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A Comprehensive Introduction to Photometric
3D-reconstruction

Jean-Denis Durou, Maurizio Falcone, Yvain Quéau and Silvia Tozza

Abstract Photometric 3D-reconstruction techniques aim at inferring the geometry
of a scene from one or several images, by inverting a physical model describing the
image formation. This chapter presents an introductory overview of the main pho-
tometric 3D-reconstruction techniques which are shape-from-shading, photometric
stereo and shape-from-polarisation.

1 Introduction

Inferring the 3D-shape of a scene is necessary in many applications such as quality
control, augmented reality or medical diagnosis. Depending upon the requirements
of the application, 3D-estimation can be carried out using a variety of technological
solutions, from coordinate measuring machines to X-ray scanners. Over the last
decades, digital cameras have become a reliable alternative to such sensors, as
they represent a reasonable compromise between resolution and affordability. Given
one or several 2D-images of a scene captured by a digital camera, the process of
estimating its 3D-shape is called 3D-reconstruction. It is a classic inverse problem
in computer vision, which has been addressed in several ways.
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A 3D-model consists of a set of geometric (position, orientation, etc.) and photo-
metric (color, texture, etc.) information. Knowing both these pieces of information
allows to render synthetic images, by simulating the trajectory of the light rays from
the sources to the camera, after reflection on the surface of the scene. 3D-scanning is
the dual of rendering: one aims at a geometric and photometric characterisation of the
scene’s surface by reversing the trajectory of the light rays. In fact 3D-scanning in-
cludes both the subproblems of 3D-reconstruction (estimating the scene’s geometry)
and appearance estimation (estimating its photometric properties).

The various 3D-reconstruction techniques from digital cameras are grouped under
the generic terminology shape-from-X, X indicating that shape estimation can be
based on various clues (shadows, contours, etc.). The main shape-from-X techniques
are presented in Table 1. In this table, they are classified according to the clue they
are based on (photometric or geometric) and the number of images they require.

Geometric techniques Photometric techniques
Single image Structured light [39] Shape-from-shading (SfS) [48]

Shape-from-shadows [105]
Shape-from-contours [15]
Shape-from-texture [125]
Shape-from-template [10]

Multi-images Structure-from-motion [78] Photometric stereo (PS) [129]
Stereopsis [43] Shape-from-polarisation (SfP) [96]
Shape-from-silhouettes [44]
Shape-from-focus [81]

Table 1: Main shape-from-X techniques. Geometric techniques aim at identifying
and analysing features. This presentation rather focuses on photometric techniques,
which aim at inverting a physics-based image formation model.

Geometric shape-from-X techniques are built upon the identification of features
in the image(s). On the other hand, photometric shape-from-X techniques are based
on the analysis of the quantity of light received in each photosite of the camera’s
sensor. Photometric 3D-reconstruction techniques indeed rely on a physics-based
forward image formation model describing the interactions between light, matter
and the camera, and aim at inverting this model in order to infer the geometry of the
scene and, possibly, its photometric properties.

There exist out-of-the box solutions for geometric 3D-reconstruction, e.g. Mi-
crosoft Kinect (based on stereopsis or structured light, depending on the version),
or the CMPMVS [54] or AliceVision [2] projects (based on structure-from-motion
and stereopsis). On the contrary, there is a lack of such solutions for photomet-
ric techniques, which are usually rather viewed as “lab” reconstruction techniques
because they rely on several assumptions on the acquisition setup. Still, they bear
great promises in terms of level of geometric details which can be recovered, and of
applicability to a wide range of materials.
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The aim of this chapter is to present an overview of the three main photometric
shape-from-X techniques: shape-from-shading, photometric stereo and shape-from-
polarisation. We first review in Sect. 2 the shape-from-shading problem, which is
a computer vision technique consisting in inferring geometry from a single image.
Then,we discuss two techniqueswheremultiple images are analysed under controlled
incident or reflected lighting. In photometric stereo (Sect. 3), a series of images are
acquired under varying incident lighting, which permits to estimate both the shape
and the reflectance of the pictured surface. In shape-from-polarisation (Sect. 4), it
is the state of polarisation of the reflected light which is analysed, by considering a
series of images acquired with a controllable polarising filter attached to the camera.
Sect. 5 eventually concludes this study by presenting the subsequent chapters of this
volume.

2 Shape-from-shading

Inferring 3D-geometry from a single image of a shaded surface is a problem known
as shape-from-shading. This technique was first developed in the seventies at MIT,
under the impulse of Horn [48].

2.1 Non-differential SfS Models

Let us briefly outline the problem, attaching to the camera a 3D-coordinate system
$GHI, such that $GH coincides with the image plane and $I with the optical axis.
Assuming orthographic projection, the visible part of the scene is, up to a scale
factor, a graph I = D(x), where x = [G, H]> is an image point. The SfS problem can
be modeled by the image irradiance equation [49]:

� (x) = '(n(x)), (1)

where � (x) is the graylevel at point x (in fact, � (x) is the irradiance at point x,
but both quantities are proportional), and the radiance '(n(x)) gives the value of
the light re-emitted by the surface as a function of its orientation, i.e., of the unit
normal n(x) to the surface at the 3D-point [G, H, D(x)]> conjugate with x (cf. Fig. 1).
Assuming that, besides �, the radiance function ' is also known, then solving Eq. (1)
is a non-differential model of SfS, in which the unknown is the normal n(x).

Let us assume there is a unique light source at infinity, whose direction is charac-
terised by the unit vector8 = [l1, l2, l3]> ∈ R3, and whose intensity is denoted by
k(x). Let us also assume for simplicity that the surface is Lambertian, i.e., an ideal
diffuse reflecting surface for which the apparent brightness is independent from the
viewing angle. Then, ' is written in such a way that Eq. (1) becomes:

� (x) = A (x) k(x)8>n(x). (2)
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Fig. 1: The surface is represented as a graph I = D(x), where x = [G, H]> is an image
point in the reconstruction domain Ω. The normal at the surface point [G, H, D(x)]>
conjugate with x is denoted by n(x), and the incident light direction by 8.

In Eq. (2), A (x) is the reflectance (or albedo), and the scalar product k(x)8>n(x) is
called shading. This is another example of non-differential SfS model.

Equation (2) is fundamentally ill-posed, according to the trompe-l’œil princi-
ple, which is well illustrated by Adelson and Pentland’s “workshop metaphor” [1]
(cf. Fig. 2). If a painter, a light designer and a sculptor are asked to design an
artwork explaining a given image � (x), they may propose very different, but plau-
sible, solutions. The painter will assume a planar surface and a uniform lighting,
the changes in intensity being explained by changes in reflectance A (x). The light
designer may propose a sophisticated lighting configuration k(x) placed in front
of a planar surface with uniform reflectance. Eventually, the sculptor will assume
lighting and reflectance are uniform, and explain the changes in intensity solely by
the shading, which results from variations in the local orientation n(x) of the surface.

This last explanation, which comes down to inverting Eq. (2) in order to infer
a 3D-shape, assuming everything is known but n(x), is precisely the shape-from-
shading problem. So it is assumed that the reflectance is known, which is usually
written A (x) ≡ 1, and that the lighting is uniform, i.e., k(x) ≡ 1.
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(a) (b) (c) (d)

Fig. 2: Adelson and Pentland’s “workshop metaphor” [1]. To explain an image (a) in
terms of reflectance, lighting and shape, (b) a painter, (c) a light designer and (d) a
sculptor will design three different, but plausible, solutions. Inferring the shape (d)
from a single image is the shape-from-shading problem.

2.2 Differential SfS Models

Let us now turn to differential SfSmodels. Under orthographic projection, the normal
is easily expressed as:

n(x) = 1√
1 + ?(x)2 + @(x)2

[−?(x),−@(x), 1]>, (3)

where:
? :=

mD

mG
and @ :=

mD

mH
, (4)

so that ∇D(x) = [?(x), @(x)]>. It is easily deduced from Eqs. (2) and (3), assuming
A (x) ≡ 1 and k(x) ≡ 1, that the following equation holds true for a general parallel
lighting whose direction is characterised by 8 = [l1, l2, l3]>:

� (x)
√

1 + |∇D(x) |2 + [l1, l2] ∇D(x) − l3 = 0. (5)

This is a first-order nonlinear partial differential equation (PDE) of Hamilton-Jacobi
type, which constitutes an example of differential SfS model, in which the unknown
is now the function D, called the height map. This equation has to be solved on a
compact domain Ω ⊂ R2, called the reconstruction domain.

The PDE which appears in most of the papers on SfS corresponds to a frontal
lighting, i.e., 8 = [0, 0, 1]>. This assumption leads to the eikonal equation, which
is a particular case arising from the differential SfS model (5):

|∇D(x) | = 5 (x) :=

√
1

� (x)2
− 1, (6)

where the graylevel function �, which typically takes integer values between 0
and 255, is implicitly resampled to take real values in the range (0, 1).
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Note that even in the most simple case (the eikonal equation) we get a nonlinear
PDE of the first order, and the solutions are a priori non-differentiable and non-
unique, even if we complement Eq. (6) with a Dirichlet boundary condition, i.e.,
D = 6 on the boundary mΩ ofΩ. Moreover, the right-hand side of the eikonal equation
is not always defined because � (x) can vanish at some points. A simple example
is the hemisphere I =

√
1 − G2 − H2 under a parallel frontal lighting. In this case,

� (x) = 0 at the equator. However, in that simple situation the boundary condition
D = 0 can help to solve the problem.

Under oblique light direction the same example becomes more difficult because
there will be a black shadow region ΩB ⊂ Ω where � (x) ≡ 0, and in that region the
model has no information to reconstruct the surface. The boundary ofΩB , which is not
known a priori, is a curve where it would be difficult to impose boundary conditions
in the numerical approximation. In general, the curve separating the region ΩB will
depend on the shape of the surface and on the light source direction l. Note that in
case of black shadows, the model is clearly unable to produce a reasonable surface
approximation, because the information is missing. In this situation, one can follow
a global approach avoiding to impose boundary conditions on mΩB . This leads to the
concept of maximal solution, where we solve the PDE on the whole domain with
the standard Dirichlet boundary condition on mΩ (not on mΩB),and recover a linear
reconstruction on ΩB (we refer to [34, 35, 17] for more details).

2.3 Ill-posedness of the SfS Models

The “workshop metaphor” illustrated in Fig. 2 is representative of the ill-posedness
of SfS, because a posteriori estimating 3D-geometry from a single image is possible
only if reflectance and lighting are known a priori. The reliability of these priors is
of fundamental importance to guarantee that the solution of SfS is meaningful.

This is illustrated in Fig. 3, which shows how the assumptions leading to Eq. (6),
i.e., a uniform reflectance (A (x) ≡ 1) and a parallel uniform lighting (k(x) ≡ 1 and
8 = [0, 0, 1]>), which is just a rough approximation in the case of Fig. 3-a, yield
the erroneous interpretation of the scene 3D-shape shown in Fig. 3-b. However, this
solution is an exact solution of Eq. (6), as shown by frontally relighting this uniformly
white 3D-shape (cf. Fig. 3-c).

Even when reflectance and lighting are known, i.e., when A (x) ≡ 1 and k(x) ≡ 1,
the non-differential model (2) of SfS remains ill-posed:

� (x) = 8>n(x). (7)

Except for some sparse singular points, where n(x) points in the same direction
as8, there exists an infinity of surface normals explaining the graylevel in one pixel.
It comes down from Eq. (7) that these normals n(x) form a revolution cone around
the lighting direction 8. It is thus very difficult to locally solve SfS.
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(a) (b) (c)

Fig. 3: Illustration of the importance of reflectance and lighting priors on the solution
of SfS [25]. (a) A well-known graylevel image � (x). (b) 3D-shape estimated by
solving the SfS model (6), by (wrongly) assuming uniform reflectance A (x) ≡ 1, and
uniform frontal lighting, i.e., k(x) ≡ 1 and 8 = [0, 0, 1]>. The 3D-reconstruction
largely departs from the true geometry. Yet, by taking from above a picture of the
uniformly white 3D-shape (b), using the camera’s flash as single light source, one
gets image (c), which resembles (a). 3D-shape (b) is thus a plausible explanation of
(a): the bias comes from the inappropriate reflectance and lighting priors.

A simple example in dimension 1 is given by the surface I = D1 (G) = 1 − G2

in the interval (−1, 1) (cf. Fig. 4-a), under vertical lighting 8 = [0, 1]>, which
satisfies an equation of the form (6) and the homogeneous boundary condition
D1 (1) = D1 (−1) = 0. However, the function D2 (G) = −D1 (G) in the same interval still
satisfies this equation, since |∇D(x) | is the same, and the same boundary condition.
This example is an illustration of the famous concave/convex ambiguity of SfS.

Note that D1 and D2 are two differentiable solutions to the same problem. If we
decide to accept also solutions which are differentiable only almost everywhere (a
very natural choice in view of real applications), we suddenly have an infinite number
of solutions which can be obtained just considering all the possible reflections of
one of those solutions, e.g. D1, with respect to a horizontal axis located at the height
I = ℎ, where ℎ ∈ (0, 1). This is illustrated in Fig. 4-b, where three such solutions are
exhibited. If one fixes the height at the singular point, then only one of these solutions
can be accepted (we refer to [64] for this result), but such an additional knowledge
is clearly not very realistic. A general theory for weak solutions of Hamilton-Jacobi
equations (that includes the eikonal equation) has been developed in the last twenty
years starting from the seminal paper by Crandall and Lions [24]. We refer the
interested reader to the book [8] and the references therein.

Practical ways to reduce this ambiguity include resorting to more realistic models
such as perspective camera [117] or near-lighting [89], however it has been shown
that this remains insufficient to ensurewell-posedness [16]. Recently, the introduction
of an attenuation factor in the brightness equations relative to various perspective
SfS models allowed to make the corresponding differential problems well-posed.
In [18], a unified approach based on the theory of viscosity solutions has been pro-
posed, showing that the brightness equations coming from different non-Lambertian
reflectance models with the attenuation term admit a unique viscosity solution.
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(a) (b)

Fig. 4: (a) Example of the 1D-surface I = D1 (G) = 1 − G2. (b) Under vertical
lighting, three other solutions (amongst an infinity), which are differentiable almost
everywhere, satisfy the same eikonal equation as D1. Pictures taken from [30].

2.4 Numerical Approximation

An important step towards the numerical solving of SfS was achieved when inverse
problems in computer vision caught the attention of mathematicians [64]. Efficient
numerical approaches were suggested to solve the eikonal equation (6), which is the
SfS fundamental differential model relating the surface slope to the image graylevel.
By construction, this equation can only be solved globally, therefore SfS ambiguities
are reduced, in comparison with local approaches. They are not eliminated yet,
because the concave/convex ambiguity remains.

An overview of the numerical methods for solving SfS can be found in [30, 134].
PDE-based methods (e.g., [34]) find a viscosity solution to the eikonal equation. Just
to give an example let us consider the basic eikonal equation (6). A typical technique
to solve it is to use a finite difference scheme. One example is the following iterative
Lax-Friedrichs scheme which, in its simplest form, can be written as:

D
(:+1)
8, 9

=
D
(:)
8−1, 9 + D

(:)
8+1, 9 + D

(:)
8, 9−1 + D

(:)
8, 9+1

4
(8)

−1
2

©«
√√√√√©«

D
(:)
8+1, 9 − D

(:)
8−1, 9

2
ª®¬

2

+ ©«
D
(:)
8, 9+1 − D

(:)
8, 9−1

2
ª®¬

2

− 58, 9
ª®®®¬ ,

where 58, 9 is the right-hand side of the eikonal equation (6) at the pixel (8, 9), D8, 9
is the height at this pixel, and the index : is the number of the iteration of the
iterative scheme. The values {D0

8, 9
} represent an initial guess for the height, typically

a constant value. Let us briefly explain the meaning of the iterative scheme: the
first term is an average of four values around the pixel (8, 9), and inside the square
root there are the centered finite difference approximations of the partial derivatives
mD/mG and mD/mH. In practice, several approximation schemes are available, e.g.
finite difference as illustrated in [103, 86], semi-Lagrangian schemes [32, 33]. Most
of the efficient schemes use up-wind approximations of the derivatives and additional
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terms to control the diffusion in the scheme. Let us also mention that a fast-marching
version for these methods allows to drastically reduce the CPU time for this type of
algorithms [103, 26] and has been extensively applied in the area of image processing.
Another delicate point is that the graylevel function � is typically a discontinuous
function, so the approximation scheme should take into account this lack of regularity
(a result in this direction is in [36]).

On the other hand, many optimisation-based methods have been proposed to
compute the normal field n. Under orthographic projection, (3) shows that n just
depends on ? and @ as defined in (4). Therefore, there exists a function R such
that R(?(x), @(x)) := '(n(x)). From this and Eq. (1), the following least-squares
variational model of SfS is derived (robust estimators have also been used [130]):

min
?,@:Ω→R

∫
Ω

���� (x) − R(?(x), @(x))���2 dx. (9)

As already said in the previous subsection, this problem is clearly ill-posed. Nev-
ertheless, if D is of class �2, ? and @ are two non-independent functions since,
according to Schwarz’s theorem, m?/mH = m@/mG. For numerical reasons [49], this
hard constraint is usually replaced by a quadratic regularisation term weighted by a
hyper-parameter _ > 0, which gives the following better-posed problem than (9):

min
?,@:Ω→R

∫
Ω

���� (x) − R(?(x), @(x))���2 dx + _
∫
Ω

���m?
mH
(x) − m@

mG
(x)

���2 dx. (10)

Another regularisation term has been extensively used, since it is easier to discre-
tise [62]:

min
?,@:Ω→R

∫
Ω

���� (x) − R(?(x), @(x))���2 dx + _
∫
Ω

[
|∇?(x) |2 + |∇@(x) |2

]
dx. (11)

Typical optimisation methods are descent methods. For instance, the Euler-
Lagrange equations derived from (11) are written (dependencies on x are omitted):[
� − R(?, @)

] mR
m?
(?, @) + _Δ ? = 0 and

[
� − R(?, @)

] mR
m@
(?, @) + _Δ@ = 0.

(12)
Using the classical discrete approximation of the Laplacian Δ ? at pixel (8, 9):

Δ ?8, 9 ≈
?8+1, 9 + ?8−1, 9 + ?8, 9+1 + ?8, 9−1

4
− ?8, 9 , (13)

the following iterative scheme for solving (11) comes down from (12) and (13) [53]:
?
(:+1)
8, 9

= ?
(:)
8, 9
+ 1
_

[
�8, 9 − R

(
?
(:)
8, 9
, @
(:)
8, 9

) ] mR
m?

(
?
(:)
8, 9
, @
(:)
8, 9

)
,

@
(:+1)
8, 9

= @
(:)
8, 9
+ 1
_

[
�8, 9 − R

(
?
(:)
8, 9
, @
(:)
8, 9

) ] mR
m@

(
?
(:)
8, 9
, @
(:)
8, 9

)
,

(14)
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where ? denotes the local average of ?, ? (0) and @ (0) are given initial conditions,
and the index : is the number of the iteration.

To avoid divergence for such schemes [31], it has been proposed to directly
minimise the functional in (11), using conjugate gradient descent [115, 62] or line
search [29], but the approximate solution is typically a local minimum. A way to
overcome this limitation is to use a global optimisation, e.g. simulated annealing [27].
Finally, to decrease the CPU time, it has been dealt with multi-resolution [115].

Even if some optimisation-based methods aim to directly solve the SfS problem
in the height D, as for instance [23] where a parametric model with few parameters
is used, most of them first compute a normal field n. Once the components ? and @
of the normal (cf. Eq. (4)) have been computed, it remains to integrate them into a
height map. Several methods can be used for this task, depending on the application’s
requirements in terms of speed, robustness to noise in the estimated normal field,
and preservation of discontinuities [91]. For instance, a standard solution for the
recovery of a smooth height map consists in considering the quadratic variational
problem:

min
D:Ω→R

∫
Ω

����∇D(x) − [
?(x)
@(x)

] ����2 dx, (15)

which can be solved, e.g., using Fourier analysis [37], discrete sine or cosine trans-
form [109] or iterative methods [7], depending upon the shape ofΩ and the boundary
conditions.

2.5 Applications of SfS

The natural application of SfS is the 3D-reconstruction of a scene froma single image.
However, in real-world settings the assumptions formulated above on reflectance and
lighting are too restrictive. Therefore, efforts have recently been devoted to move
beyond the assumptions of Lambertian reflectance [56, 118, 119] and controlled
illumination [55, 94]. In such works, reflectance and lighting are allowed to take
a more general form, yet they still must be calibrated. To remove this limitation,
additional priors must be introduced, as it is common in the field of intrinsic image
decomposition where the reflectance is often assumed to be piecewise smooth [9].
Alternatively, deep learning techniques can be employed to simultaneously estimate
shape, reflectance and lighting, provided that the object to reconstruct resembles
those in the learning database [102]. In the absence of such priors, SfS can be
combined with another 3D-reconstruction technique: the latter provides a coarse
prior on geometry, whose details are then refined using SfS. In this view, SfS has
been combined with shape-from-texture [123], structure-from-motion [38], multi-
view stereopsis [61, 68, 72], or depth sensors [41, 85].

An alternative strategy to resolve the ambiguities of SfS consists in using addi-
tional images taken under varying lighting. This approach, which is called photo-
metric stereo, will be discussed in the next section.
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3 Photometric Stereo

The photometric stereo technique, first developed byWoodham [129], is an extension
of SfS which considers several images acquired under the same viewing angle, but
various lighting conditions.

3.1 Well-posedness of PS

Onemay reasonably hope that shape inference by PSwill be better-posed, in compari-
son with the single-image case of SfS. Indeed, 3D-shape and Lambertian reflectance
can be exactly and uniquely determined from a set of three images taken under
non-coplanar, uniform, calibrated directional lighting. This is easily shown by con-
sidering a system of < ≥ 3 image irradiance equations such as (2), obtained under
illumination with uniform intensity k(x) ≡ 1, but varying direction characterised by
vectors 88 , 8 ∈ {1, . . . , <}:

�8 (x) = A (x)8>8 n(x), 8 ∈ {1, . . . , <}. (16)

This system of equations comes down to a linear system of < equations in m(x) :=
A (x) n(x). Provided that < = 3 and the three illumination vectors 88 , 8 ∈ {1, 2, 3},
are non-coplanar, there exists a unique solutionm(x) of this system, from which the
albedo can be extracted as A (x) = |m(x) | and the surface normal as n(x) = m(x)

|m(x) | .
When < > 3, an approximate solution of the system can be estimated as long as the
< illumination vectors remain non-coplanar. An example of result obtained with this
approach on a banknote is presented in Fig. 5. It illustrates well the unique ability of
PS both to estimate fine-scale geometric details, and to estimate the reflectance.

PS can however be ill-posed in two particular scenarios. Firstly, when lighting
is unknown (uncalibrated PS), the local estimation of surface normals is under-
constrained. As in SfS, the problem must be reformulated globally, and the integra-
bility constraint must be imposed [133]. But even then, a low-frequency ambiguity
known as the generalised bas-relief ambiguity remains [12]: it is necessary to intro-
duce additional priors, see [106] for an overview of existing uncalibrated photometric
stereo approaches, and [19] for a modern solution based on deep learning. Another
situation where PS is ill-posed is when only two images are considered [93]: in each
pixel there exist two possible normals explaining the pair of graylevels, even with
known reflectance and lighting. Again, integrability must be imposed in order to
limit the ambiguities [84].
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RGB camera
+ varying 
lighting

Albedo (reflectance)

Normals to the surface Shape

Fig. 5: Photometric stereo-based 3D-reconstruction of a 10 euro banknote. From
a set of images captured under varying lighting (left), PS infers both the surface
geometry (top-right, we show the RGB-coded estimated normals and the 3D-shape
obtained by integration of the normals), as well as its reflectance (bottom-right, we
show the estimated albedo).

3.2 Numerical Solving of PS

In the previous subsection we described a simple strategy to estimate the surface
normals by photometric stereo. The knowledge of surface normals is however not
sufficient to fully characterise the geometry of the pictured scene. To obtain a com-
plete 3D-representation, the normals must then be integrated into a height map. We
have already discussed this integration problem in Sect. 2.4, and we refer the reader
to [91] for a comprehensive overview.

With this pipeline, one first estimates the surface normals, and then integrates
them into a height map. This strategy is however suboptimal, since any error in
the normal estimation step will propagate during the subsequent normal integration
one. An alternative strategy is to reformulate (16) as a system of partial differential
equations in the unknown height map D, and directly estimate D. For instance, one
may consider the ratio of two equations such as (16), for 8 ≠ 9 , while replacing the
surface normal n(x) by its definition (3). This yields the following PDE:[

�8 (x)8 9 − � 9 (x)88

]> [
−∇D(x)

1

]
= 0, ∀x ∈ Ω, (17)

which is linear in ∇D, and is independent from the reflectance A . It can be solved, e.g.,
using a finite difference upwind scheme or semi-Lagrangian methods [69]. When
more than a single pair of images is considered, the joint approximate solving of the
system of equations such as (17), obtained for every pair {8, 9}, can be formulated as
a variational problem:
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min
D:Ω→R

∑∑
8< 9

∫
Ω

����� [�8 (x)8 9 − � 9 (x)88

]> [
−∇D(x)

1

] �����2 dx. (18)

Such an approach, initially proposed in [92, 110], also easily extends to more elab-
orate camera or reflectance models [70].

Nevertheless, this ratio-based approach does not provide the reflectance, contrarily
to the simple pipeline presented in the previous subsection. Moreover, solving the
linearised partial differential equations (17) is not equivalent to solving the original
equations (16): for instance, Gaussian noise on the images turns into Cauchy noise
on the ratios, making least-squares inference suboptimal. Thus, the joint recovery of
height and reflectance by variational inversion of the image irradiance equations (16)
has also been explored. For example, plugging the definition (3) of n(x) into (16),
the joint estimation of height and reflectance in a least-squares sense leads to

min
D,A :Ω→R

<∑
8=1

∫
Ω

������8 (x) − A (x)8>8
[
−∇D(x)/

√
1 + |∇D(x) |2

1/
√

1 + |∇D(x) |2

] �����2 dx, (19)

which can be solved, e.g., using alternating reweighted least-squares [95].

3.3 PS with Non-trivial Reflectance or Lighting

The surface has been assumed Lambertian in our models, and lighting has been
assumed directional but those assumptions are difficult to satisfy in real-world sce-
narios. An important feature of PS, in comparison with SfS, is that the redundancy
provided by themultiple images enables relaxing such assumptions. Indeed, shadows
or off-Lambertian effects such as specularities can be coped with by solving PS in a
robust manner, for instance by resorting to sparse regression which treats such effects
as outliers to the Lambertian model [52, 95]. Other ways to deal with off-Lambertian
effects include inverting a reflectance model which is more sophisticated than Lam-
bert’s [70, 107], or pre-processing the images according to a low-rank prior [131].
Let us also mention data-driven methods, which either compare the intensity varia-
tions with those observed on a reference object with known shape [46], or resort to
a deep neural network trained or large dataset [98].

Another direction of research on PS is the study of more realistic lighting models,
in order to simplify the acquisition of data.Methods have for instance been developed
to handle images acquired under nearby point light illumination [71], which finds a
natural application in LED-based photometric stereo [90]. This permits to build a
simple acquisition setup based on cheap hardware. Extended light sources have also
been considered, which permits for instance to use the screen of a LCD display as
light source [21]. Eventually, other approaches have considered the case of natural
illumination in order to bring PS outdoor [11], and numerical solving methods based
on variational principles [42] or deep learning [47] have recently been suggested.
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3.4 Combining PS and other 3D-reconstruction Methods

A criticism which is frequently formulated against PS is that it excels with the
recovery of high-frequency geometric details, yet it is prone to a low-frequency bias
which may distord the global geometry [82]. In fact, such a bias usually comes from
a contradiction between the assumptions behind the image formation model and the
actual experiments, e.g. assuming a directional light source instead of a nearby point
light one. Therefore, the methods discussed in the previous subsection provide a
remedy to such a bias.

On the other hand, it is sometimes simpler from a practical perspective to stick to
the simplest assumptions, and rather remove the low-frequency bias by coupling PS
with another 3D-reconstruction method such as shape-from-silhouette [122], multi-
view stereopsis [63] or depth sensing [87]. In such works, PS provides the fine-scale
geometric details, which are combined with the gross geometry provided by the
alternative technique.

Another interesting application of PS is 3D-reconstruction from a single shot,
which can be achieved by using a multichannel camera coupled with monochromatic
colored light sources which are simultaneously turned on: each channel can then be
viewed as a graylevel image obtained under a single light source. This idea, which
dates back from the nineties [60], has more recently been applied to the real-time
3D-reconstruction of deformable surfaces by combining PS with optical flow [44]
or scene flow [40].

3.5 Applications of PS

The ability of PS to estimate both the fine-scale geometric details and the reflectance
of the surface has proven useful in many applications. Here, we briefly hightlight a
few of them. For instance, PS can be used to infer 3D-models for augmented reality,
which can be very helpful for computer-aided surgery using laparoscopy [22]. An-
other medical application of PS is the characterisation of the melanoma’s shape and
color, as proposed in [114]. Besides medical applications, PS has been extensively
used in the field of quality control, e.g. for the inspection of defects on metallic sur-
faces [113]. Also, let us mention Reflectance Transform Imaging (RTI) techniques,
which are based on PS principles, and allow one to interactively relight the pictured
surfaces. Such an approach finds a natural application in the field of cultural heritage,
see the recent survey [88] for an overview. Finally, Chapter 7 in the present volume
addresses a novel application, which is the estimation of facial aging.
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4 Shape-from-polarisation

Another problem belonging to the shape-from-X class is the shape-from-polarisation
one. The goal is the same, i.e., recover the 3D-shape of the object, but starting from
a different input data, given by polarisation information.

(a) Acquired input (b) Phase angle

(c) Unpolarised intensity (d) Degree of polarisation

Fig. 6: (a) Polarimetric capture, and (b-c-d) decomposition into polarisation images,
from captured data of a piece of fruit. Pictures taken and adapted from [112].

4.1 Description and Generation of a Polarisation Image

When unpolarised light is reflected by a surface, it becomes partially polarised [128].
This applies to both specular [96] and diffuse [4] reflections caused by subsurface
scattering. Using a linear polarising filter placed in front of a camera, a sequence
of < ≥ 3 images (cf. Fig. 6-a) is captured by rotating the filter under varying
polariser angle o 9 , 9 ∈ {1, . . . , <}. The measured brightness at each pixel x varies
in accordance to the transmitted radiance sinusoid corresponding to

8o 9
(x) = �max (x) + �min (x)

2
+ �max (x) − �min (x)

2
cos[2o 9 − 2q(x)], (20)

where q(x) is the phase angle, �max the maximum measured pixel brightness, and
�min the minimum one.
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A polarisation image (cf. Figs. 6-b-c-d), i.e., the full set of polarisation data
for a given object or scene, can be obtained by decomposing the sinusoid at every
pixel into three separate components [127]: the phase angle, q(x), the unpolarised
intensity, 8un (x), and the degree of polarisation, d(x), where

8un (x) =
�max (x) + �min (x)

2
and d(x) = �max (x) − �min (x)

�max (x) + �min (x)
. (21)

The phase angle q(x) is directly related to the angle of the linearly polarised compo-
nent of the reflected light and can be defined as the angle of maximum or minimum
transmission. Since polarisers cannot distinguish between two angles separated by c
radians, the range of initially acquired phasemeasurements is [0, c). Therefore, there
is a c ambiguity, since two maxima in pixel brightness are found as the polariser is
rotated through 2c. The unpolarised image 8un (x) is simply the image that would be
obtained using a standard camera. The degree of polarisation d(x) can be defined
in terms of refractive index and zenith angle of the surface normal [128], but the
explicit formula is different depending on the polarisation model used, as we will
see in Sect. 4.2 below.

These quantities can be estimated from the captured image sequence using dif-
ferent methods, e.g. the Levenberg-Marquardt nonlinear curve fitting algorithm [4],
linear methods [50] or following the procedure suggested by Wolff in [127] for the
specific case of < = 3, o ∈ {0, c

4 ,
c
2 }.

4.2 Diffuse and Specular Polarisation Models

A polarisation image provides information on the azimuth and zenith angles of the
normal, and, hence, a constraint on the surface normal direction at each pixel. The
exact nature of the constraint depends on the polarisation model used.

Using a diffuse polarisation model, the phase angle q(x) is the polariser angle
o 9 at which �max is observed. It determines the azimuth angle U(x) ∈ [0, 2c[ of
the surface normal up to a c ambiguity: U(x) = q(x) or q(x) + c. The degree of
polarisation d3 (x), on the other hand, is related to the zenith angle \ (x) ∈ [0, c

2 ] of
the normal in viewer-centered coordinates (i.e., the angle between the normal and
viewer) as follows:

d3 (x) =
sin2 \ (x)

(
[ − 1

[

)2

4 cos \ (x)
√
[2 − sin2 \ (x) − sin2 \ (x)

(
[ + 1

[

)2 + 2 [2 + 2
, (22)

where [ is the refractive index (in general, [ is unknown, but for most dielectrics
typical values range between 1.4 and 1.6, hence an accurate estimate of geometry
can be obtained without a precise estimate of [ [4]).
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Instead, using a specular polarisation model, the azimuth angle of the surface
normal is perpendicular to the phase of the specular polarisation [97] leading to a
c
2 shift, so that the azimuth angle corresponds to polariser angle o 9 at which �min is
observed: U(x) = q(x) ± c

2 . Regarding the degree of polarisation dB (x), it relates to
the zenith angle according to

dB (x) =
2 sin2 \ (x) cos \ (x)

√
[2 − sin2 \ (x)

[2 − sin2 \ (x) − [2 sin2 \ (x) + 2 sin4 \ (x)
, (23)

and in that case the dependency of the degree of polarisation dB on [ is weaker than
in the diffuse case.

4.3 3D-shape Recovery using Polarisation Information

The phase angle q(x) (cf. Fig. 6-b) and the degree of polarisation d(x) (cf. Fig. 6-d) of
reflected light conveys information about the surface orientation through information
on zenith and azimuth angles and, therefore, provides a cue for 3D-shape recovery.

There are nice and attractive properties to the SfP cue: it requires only a single
viewpoint and a single illumination condition, it is invariant to illumination direction
and surface albedo, and it provides information about both the zenith and azimuth
angle of the surface normal. Unfortunately, the polarisation information alone re-
stricts the surface normal at each pixel to two possible directions, providing in such
a way only ambiguous estimates of the surface orientation.

SfP methods can be categorised into three groups:

1. Methods which use only polarisation information (cf. Sect. 4.3.1). They are
passive since, typically, a polarisation image is obtained by capturing a sequence
of images in which a linear polarising filter is rotated in front of the camera
(possibly with unknown rotation angles [100]). These methods can be considered
“single shot” methods by using custom CCD cameras configured for polarisation
imaging1 or by mounting the polarisation filter on a CMOS sensor in order to
acquire polarisation information in real-time2).

2. Methods which combine polarisation with shading cues (cf. Sect. 4.3.2).
3. Methods which combine a polarisation image with an additional cue (cf. Sect.

4.3.3) such as stereo, multispectral measurements, an RGBD sensor or active
polarised illumination.

SfP methods can also be classified according to the polarisation model (dielectric
versus metal, diffuse [77, 4, 50], specular [79] or hybrid models [116]) and whether
they compute shape in the surface normal or surface height domain.

1 http://www.fluxdata.com/products/fd-1665p-imaging-polarimeter

2 https://www.ricoh.com/technology/tech/051_polarization

http://www.fluxdata.com/products/fd-1665p-imaging-polarimeter
https://www.ricoh.com/technology/tech/051_polarization
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4.3.1 Resolution using only Polarisation Information

The earliest work focused on capture, decomposition and visualisation of polarisation
images was by Wolff in the nineties [127], even if older works on shape recovery
by polarisation information exist since 1962 [108]. Both Atkinson and Hancock [4]
and Miyazaki et al. [77] disambiguated the polarisation normals via propagation
from the boundary under an assumption of global convexity. Huynh et al. [50] also
disambiguated polarisation normals with a global convexity assumption, estimating
the refractive index in addition. These works used a diffuse polarisation model
whereas Morel et al. [79] used a specular polarisation model for metals. Recently,
Taamazyan et al. [116] introduced a mixed diffuse/specular polarisation model. All
of these methods estimate surface normals which must then be integrated into a
height map. Moreover, since they rely entirely on the weak shape cue provided by
polarisation and do not enforce integrability, the results are extremely sensitive to
noise.

4.3.2 Polarisation and Shading Cues

A polarisation image also contains an unpolarised intensity channel (cf. Fig. 6-c),
which provides a shading cue. Mahmoud et al. [67] used a shape-from-shading cue
assuming known light source direction, known albedo and Lambertian reflectance, in
order to disambiguate the polarisation normals. Atkinson and Hancock [6] used cali-
brated, three-source Lambertian photometric stereo for disambiguation but avoiding
an assumption of known albedo. Smith et al. [111] showed how to express polarisa-
tion and shading constraints directly in terms of surface height, leading to a robust
and efficient linear least-squares solution. They also showed how to estimate the illu-
mination, up to a binary ambiguity, making the method uncalibrated. However, they
require known or uniform albedo. This requirement was afterwards relaxed in [112],
where spatially-varying albedo was estimated from a single polarisation image, as-
suming known illumination and strong smoothness assumptions. In [120] variants of
the aforementionedmethod have been exploited by introducing additional constraints
which arise when a second light source is considered, allowing to relax the uniform
albedo assumption even under unknown lighting. In this work, albedo-invariant or
phase-invariant formulations were proposed. Another differential approach has been
proposed in [65], where the geometry of the object is described through its level-sets
for both diffuse and specular reflections. Ngo et al. [83] derived constraints which
allowed surface normals, light directions and refractive index to be estimated from
polarisation images under varying lighting. However, this approach requires at least
four light sources.
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4.3.3 Combining Polarisation with other Cues

In order to solve the ambiguities generated by models using only polarisation infor-
mation, some attempts have been done combining SfP with other cues. In addition to
photometric cues (from SfS or PS), auxiliary geometric information can be consid-
ered. Stereo cues has been combined with polarisation to obtain surface orientation
information since the nineties [126]. Rahmann et al. [96] proposed to reconstruct
specular surfaces taking polarisation images from multiple views. The reconstruc-
tion problem is solved by an optimisation scheme where the surface geometry is
modelled by a set of hierarchical basis functions. Atkinson et al. [3, 5] refined es-
timates of the surface normal to establish correspondences between two views of
an object, extracting surface patches from each view. Multi-view stereo (MVS) and
polarisation have also been adopted for transparent and specular objects [73, 76], and
a polarimetric MVS method applied to objects with mixed polarisation models is
proposed in [28]. With respect to this last paper, which is offline and needs a manual
preparation, Yang et al. proposed in [132] a fully automatic approach to produce a
height map in real-time using two views. More than two views have been used in
[20]. Space carving [75, 76] or RGBD sensors [57, 58] have been employed to obtain
initial 3D-shape, from which the ambiguities in SfP are resolved. Zhu et al. [135]
used polarisation and an RGBD stereo pair to disambiguate the polarisation surface
normal estimates using a higher order graphical model. Cameras with multiple spec-
tral bands [74, 51] could be useful for disambiguating and estimating the refractive
index of the surface.

4.4 An Example of Numerical Resolution for Shape Recovery

In this sectionwewant to give an example of numerical resolution of the SfP problem,
either by following a non-differential approach, which considers as unknowns the
partial derivatives ? and @ as defined in Eq. (4), or by solving a linear differential
system directly in the height D.

We assume orthographic projection and directional illumination. We consider
only the diffuse polarisation model, hence the degree of polarisation is defined as
in (22), and the object wewant to recover is composed by dielectric (i.e., nonmetallic)
materials. Moreover, the refractive index [ is supposed to be a known constant, and
interreflections are neglected. In order to estimate the phase angle q(x) and the
degree of diffuse polarisation d3 (x) at each point, we fit the data to the transmitted
radiance sinusoid (20) following one of the aforementioned methods, e.g. the idea
by Wolff [127]. The zenith angle \ (x) of the surface normal can be obtained from
Eq. (22) arriving to:
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cos \ (x) = n(x) · v = 5 (d(x), [) = (24)√
2 d + 2 [2 d − 2 [2 + [4 + d2 + 4 [2 d2 − [4 d2 − 4 [3 d

√
− (d − 1) (d + 1) + 1

[4 d2 + 2 [4 d + [4 + 6 [2 d2 + 4 [2 d − 2 [2 + d2 + 2 d + 1
,

where we have denoted d3 simply by d and we have dropped the dependency of
d on x for readability. The normal vector defined in (3) can be written in terms of
azimuth and zenith angles as

n(x) =

cosU(x) sin \ (x)
sinU(x) sin \ (x)

cos \ (x)

 . (25)

Remembering that the phase angle q(x) determines the azimuth angle U(x) of the
normal up to a c ambiguity (U(x) = q(x) or U = q(x) + c), the normal vector
can be estimated up to an ambiguity. Several attempts have been done in order to
disambiguate the azimuth angle, as explained in Sect. 4.3.1. Once the surface normal
has been estimated, by integration we can recover the height, which is our real and
final unknown to be found. Again, we refer the interested reader to Sect. 2.4 and the
survey [91] for some discussion on the integration problem.

As an alternative, we can solve the problem directly in the unknown height
following a differential approach, starting again from a single polarisation image,
but using also the unpolarised intensity quantity, which is the image obtained using
a standard camera for the SfS problem. For example, let us assume Lambertian
reflectance, known illumination and uniform albedo that is factored into the light
source vector 8. The shading constraint coming from the unpolarised intensity
channel of a polarisation image reads as (cf. Eq. (5)):

8un (x) =
−l1 ?(x) − l2 @(x) + l3√

1 + ?(x)2 + @(x)2
. (26)

Since we are working in a viewer-centered coordinate system, with the viewer v =
[0, 0, 1]>, Eq. (24) simplifies to =3 (x) = 5 (d(x), [), which can be expressed in
terms of the surface gradient as

5 (d(x), [) = 1√
1 + ?(x)2 + @(x)2

. (27)

Now, by using the image ratio technique commonly applied also in PS-SfS prob-
lems [119], taking a ratio between (26) and (27), the nonlinear normalisation factor
vanishes, yielding the following linear equation in the surface gradient:

8un (x)
5 (d(x), [) = −l1 ?(x) − l2 @(x) + l3. (28)

Instead of disambiguating the polarisation normals at each pixel locally, as illustrated
before following a non-differential approach, here we express the azimuth ambiguity
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as a collinearity condition which is satisfied by either of the two possible azimuth
angles. In this way, we postpone resolution of the ambiguity until surface height is
computed, solving the azimuthal ambiguities in a globally optimal way.

More in detail, for the diffuse case we require that the projection of the surface
normal into the image plane$GH, [=1 (x), =2 (x)]>, is collinear with a vector pointing
in the phase angle direction, [sin q(x), cos q(x)]>. This requirement translates into
the following condition:

n(x)> [cos q(x),− sin q(x), 0]> = 0. (29)

By rewriting n(x) in terms of the surface gradient, noting that the nonlinear normal-
isation term is always non-null, we obtain from Eq. (29) a second linear equation in
the surface gradient:

− ?(x) cos q(x) + @(x) sin q(x) = 0. (30)

At this point, after approximating the surface gradient, e.g. by using finite differ-
ences, we arrive to a linear system of equations in terms of the unknown surface
height, which can be solved using linear least-squares. For stability reasons, priors on
convexity and smoothness can be added to the linear system. For more information
on this idea and for details on the implementation, we refer the interested reader
to [111, 112].

4.5 Applications

The polarisation state of light reflected by a surface provides a cue on the material
properties of the surface and, via a relationship with surface orientation, the 3D-
shape. Polarisation has been used for several applications since the nineties, including
early work on material segmentation [128] and diffuse/specular reflectance separa-
tion [80]. In recent years, there has been an increasing interest in using polarisation
information for 3D-shape estimation [57, 83, 111, 116]. Nice applications include
polarised laparoscopy [45] or in general biomedical applications [121]. In addition
to the use of polarisation information for 3D-reconstruction, recently several other
applications are using polarisation for different tasks. For example, for image seg-
mentation [104], robot dynamic navigation [13, 14], image enhancement [99, 100],
and reflection separation by a deep learning approach [66], which simplifies previ-
ous works requiring three images from different polariser angles [59, 101, 124]. For
more details on possible applications, we refer the interested reader to Chapter 6 of
this volume.
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5 A Short Presentation of this Volume

As we said in the introduction, the volume contains several contributions which
represent recent trends in 3D-reconstruction via photometric techniques. Here is an
overview of the chapters.

In Chapter 2, Breuss and Yarahmadi focus on a more realistic shape-from-shading
model than that we described in Section 2, where perspective projection is consid-
ered. A comprehensive state-of-the-art of perspective SfS (PSfS) is carried out. The
case of a Lambertian surface illuminated either by a parallel and uniform luminous
flux, or by a nearby point light source, is more specifically addressed. Finally, a
comparative study is carried out between two methods of resolution of the PSfS
problem under directional lighting, both of which are based on the fast-marching
algorithm.

In Chapter 3, Or-El et al. tackle the problem of refining the depth map provided by
RGBD sensors, by applying shape-from-shading techniques. The authors propose
three ways to solve this problem. First, by a model-based approach effective for
Lambertian surfaces, which refines the depth map by a SfS strategy applied to the
RGB image. Then, they extend this approach to specular objects, using a Phong-
type model and the IR image with the attached (near) light source. Lastly, a deep
learning-based solution is proposed.

In Chapter 4, Gallardo et al. tackle the problem of the 3D-reconstruction of de-
formable surfaces using non-rigid structure from motion and shading. The authors
propose an optimisation-based strategy, which aims at finding the geometry (pa-
rameterised by vertices) and reflectance (parameterised by a finite set of albedo
values) which minimise a cost function combining a shape-from-shading term and a
structure-from-motion one. Additional terms are also included in the cost function:
a contour boundary one, a smoothness one and a quasi-isometry one. The resulting
non-convex optimisation problem is addressed by a careful heuristical initialisation
followed by an iterative, Gauss-Newton-based refinement over all variables in a
multi-scale fashion. The proposition is evaluated both qualitatively and quantita-
tively against the state-of-the-art.

In Chapter 5, Brahimi et al. present a theoretical contribution on the well-
posedness of uncalibrated photometric stereo under general illumination. In par-
ticular they prove that there is no ambiguity for the perspective model if lighting is
represented by first-order spherical harmonics. In the process of establishing their
main result they also provide a comprehensive survey of the available results regard-
ing the well-posedness of several photometric stereo problems and they examine in
detail the case of the orthographic projection. For this problem they prove that, even
in the case of spherical harmonics, the concave/convex ambiguity still persists. They
conclude with some numerical experiments.
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Chapter 6, authored by Shi et al., represents a concise survey on SfP. After an
introduction, the authors briefly recall the Fresnel theory, which is the theoretical
basis of polarisation imaging. The process for the formation of a polarisation image
is described, giving also details on the data acquisition. The authors discuss the
estimation of azimuth and zenith angles of the normal for surfaces with different
reflectance properties (specular, diffuse, and mixed polarisation). Then, the combi-
nation of SfP with auxiliary information is explored, e.g., geometric cues, spectral
cues, photometric cues, and deep learning. Moreover, applications which can benefit
from polarisation information, in addition to the 3D-shape recovery, are presented.
The chapter ends with a discussion on problems still open.

Finally, Chapter 7 by Dahlan et al. addresses the problem of facial aging estima-
tion, using light scattering photometry. It is shown that the roughness parameter of
several BRDF models is correlated with the age. Therefore, facial aging estimation
can be carried out by fitting a BRDFmodel to an input image. In this work, geometry
estimation is carried out using photometric stereo, by resorting to an illumination
dome. Then, given the estimated normals, an image with frontal lighting is used to
infer the BRDF parameters. Various experiments are carried out to study whether
these estimated parameters correlate with age and it is shown that this is the case for
the roughness parameter. Several tests on real images are illustrated and analysed.
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