular automata-based approach (Fischer et al. 2017b). 53 

Single continuum 3D hydraulic tomography applications have been proposed by Illman et al. 54 

(2009) and Zha et al. (2015) for a large fractured field in Japan, and more recently for a fractured 55 

rock unit at a smaller scale by Tiedeman and Barrash (2019). A dual continuum, considering 56 

two linked continuum (one for the matrix and one for the fractures), has been proposed in 57 

Trottier et al. (2014) as an alternative to the single continuum representation. 58 

Another possible representation for the imagery of fractured fields requires the integration of a 59 

discrete network in the model. In this case, a network of lines or planes representing the 60 

fractures is included in a 2D or 3D continuum which represents the matrix. The matrix can be 61 

considered as impermeable, leading to water fluxes only in the fracture networks, or a low 62 

permeability background in a coupled model, allowing for flows also in the matrix. This type 63 

of representation has been adopted to infer the hydraulic properties of a simplified fracture 64 

network, positioned in the model based on connectivity information, in Klepikova et al. (2013) 65 

and Klepikova et al. (2014). However, the main difficulty arising from this representation 66 

remains the construction of the discrete network within the model. In fact, in this case, not only 67 



5 

 

the property values of the fractures are important, but also their positioning and their 68 

connectivity. Therefore, when the information related to the fractures positioning is limited, it 69 

may be necessary to optimize the network geometry in the model as well. This can be achieved 70 

by generating networks stochastically from field information such as statistical (Cacas et al. 71 

1990), mechanical (Josnin et al. 2002; Bonneau et al. 2013) or speleological templates (Pardo-72 

Iguzquiza et al. 2012) information. More recently, Somogyvari et al. (2017) have proposed to 73 

optimize the discrete network with a method based on a reversible jump Markov Chain Monte 74 

Carlo, which allows for iterative semi-random updates of its geometry, based on statistical 75 

information. However, a deterministic optimization of the network of fractures is less common 76 

in the literature. Such a method to optimize the geometry of a network of interconnected 77 

fractures in a deterministic way has been proposed in Fischer et al. (2018a) and tested on 78 

synthetic cases. 79 

Several works have discussed the importance of integrating discrete networks for the modeling 80 

of flows in fractured or karstic aquifers, compared to single continuum models. Among them, 81 

Kovacs (2003) noticed that, for a karstic aquifer at a watershed scale (kilometric), only the 82 

presence of discrete networks in the model could permit to reproduce in a same time the 83 

observed heads and the observed spring discharges. More recently, Dong et al. (2019) studied 84 

the conditions to obtain an equivalence between inverted single continuum simulations and 85 

simulations obtained from a synthetic discrete fracture network model. They have observed 86 

that, if the scale of the investigation within a fractured medium reaches the Representative 87 

Elementary Volume (REV), then a single continuum model could provide good inversion 88 

results. However, if the scale was below the REV and the observation wells were limited, a 89 

single continuum model permitted to only identify the dominant fractures. 90 

 In this work, we aim to contribute to this discussion comparing single continuum and discrete 91 

network modeling approaches for the representation of a fractured field in a hydraulic 92 
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tomography. For this purpose, we will apply the Discrete Network Deterministic Inversion 93 

(DNDI) method proposed in Fischer et al. (2018a) on steady-state drawdown responses 94 

obtained, at a decametric scale, on the Terrieu fractured and karstified field, in France. The 95 

results obtained from the discrete network modeling in this work will then be compared to those 96 

obtained from a more classical single continuum modeling. These comparison will allow us to 97 

discuss the benefits of including discrete networks in the model for the representation of 98 

fractures/conduits networks at a decametric scale. In this paper, we will first briefly present the 99 

Terrieu site, and the drawdown dataset used for its characterization. Then, we will expose the 100 

parameterization of the transmissivity field in the model for the DNDI method and its associated 101 

deterministic inversion for the optimization of both the network geometry and the transmissivity 102 

values. In the last section we will present the results obtained with the DNDI approach, and 103 

discuss its differences, benefits and limits to those obtained from other approaches without 104 

discrete networks. 105 

 106 

2. Site presentation 107 

The Terrieu experimental field is located on the MEDYCYSS observation site (Jourde et al. 108 

2011), part of the Karst observatory network (Jourde et al. 2018) initiated by the French institute 109 

INSU/CNRS. This well-known site has been recently studied in two PhD-thesis (Jazayeri 110 

Noushabadi 2009 and Dausse 2015) and characterized through different tomographic 111 

approaches (Wang et al. 2016; Wang et al. 2017; Fischer et al. 2017b; Fischer et al. 2018b). 112 

This field is located in Southern France, at the North of the city Montpellier (see Figure 1). It 113 

is part of the karstic and fractured Lez regional aquifer, whose spring is located a few kilometers 114 

downstream. 115 
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 116 

Figure 1: (a) Localization of the Terrieu experimental site in France, near the town of 117 

Montpellier. This karstic site is part of the regional Lez aquifer and hydraulically connected to 118 

the Lez spring. Maps of (b) the boreholes on the Terrieu experimental site and (c) the pumping 119 

rates applied in 8 boreholes during the investigation. Boreholes represented by red dots are 120 

pumping/measurement wells, and boreholes represented by grey dots are only measurement 121 

wells. The boreholes linked with a blue line are known to be well connected within the karst 122 

network, according to Dausse (2015). 123 

 124 

The Terrieu field extends over an area of approximately 2,500 m² and is equipped with 22 125 

boreholes distributed over this area, as presented in Figure 1b. Geological logs in these 126 

boreholes indicate that the field is composed of thin-layered marly limestones on its upper part 127 

and massive limestones below. The interface between these two units is a slope monocline 128 

fractured plane dipping at 20° Nord-West, and present at depths between 35 and 45 m above 129 

the field surface. The fractures have an ENE-WSW global direction and a less important SE-130 

NW secondary direction (Wang et al. 2016). 131 
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Characterization investigations (temperature logs, electrical conductivity logs, and packer tests) 132 

presented in Jazayeri Noushabadi (2009), Jazayeri Noushabadi (2011) and Dausse (2015) have 133 

highlighted the fact that the groundwater flows in this field were mostly constrained to the 134 

interface between the two geological units (Dausse et al. (accepted 2019)). Wells downhole 135 

videos have indeed shown that a karstic network had preferentially developed within this sloped 136 

bedding plane, with conduits’ aperture up to 25 cm width. Because of the low permeability of 137 

the rocks units on both sides of this fractured interface, the aquifer part on this field is supposed 138 

to be confined. The previous investigations also permitted to show that several boreholes of the 139 

site were well connected through this karstic network. This known connectivity is presented in 140 

Figure 1c with a blue line, linking the connected boreholes. 141 

The dataset employed for the hydraulic tomography approach presented in this article has been 142 

obtained from a cross-boreholes pumping investigation performed within the framework of 143 

Jazayeri Noushabadi’s PhD. Eight alternated constant-rate pumping tests have been performed 144 

on the field, in the boreholes and with the pumping rates indicated in red in Figure 1c. The 145 

groundwater level during the different pumping tests was always kept above 35 m below the 146 

surface, which means that the fractured and karstified horizon was continuously saturated. 147 

During the pumping phases, the drawdowns were measured continuously in all wells in the 148 

fields with CTD-diver probes. The pseudo steady-state (approaching the steady state) 149 

drawdown responses measured in each well and for each pumping (a total of 176 data) 150 

constitute the dataset used for the modeling of flow field, presented in the next section. 151 

 152 

3. Algorithm presentation 153 

3.1.  Forward problem and model parameterization 154 
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The hydraulic tomography approach presented in this article has been performed with the 155 

Discrete Network Deterministic Inversion (DNDI) algorithm, as presented in Fischer et al. 156 

(2018a). The DNDI method is based on a coupled discrete-continuum model Γ  in which the 157 

transmissivity is distributed over of a 1D discrete network NΓ  representing the 158 

karstic/fractures flows and a 2D continuum MΓ  representing the flows in the matrix rock. The 159 

forward problem f  consists in solving the flows continuity equations in a steady state by 160 

considering the Darcy’s formulation in both parts: 161 

M
M M

el.

N
T N T N

el.

.( T . h) in the matrix
S

.( T . h) in the network
S

          

     

Q

Q

Γ

Γ

∇ − ∇ =


∇ − ∇ =


,                               (1) 162 

with M NT ,T  the equivalent transmissivities of the matrix rock and of the fractures (m²/s), h the 163 

piezometric level (m), M N,Q Q  punctual extractions rates (m3/s) at pumping locations, and el.S  164 

a model elementary surface at the given pumping locations (m²). T∇  is the tangential gradient 165 

along the discrete elements of the model. 166 

The coupled model is partitioned in Xp  squared subspaces along the X-axis, and Yp  along 167 

the Y-axis (for a total of X Yp=p p×  subspaces). The position of the discrete network in the 168 

model and the distribution of the transmissivities among the background and the fractures are 169 

piloted by two vectors of parameters: DirP  and 
PropP  (Figure 2). DirP  is a p -vector (i.e. of 170 

dimension 1p× ) containing the local directions of the network for each subspace of the model, 171 

following an established encoding (see Encoding in Figure 2). The generation of the network 172 

follows a ‘node-to-node’ principle. The encoding defines, for each subspace, how the network 173 
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should propagate in it (one over six possible directions) if one of its node (a corner between 174 

subspaces) becomes activated during the generation process. The generation starts at a chosen 175 

node which is initially considered as ‘activated’. If a subspace connected to this ‘activated’ 176 

node is encoded with a local direction going through this node, the network propagates in the 177 

direction assigned to this area of the model. The node newly reached by the generated network 178 

becomes ‘activated’, allowing the generation of the network in new subspaces, while the 179 

subspace in which the generation has already occurred becomes inhibited to another generation. 180 

The ‘node-to-node’ generation process continues until there is no more newly ‘activated’ nodes. 181 

Some of the subspaces may not participate in the generation of the network in the end, if none 182 

of their nodes is activated during the process, or if their nodes activated during the generation 183 

are not involved in their encoded direction (leading to a ‘no fracture’ possibility). 
PropP  is a 2p184 

-vector containing the local values of transmissivity for the background (matrix) and fracture 185 

parts in each subspace. Thus, a model Γ  can be generated and locally modified in an easy way 186 

through the values contained in DirP  and 
PropP . A model defined with these two parameters is 187 

noted ( ),Dir PropP PΓ . 188 
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 189 

Figure 2: Schematic representation of the model parameterization in the DNDI method. The 190 

geometry of the discrete network is encoded in a DirP  vector and the transmissivity values 191 

associated to each part of the matrix and discrete network in the model are encoded in a 
PropP  192 

vector. 193 

 194 

Solving the forward problem presented in Eq. 1 for a parameterized coupled model, as presented 195 

in Figure 2, permits to simulate the map of piezometric levels. In this work, we simulate the 196 

piezometric levels with the software COMSOL Multiphysics, considering an adaptive 197 

triangular mesh (sizes between 0.06 m² and 1.5 m²) for the finite-element resolution of Eq.1. In 198 

our case, the piezometric levels will allow to assess the drawdowns, generated from the 199 

pumping tests, at the given measurement points: 200 

( )( ),Dir Propd Γ P Pf ε= + ,                                                 (2) 201 
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where d  is a n -vector of simulated drawdowns at different locations, f  is the forward 202 

problem described in Eq. 1, ( ),Dir PropP PΓ  is a parameterized coupled model and ε  is a 203 

Gaussian noise with a zero mean for adding noise to the data and prevent an overfitting of the 204 

inversion. 205 

3.2. Inverse problem 206 

The inverse problem involves the use of a forward problem in the optimization process in order 207 

to find a possible solution of the parameters DirP  and 
PropP . In a Bayesian framework, this 208 

consists in defining a model able to reproduce the set of observed drawdowns, while also 209 

respecting some prior properties information.  210 

Our deterministic inversion process is sequential and iterative. After each step, the parameters 211 

are modified in order to reduce the values of the objective functions (Tarantola and Valette 212 

1982): 213 

( ) ( )( )( ) ( )( )( )
( ) ( )

T
1

network obs d obs

T
1

,prior ,prior

1
, ,

2

1

2 Dir

Dir Dir Prop Dir Prop

Dir Dir P Dir Dir

P d Γ P P C d Γ P P

                         P P C P P

Ψ f f
−

−

= − −

+ − −
            (3) 214 

( ) ( )( )( ) ( )( )( )
( ) ( )

T
1

properties obs d obs

T
1

,prior ,prior

1
, ,

2

1

2 Prop

Prop Dir Prop Dir Prop

Prop Prop P Prop Prop

P d Γ P P C d Γ P P

                         P P C P P

Ψ f f
−

−

= − −

+ − −
          (4) 215 

with networkΨ  the structural objective function, 
p r o p e r t ie sΨ  the properties objective function, obsd  216 

a n -vector of observed drawdown to be reproduced by the model, 
, p r io rD irP  and 

, p r io rP r o pP  are 217 

vectors of a priori parameter values to constrain the optimization, dC  is a n n×  covariance 218 
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matrix on the drawdown data, and 
D irPC  and 

PropPC  are p p×  and 2 2p p×  covariance matrices 219 

on the parameters values. 220 

The deterministic inversion process is initialized with chosen values for the structural parameter 221 

DirP  and the property parameter 
PropP . The initial property values should be chosen wisely as, 222 

in a deterministic process, the initial model determines the local solution to which the process 223 

will converge. Then, the optimization part permits to modify the parameters DirP  and 
PropP  in 224 

order to minimize the objective functions. The parameters are not optimized simultaneously, 225 

we use a sequential inversion, modifying first DirP  by considering the initial 
PropP  and the 226 

objective function in Eq. 3, and then modifying 
PropP  by considering the previously inverted 227 

DirP  and the objective function in Eq. 4. Finally the inversion process finishes with a posterior 228 

sensitivity analysis on the resulting model. 229 

3.3.  Optimization and uncertainties estimation 230 

The parameters contained in DirP  and 
PropP  are modified iteratively in the sequential 231 

optimization part of the inverse process. This part modifies the parameters in order to minimize 232 

the objective functions in Eq. 3 and Eq. 4 by using sensitivity analyses. 233 

Firstly, the structural parameter DirP  is optimized, while we consider the initial 
PropP  as constant. 234 

For a given iteration k, the optimization of k

D ir
P  uses a sensitivity analysis contained in a 6 p×  235 

matrix k

n
J  generated, for an element ( )i, j  of the matrix, as follow: 236 

( ) ( ) ( )

( )( ) ( )( )

T

k k 1 k

obs d obs

T
1

,prior ,prior

j i j i

1
i, j , ,

2

1
j i j i

2 Dir

n Dir Prop Dir Prop
Dir Dir

Dir P Dir

P P
J d Γ P P C d Γ P P

                         P C P

f f
−

−

= =
         = − −                  

+ − −
  (5) 237 
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with 
( )

k

j i
,Dir Prop

DirP
Γ P P

=
 
 
 

 the model generated through a modification of the local direction i 238 

(among the 6 possible as encoded in Figure 2) in the subspace j of the model (among the p  239 

subspaces of the model). 240 

k

D ir
P  is updated from the minimum value found in k

n
J . The minimum value represents the best 241 

minimization of the objective function in Eq. 3 for this iteration, and its position ( )min mini , j  in 242 

the matrix represents the modification of local direction ( mini ) in the subspace minj  that has to 243 

be produced to generate k 1

D ir
P + . The iterative process continues until no more minimization can 244 

be found through the structural parameter for the objective function in Eq. 3. 245 

After the optimization part, the distribution of the structural posterior uncertainties can be 246 

calculated for each subspace of the model in a p -vector 
DirPCpost

: 247 

( ) ( ) ( )
1

6
1

i 1

1
j i, j j, j

6Dir DirP n PC J C
post post post

networkΨ

−
−

=

 = − + 
 
∑ ,                         (6) 248 

where ( )j
DirPCpost

 denotes the structural posterior uncertainty value associated to the subspace j, 249 

n
J p o s t  is the structural sensitivity matrix of the last optimization iteration and p o s t

n e tw o r k
Ψ  is the 250 

value of the structural objective function of the last optimization iteration. 251 

Secondly, the property parameter 
PropP  is optimized, while we consider the previously optimized 252 

DirP  as constant. For a given iteration k, the optimization of 
k

PropP  uses a linearization of the 253 

objective function in Eq. 4: 254 

( )( )
( ) ( )( )( ) ( )( )

1T
k 1 k k 1 k 1

d

T
k 1 k 1 k

d obs ,prior

. . .

. . , .

Prop

Prop

Prop Prop p p P

p Dir Prop P Prop Prop

P P J C J C

J C d Γ P P C P Pf

−
+ − −

− −

= + +

− + −
      (7) 255 
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where 
k

pJ  is the 2n p×  sensitivity matrix computed from a finite difference method: 256 

( )
( ) ( )

k i

k k kj j

i, jp
P P P
Prop Prop PropProp

J
P

f

= +∆

∂=
∂

 where 
P ropP∆  is a finite difference step (in this application 257 

410PropP −∆ = ). 258 

The iterative process continues until the value of the objective function in Eq. 3 converges to a 259 

minimum. 260 

After the optimization part, a matrix of posterior covariance can be calculated as follow: 261 

( )( ) 1
T

1 1

d. .
Prop PropP p p PC J C J C

post post post
−

− −= + ,                                  (8) 262 

with pJ post
 is the sensitivity matrix of the last optimization iteration. 263 

The standard deviation uncertainty associated to the property values of each subspace can be 264 

inferred from the square root values of the diagonal entry of the posterior covariance matrix. 265 

 266 

4. Application  267 

4.1. Hydraulic tomography result 268 

A 2D 60 × 40 m² model has represented a top-down view of the fractured interface plane from 269 

the Terrieu experimental field. The model was surrounded by a large equivalent porous media 270 

area (‘buffer zone’) in order to neglect the effect of the boundaries conditions on the drawdowns 271 

in the model. The DNDI algorithm was coded in Matlab and linked to COMSOL Multiphysics 272 

which solved the forward problem in steady state. 273 
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For the inversion, the parameters considered in 
PropP  were the transmissivity values in a log10 274 

scale ( ( )10 Tlog ). The values of transmissivities in the model were taken as initially uniform 275 

within the matrix (10-6 m²/s) and the fracture (10-1 m²/s). These initial values were also used as 276 

a priori values during the inversion in 
, p r io rP r o pP . The transmissivity of the buffer zone was fixed 277 

for the whole inversion at a value 10-2 m²/s. These values were chosen accordingly to the 278 

previous studies and results obtained on this field (Wang et al. 2016 ; Fischer et al. 2017b). No 279 

a priori information concerning the fracture network local direction were considered in 
, p r io rD irP280 

.  281 

The covariance matrices were constructed as diagonal matrices. Thus, we chose 282 

( )2

d 10C .Id n−= , and ( ).
PropP

C Id mσ=  with 
210σ −=  for the fracture log10-transmissivities 283 

and 1σ =  for the matrix log10-transmissivities. 284 

The inversion was initialized with a model containing one single linear fracture, oriented East-285 

West, with a starting node in coordinates 0;0 (see Figure 3). As the process is deterministic the 286 

initial model influences the inversion. In particular, starting from an initial model too ‘far’ from 287 

the solution might result in a non-convergence of the inversion. 288 

A first partitioning of the model in 6 × 4 subspaces (i.e. 10 × 10 m² square subspaces) was 289 

chosen for the DNDI method. This partitioning was used for a first inversion (Figure 3a to 3b), 290 

whose result was then repartitioned and used as initial model for a second inversion (Figure 3c 291 

to 3d). This ‘multi-scale’ inversion has been already employed in previous works (Yoon et al. 292 

1999, Grimstadt et al. 2003) and permits to prioritize the flows in the model. In this way, the 293 

first inversion aimed to find the global trends of the discrete network, while the second inversion 294 

permitted to detail local parts of the network. In a deterministic problem this multi-scale 295 

approach accelerates the inversion process and facilitates its convergence to a local minimum 296 
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after partitioning. It is especially interesting for deterministic inversion problems of highly 297 

heterogeneous fields, which could easily diverge when the resolution of the model is too high 298 

(although this high amount of inversion parameters is necessary to represent the heterogeneity). 299 

 300 

Figure 3: Schematic representation of the global inversion process, involving a first inversion 301 

starting with a 6 × 4 subspaces initial model (a), followed by a partitioning of the inversion 302 

resulting model into a 12 × 8 subspaces model (b to c). This partitioned model is then used as 303 

initial model for a second, more precise, inversion (c to d). 304 

 305 

The solution to which the deterministic inversion converged, after optimization of the network 306 

geometry and the transmissivity values, is presented in Figure 4b. The result was obtained after 307 

32 structural iterations and 3 properties iterations. Figure 4c presents the maps of structural 308 

uncertainties associated to the solution. The lower the value of structural uncertainty, the better 309 

the local direction is constrained by the data (modifying this local direction would result in a 310 
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bad reproduction of the observed responses). Figure 4d presents the maps of transmissivity 311 

standard deviations associated to the solution. 312 

 313 

Figure 4: Maps of (a) the boreholes of the Terrieu site (in red the pumping wells), (b) the 314 

distribution of discrete network and transmissivity values obtained as result of the inversion, 315 

(c) the structural uncertainties on the discrete network obtained by inversion, and (d) the 316 

standard deviations on the transmissivity values obtained by inversion. 317 

 318 

The distribution of transmissivities obtained after inversion presents a dense network of 319 

fractures in a heterogeneous matrix (Figure 4b). The network of fracture can appear as rather 320 

unrealistic, or simplistic, regarding the known morphology of fractures and karst conduits. 321 
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However, the DNDI method is purely based on flow data and no morphologic information was 322 

provided to the inversion process. Therefore the network presented in the model shall mimic 323 

only the interconnected fractures, influencing the groundwater flows induced by the pumping 324 

in the field. The part of the fractures and conduits that do not contribute to these flows, like 325 

dead end features for example, can logically not be retrieved with this inversion method.  326 

The model permits a good reproduction of the drawdowns (Root Mean Square Error (RMSE) 327 

of 0,18 m), except for the very small drawdowns (< 50 cm) (Figure 5). The uncertainties on the 328 

geometry of the network (Figure 4c) indicate that the reproduction of the drawdowns is 329 

conditioned to the local directions identified for a large part of the network in the central part 330 

of the model. This indicated that, for the modeling of flows in a fractured media, a good 331 

integration of the directions of the fractures is essential. The part of the network around P5 and 332 

P6 appears as less constrained structurally, but according to previous works (Dausse 2015) this 333 

area would be associated more likely to less important fractures and, thus, their orientations 334 

might have less impact on the flows. The western part and south-eastern parts of the network 335 

are not structurally constrained by the data, which means that the fractures orientations in these 336 

parts don’t play an important role in the reproduction of the observed drawdowns. However, 337 

the inversion process brought some modifications in these parts of the network (densification 338 

of the fractures network), which can be attributed to the simulation of more water income from 339 

these parts of the model, indicating the existence of fractures which cannot be clearly identified 340 

due to the absence of boreholes in these area. The uncertainty on the transmissivity values 341 

(standard deviations in Figure 4d) have not been significantly lowered during the inversion 342 

(except in some local parts in the center of the model). This is due to the fact that, in a fractured 343 

and karstic field, the flows are more influenced by the orientation and localization of the 344 

fractures/conduits, and the contrast of hydraulic properties between matrix and fractures rather 345 

than by variations of property values within a fracture or in the matrix. 346 



20 

 

 347 

Figure 5: Scatterplot comparing the observed drawdowns to the drawdowns modeled with the 348 

distributed model obtained as result of the inversion, and graphs showing the orientations of the 349 

fractures in the model (left) and observed on the field (right; from Wang et al. 2016). 350 

 351 

In Figure 5, we present graphs showing the orientations of fractures in the model and observed 352 

on field as described in Wang et al. (2016). For the orientation of the fractures in the model, we 353 

considered only the parts of the network which were structurally constrained by the model, as 354 

the orientations of the fractures in the other parts may not be representative. By comparing these 355 

two graphs it appears that the network obtained by inversion is rather coherent with the 356 

observed orientations of fracturing. The main orientations of fractures in the model are NE-SW 357 

and E-W, corresponding to the observed ENE-WSW orientations (which cannot be represented 358 

in the model through the DNDI method). Then, the NW-SE orientation is also represented in 359 

the model and represents a secondary direction of fracturing, while the N-S orientation concerns 360 

only a few part of the network, which is also coherent to the observations on the field. In the 361 

inversion process, these information of orientation could only be interpreted from the data, as 362 

the initial model integrated only one single fracture (oriented E-W) and no prior information 363 

concerning the fracture orientations were integrated in the inversion process. Therefore, this 364 

comparison between modeled and observed fracture network represents one form of validation 365 

of the model. 366 
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The fracture network in the model, however, cannot reproduce the known high connectivity 367 

existing between some boreholes of the field (see Figure 1c). Two remarks can be proposed to 368 

explain this limitation. First, the DNDI method limits the directions of fractures to four possible 369 

orientations, which constrains the liberty for the fracture network optimization. One possibility 370 

to reduce this limitation is a more important partitioning of the model (for example in our case 371 

by continuing our inversion process with a 24 × 16 partitioning). However, the more the model 372 

is partitioned, the more the inversion computation time will be important, as this will necessarily 373 

increase the amount of subspaces in the model and thus the amount of parameters to be inverted. 374 

Secondary, as suggested in Fischer et al. (2018b), steady-state responses are influenced by flows 375 

in all fractures and karstic structures of the field. This might ‘hide’ the information about the 376 

flows associated to the most important flowpath (usually associated to conduits) in the 377 

responses. 378 

 379 

4.2. Discussion 380 

During the inversion presented in this article, we performed a progressive multi-scale 381 

partitioning. We started the inversion with a 6 × 4 subspaces and used the result of this first 382 

inversion as initial model for a second inversion with a model repartitioned to 12 × 8 subspaces. 383 

Figure 6 compares the scatterplots of observed/modeled drawdowns obtained after each 384 

inversion. It shows that having a second partitioning to 12 × 8 subspaces was necessary to reach 385 

an acceptable reproduction of the observed drawdowns (R² of 0,86). This is mainly due to the 386 

gain of liberty in the optimization obtained from a finer partitioning of the model. However, 387 

starting from a coarser partitioning with 6 × 4 subspaces, instead of directly inverting a 12 × 8 388 

subspaces model, also presents the advantage of finding more quickly the main directions in 389 

the fracture network. This is especially interesting as we chose to initiate the inversion with a 390 
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very simple model. It would have necessitate much more iterations to optimize the fracture 391 

network if we would have directly started with a finer partitioning. 392 

 393 

Figure 6: Scatterplots comparing the observed drawdowns to the drawdowns modeled with the 394 

distributed models obtained as results of the inversions for a 6 × 4 partitioning and 12 × 8 395 

partitioning (presented in Figure 3). 396 

 397 

In order to discuss the advantages brought by coupled model for the modeling of fractures 398 

fields, we compare the result obtained with the DNDI method, with a discrete network 399 

integrated in the model, to results obtained with equivalent porous media models. Therefore we 400 

have also performed inversions with model without a discrete network. In these cases the 401 

inversions were performed in a same way then the DNDI method but without the discrete 402 

network part in the model ( DirP ) and without the structural inversion part of Eq.3 (thus, were 403 

limited to the minimization of the hydraulic properties of the continuum in Eq.4 through its 404 

linearization in Eq.7). Figure 7 presents the inversion results (transmissivity maps and 405 

scatterplots) obtained from the DNDI method, and two results obtained from inversions of 406 

models without discrete network: one at the same partitioning (12 × 8) than the DNDI result 407 

and one reaching an equivalent ability of reproduction of the observed data but with a finer 408 
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partitioning (48 × 32). It can be noted that the computation times necessary to obtain these 409 

different results are proportional to their complexity (several days for the DNDI solution in 410 

Figure 7a, about one day for the solution of Figure 7c and a few hours for the one of Figure 7b). 411 

By comparing the result obtained with the DNDI method (Figure 7a) to the equivalent porous 412 

medium result with a same partitioning (Figure 7b), it appears that the integration of a discrete 413 

network at this partitioning is crucial. In fact, without integrating fractures in the model, the 414 

inversion fails at finding a distribution able to reproduce the observed drawdowns, even though 415 

transmissivity values are set at high values in the model in order to simulate the 416 

fractures/conduits flows. These flows are locally constrained and, thus, a fine distribution of 417 

the properties is needed in the model in order to permit their simulation. A model without a 418 

discrete network but with a finer resolution (Figure 7c) is able to reproduce these flows and 419 

their induced drawdowns, but is would require a much finer partitioning (48 × 32) than the 420 

DNDI model (12 × 8). Furthermore, if some structures and fracture connectivity patterns may 421 

be identifiable in such model, the distribution of the transmissivities remains rather smooth 422 

(contrarily of the awaited contrasted distribution in fractured fields) and the values of 423 

transmissivities globally high, unlike in the DNDI result which allows for a good contrast 424 

between the fractures and the matrix. The coupled discrete-continuum model proposed with the 425 

DNDI method appears, thus, as really interesting to image the properties of a fractured medium, 426 

as it allows for a simulation of the complex flows even with a coarse partitioning of the model 427 

and it generated a contrasted distribution of transmissivities which also permits to characterize 428 

heterogeneity in the background matrix. 429 
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 430 

Figure 7: Maps of transmissivity distributions and associated reproduction of observed 431 

drawdowns (scatterplots) obtained after inversions with a model taking into account a discrete 432 

network (a), or with equivalent porous media models at two different property grids resolution 433 

(12 × 8 (b) and 48 × 32 subspaces (c)). 434 

 435 

An alternative to represent the contrast of hydraulic properties from a fractures/karstic field 436 

without integrating a discrete network in the model has been proposed in Fischer et al. (2017b) 437 

by applying a Cellular Automata-based Deterministic Inversion (CADI) method. This 438 

application was led on the same site and with the same dataset than the one presented in this 439 

article, which permits an interesting comparison between the two methods. The CADI method, 440 

unlike the DNDI, is based on a single continuum approach in which the fracture network is 441 

structured directly within the property field with cellular automata. It allows for more liberty in 442 

the structural optimization of the property distribution than the DNDI method. Therefore the 443 

network represented in the CADI result is more realistic regarding the knowledge of the field. 444 

It permits, for example, the reproduction of the known high connectivity between some 445 

boreholes, represented in Figure 1c. However, and as discussed before with Figure 7, the result 446 
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obtained with the DNDI method permits a better reproduction of the flows and the observed 447 

drawdowns, even with a coarser partitioning (R²=0,86 with 12 × 8 subspaces for the DNDI 448 

model and R²=0,78 with 24 × 16 subspaces for the CADI model in Fischer et al. (2017b)). 449 

 450 

5. Conclusion 451 

We present an application of a hydraulic tomography led on the fractured and karstic Terrieu 452 

field site in France in order to image its transmissivity field in a model. The dataset consists in 453 

drawdown responses to pumping tests reaching the pseudo steady state. The inversion was 454 

performed with the DNDI method, a method that allows for the optimization of the distribution 455 

of transmissivities in the model, but also for the optimization of the structure of a discrete 456 

network in the model. 457 

The model obtained after inversion of the dataset permits a good reproduction of the observed 458 

drawdowns and also reproduces the main directions of fracturing observed on the field, even 459 

though this information was not included in the inversion process. However, the model fails at 460 

reproducing the known high connectivity (conduit flows) in the field. This may be due to the 461 

limitations of the DNDI method concerning the possible orientations of fractures for the 462 

optimization, but also to the flow information contained in the steady state drawdown responses 463 

which might not permit to distinguish the major flowpaths from less important ones. 464 

The results obtained with the DNDI method on this application show two main advantages of 465 

using a coupled discrete-continuum model for the characterization of the flows in fractured 466 

media, compared to equivalent porous media models. The discrete network in the model allows 467 

for a better contrast in the transmissivity distribution and induces a better reproduction of the 468 

observed drawdowns, with a coarser partitioning of the model that would be needed with an 469 

equivalent porous medium model. The contrast existing in a coupled model also allows for 470 
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more details in the background of the model (matrix), whereas in equivalent porous media 471 

models the distinction between structures (fracture/conduit) and matrix is less clear. 472 

The DNDI method can be applied to other types of hydraulic data simply by adapting the 473 

forward problem and the data used in the inversion. For example it could be possible to lead a 474 

same type of modeling with drawdown curves in a time domain, or with oscillatory response in 475 

a frequency domain (as proposed in Fischer et al. 2018b). Nevertheless, the DNDI method still 476 

requires some improvement in order to provide more liberty in the structural optimization of 477 

the network. With more liberty, the results could provide even better localization and 478 

positioning of the fractures, without having to increase the partitioning of the model (which 479 

leads to more computation time). Furthermore, at the moment this method has developed only 480 

in 2D, and would require some additions to work in 3D. 481 
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