
HAL Id: hal-02515637
https://normandie-univ.hal.science/hal-02515637v1

Preprint submitted on 23 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging the Gap Between Spectral and Spatial
Domains in Graph Neural Networks

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoît Gaüzère,
Sébastien Adam, Paul Honeine

To cite this version:
Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoît Gaüzère, Sébastien Adam, et al..
Bridging the Gap Between Spectral and Spatial Domains in Graph Neural Networks. 2020. �hal-
02515637�

https://normandie-univ.hal.science/hal-02515637v1
https://hal.archives-ouvertes.fr

PREPRINT 1

Bridging the Gap Between Spectral and Spatial
Domains in Graph Neural Networks

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam,
and Paul Honeine

Abstract—This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design
of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the
spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs,
explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in
spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the
depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable
parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs
literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the
relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from
one graph to another.

Index Terms—Graph Convolutional Neural Networks, Spectral Graph Filter.

F

1 INTRODUCTION

O VER the past decade, Deep Learning, and more specif-
ically Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs), had a strong impact
in various applications of machine learning, such as image
recognition [1] and speech analysis [2]. These successes
have mostly been achieved on sequences or images, i.e. on
data defined on grid structures which benefit from linear
algebra operations in Euclidean spaces. However, there are
many domains where data (e.g. social networks, molecules,
knowledge graph) cannot be trivially encoded into an Eu-
clidean domain, but can be naturally represented as graphs.

This explains the recent challenge tackled by the machine
learning community which consists in transposing the deep
learning paradigm into the world of graphs. The objective
is to revisit Neural Networks to operate on graph data,
in order to benefit from the representation learning ability.
In this context, many Graph Neural Networks (GNNs)
have been recently proposed in the literature of geometric
learning [3], [4], [5], [6]. GNNs are Neural Networks that
rely on the computation of hidden representations of nodes
using information carried by the whole graph. In contrast
to conventional Neural Network, where the architecture of
the network is related to the known and invariant topology
of the data (e.g. a 2-D grid for images), the node features of
GNNs are propagated according to the graph topology.

Among GNNs, Convolutional GNNs (ConvGNNs) aim
to mimic the simple and efficient solution provided by CNN
to extract features through a weight-sharing strategy along
the presented data. In images, a convolution relies on the
computation of a weighted sum of neighbor’s features and
weight-sharing is possible thanks to the neighbor relative

• All the authors are with Normandie Univ, UNIROUEN, UNIHAVRE,
INSA Rouen, LITIS, 76000 Rouen, France.
E-mail: muhammetbalcilar@gmail.com

positions. With graph-structured data, designing such a
convolution process is not straightforward. First, there is a
variable and unbounded number of neighbors, avoiding the
use of a fixed sized window to compute the convolution.
Second, no order exists on node neighborhood. As a conse-
quence, one may first redefine the convolution operator to
design a ConvGNN.

As in images, a graph convolution process corresponds
to the multiplication of a convolution kernel with the cor-
responding node feature vectors, followed by a sum or a
mean rule. In the literature, there are some instances of
trainable and non-trainable convolution kernels for graphs.
Regardless if the convolution kernels are trainable or not,
and according to the convolution theorem, two strategies
have been investigated to design filter kernels, based either
on the spectral or the spatial domains.

Spectral-based convolution filters are defined from a
graph signal processing point of view. In a nutshell, a basis is
defined by the eigendecomposition of the graph Laplacian
matrix. This allows to define the graph Fourier transform,
and thus the graph filtering operators. The original form
of the spectral graph convolution (non-parametric) can be
defined by a function of frequency (eigenvalues). Therefore,
this method can theoretically extract information on any
frequency. However, despite the solid mathematical founda-
tions borrowed from the signal processing literature, such
approaches suffer from (i) a large computational burden
induced by the forward/inverse graph Fourier transform,
(ii) being spatially non-localized and (iii) the transferability
problem, i.e., filters designed using a given graph cannot
be applied on other graphs. To alleviate these issues, some
approaches based on parameterization using B-spline [7],
Chebyshev polynomials [8] and Cayley polynomials [9]
have been proposed. However, these approaches cannot
use custom designed frequency response convolution, but

PREPRINT 2

only the one determined by B-spline, Chebyshev or Cay-
ley polynomials. That means these methods cannot extract
information on some custom band.

The second strategy is the spatial-based convolution,
which is an extension of the conventional Euclidean convo-
lution (e.g. 2D convolution in CNN), by aggregating nodes
neighborhood information. Such convolutions have been
very attractive due to their less computational complexity,
their localized property and their transferability. Spatial-
designed graph convolutions have to be a function of some
spatial properties of graphs, such as adjacency, Laplacian or
degree matrix combined with feature of connected nodes,
and edge features. However, since they are designed in the
spatial domain, their spectral behavior is not taken into
account. We will show in the following that most of the
existing spatial-designed convolutions are essentially low-
pass filters. As a consequence, they do not have the ability to
extract useful information on high frequency or some certain
frequency bands. Yet, considering high-frequency informa-
tion may be intuitively useful for some real-world problems
where information localized on particular nodes have a
strong influence on graph’s property. For instance, molec-
ular toxicity can be induced by some pharmacophores, i.e.,
particular subparts of molecule, which can consist in only
one atom. Using only low-pass filters on such molecules
will diffuse this discriminant information within the whole
graph whereas a high-pass filter may help to highlight this
useful difference.

Contributions
In this paper, we bridge the gap between spectral and spatial
domains for ConvGNNs. Our first contribution consists
in demonstrating the equivalence of convolution processes
regardless if they are designed in the spatial or the spec-
tral domain. Taking advantage of this result, our second
contribution is to provide a spectral analysis of existing
graph convolutions for four popular ConvGNNs, known
as GCN [10], ChebNet [8], CayleyNet [9] and Graph At-
tention Networks (GAT) [11]. Using these results, our third
contribution is to design new convolutions in the spectral
domain with a custom frequency profile that provides a
better convolution process. In this context, we also propose
a spectral-designed multi-convolution method under the
depthwise separable convolution framework. To the best of
our knowledge, such a framework has never been used in
the GNNs literature. It allows to decrease the total number
of trainable parameters by keeping the variability capacity
of the model at a maximum level.

Our proposal is assessed on both transductive and in-
ductive learning problems [12]. In both settings, we show
the relevance of the proposed method on well-known public
benchmark datasets. Especially, the success of the proposed
method on inductive problems provides one of the first
experimental evidence of transferability of spectral filter
coefficients from one graph to another.

The remainder of this paper is organized as follows. In
Section 2, we introduce ConvGNNs and we review exist-
ing approaches. Then, Section 3 describes the three main
contributions mentioned above. Section 4 presents a series
of experiments and results which validate our propositions.
Finally, Section 5 is dedicated to the conclusion.

2 CONVGNN: PROBLEM STATEMENT AND STATE
OF THE ART

2.1 Graph Learning Problems

Let G be a set of graphs, where each graph G(k) has nk
nodes and an arbitrary number of edges. Node-to-node
connectivity in G(k) is given by the adjacency matrix A(k).
For unweighted graphs, A(k) ∈ {0, 1}nk×nk , while for
weighted graphs, A(k) ∈ Rnk×nk . In this paper, we consider
undirected attributed graphs. Hence, A(k) is symmetric and
features are defined on nodes by X(k) ∈ Rnk×f0 , with f0
the length of feature vectors.

In the literature, there are three different types of learn-
ing problems on graphs. The first one is the single graph
node classification or regression problem. In this case, G is
reduced to a single graph denoted G, with n nodes. Some of
the nodes are labeled for training and the task is to predict
the labels of unlabeled nodes. For a classification problem,
the output would be represented by Y ∈ {0, 1}n×nc , i.e., a
one-hot class encoding of the nc possible classes for each
node. For a node regression problem, the output would
be Y ∈ Rn. The second type of problems is multi-graph
node classification or regression problem. In such cases,
the output is defined as a set of Y(k) ∈ {0, 1}nk×nc for
classification or Y(k) ∈ Rnk for regression. The last type
is the entire graph classification or regression problem, in
which case the output must be Y(k) ∈ {0, 1}nc or Y(k) ∈ R
for classification and regression problems, respectively.

Problems of the first type are transductive problems,
while problems of the two last types are inductive since test
data are completely unknown during training.

2.2 Literature review

For reviewing ConvGNNs, we use the classical “spectral vs.
spatial” dichotomy [13]. Beyond, we propose for this review
a third category called Spectral-Rooted Spatial Convolutions
which gathers recent and efficient methods that take their
foundations in the spectral domain, but apply them in the
spatial one, without computing the graph Fourier transform.

2.2.1 Spectral ConvGNN
Spectral ConvGNNs rely on the spectral graph theory [14].
In this framework, signal on graphs are filtered using eigen-
decomposition of graph Laplacian [15]. A graph Laplacian
is defined by L = D − A (or L = I − D−1/2AD−1/2 for
the normalized version), where A is the adjacency matrix,
D ∈ Rnk×nk is the diagonal degree matrix with entries
Di,i =

∑
j Aj,i and I is the identity matrix. Since the

Laplacian is positive semidefinite, it can be decomposed
into L = UΣUT where U is the eigenvectors matrix and
Σ = diag(λ) where λ denotes the vector of the positive
eigenvalues. The graph Fourier transform of any unidimen-
sional signal on graph is defined by xft = U>x and its in-
verse is given by x = Uxft. By transposing the convolution
theorem to graphs, the spectral filtering in the frequency
domain can be defined by

xfiltered = U diag(z(λ))U>x, (1)

where z(λ) is the desired filter function applied to the
eigenvalues λ. As a consequence, a graph convolution layer

PREPRINT 3

in spectral domain can be written by a sum of filtered signals
followed by an activation function as in [7], namely

H
(l+1)
j = σ

(
fl∑
i=1

U diag(Fi,j,l)U
>H

(l)
i

)
, (2)

for all j ∈ {1, . . . , fl+1}. Here, σ is the activation function
such as RELU (REctified Linear Unit), H(l)

i is the i-th feature
vector of the l-th layer, Fi,j,l ∈ Rn is the corresponding
weight vector whose size is the number of eigenvectors (also
n, the number of nodes). A spectral ConvGNN based on (2)
seeks to tune the trainable parameters Fi,j,l, as proposed
in [16] for the single-graph problem. A first drawback is the
necessity of Fourier and inverse Fourier transform by matrix
multiplication ofU andUT . Another drawback occurs when
generalizing the approach to multi-graph learning prob-
lems. Indeed, the k-th element of the vector Fi,j,l weights
the contribution of the k-th eigenvector to the output. Those
weights are not shareable between graphs of different sizes,
which means a different length of Fi,j,l is needed. Moreover,
even though the graphs have the same number of nodes,
their eigenvalues will be different if their structures differ.
As a consequence, a given weight Fi,j,l may correspond to
different eigenvalues in different graphs.

To overcome these issues, a few spatially-localized filters
have been defined such as cubic B-spline parameterization
[7] and polynomial parameterization [8]. With such ap-
proaches, trainable parameters are defined by:

Fi,j,l = B
[
W

(l,1)
i,j , . . . ,W

(l,S)
i,j

]>
, (3)

where B ∈ Rn×S is the initial designed matrix and W (l,s)

is the trainable matrix for the l-th layer’s s-th convolu-
tion kernel, W (l,s)

i,j is the (i, j)-th entry of W (l,s) and S is
the desired number of convolution kernels. Each column
in B is designed as a function of eigenvalues, namely
Bi,j = (zj(λi)). In the polynomial case, each column of B is
power of eigenvalues starting at 0-th and ending at (S− 1)-
th power. In the cubic B-spline case, the B matrix encodes
the cubic B-spline coefficients [7]. A very recent ConvGNN
named CayleyNet parameterizes trainable coefficients by
Fi,j,l = [gi,j,l(λ1, h), ..., gi,j,l(λn, h)]>, where h is a scale
parameter to be learned, λn is the n-th eigenvalue, and g
is a spectral filter function defined as follows in [9]:

g(λ, h) = c0 + 2Re

(
r∑

k=1

ck

(
hλ− i
hλ+ i

)k)
(4)

where i2 = −1, Re(·) is the function returning the real part,
c0 is a real trainable coefficient, and for k = 1, . . . , r, ck are
the complex trainable coefficients. The CayleyNet parame-
terization takes also the form (3), as shown in Appendix B.

2.2.2 Spatial ConvGNN
Spatial ConvGNNs can be generalized as propagation of
node features to the neighborhood nodes followed by ac-
tivation function, of the form

H(l+1) = σ
(∑

s

C(s)H(l)W (l,s)
)
, (5)

where H(l) ∈ Rn×fl is the l-th layer’s feature matrix
with n nodes and fl features, s indexes the convolution

Fig. 1. Schematic of the GCN layer defined in (5). The graph has 12
nodes and 12 edges. Each node has a 2-length feature vector H(l)

1 and
H

(l)
2 represented by colors. The second layer has a 3-length feature

vector, denoted H
(l+1)
1 , H(l+1)

2 and H
(l+1)
3 . Two convolution kernels

C(1) and C(2) are used. This architecture has 12 trainable parameters,
omitting biases.

kernels, C(s) is the convolution kernel that defines how the
node features are propagated to the neighborhood nodes,
W (l,s) ∈ Rfl×fl+1 is the trainable weight matrix that maps
the fl-dimensional features into fl+1 dimensions. Fig. 1
provides a detailed schematic of graph convolution layer on
a sample graph signal. The selection of convolution kernels
defines the method in the literature. The vanilla version
uses a single convolution kernel with C = A + I . Such a
spatial ConvGNN has an effect of low-pass filtering, since it
applies the same coefficients to all neighbors and to the node
itself. High-pass filters can be obtained by differentiating
the weight matrices used to compute neighbors and self-
contributions [17]. In such a case, the convolution process is
given by C(1) = A and C(2) = I .

Some solutions have been proposed to overcome the
limitations of using only low-pass and high-pass filters.
If nodes have discrete labels (unless the node’s degree
can be used as discrete feature), weights can be shared
by the neighbors whose labels are the same [18]. Another
method consists in defining an ordering on nodes included
within the receptive field of convolution, and sharing the
coefficients according to this reordering [19]. The reordering
process is called canonical node reordering. A similar shar-
ing approach, based on reordered neighbors, was presented
in [20]. The difference is that the reordering is computed
according to the absolute correlation of features to the center
node. A different spatial-designed method proposed in [21]
considers a diffusion process on the graph using random
walks. This allows to induce variability on output signal by
applying random walks of different lengths to the different
features.

All aforementioned spatial graph convolutions use fixed-
design matrices C(s) and variability is induced by W (l,s)

in (5). Other methods use trainable convolution kernels in
order to make the convolutions more productive in terms
of output signal frequency profiles, such as graph attention
networks [11], [22], MoNet [23] and SplineCNN [24]. The
attention mechanism tunes each element of the convolution

PREPRINT 4

kernel of the l-th layer C(l,s), which is defined as a function
of connected nodes features and some trainable parameter

C
(l,s)
i,j = f

(
H

(l)
i , H

(l)
j ,W

(l,s)
AT

)
, (6)

where H
(l)
i ∈ Rfl is the i-th node’s feature vector for

layer l, W (l,s)
AT encodes the trainable parameter of the s-

th convolution kernel for layer l and f is some element-
wise function to be selected. In this case, since convolution
kernels are learned through the W (l,s)

AT of (6), the trainable
parameters W (l,s) of (5) can be defined as the identity ma-
trix, or other trainable parameters that may be shared with
W

(l,s)
AT . The most influential attention mechanism applied on

graph data, called GAT [11], uses multi-attention weights
(denoted as multi-support convolution kernels), with

f
(
H

(l)
i , H

(l)
j ,W

(l,s)
AT

)
=softmaxj

(
σ(a[WH

(l)
i ||WH

(l)
j])

)
,

(7)
where two linear transformations are considered by ele-
ments of general trainable parameter set W (l,s)

AT = {a,W},
with a being a weight vector. The operator || is the con-
catenation operator, σ corresponds to the LeakyReLU func-
tion [25] and softmaxj is the normalized exponential func-
tion that uses all neighbors of i-th node to normalize edge of
i-th to j-th node. In convolution layer’s output calculation
(5), GAT proposes to use the same parameters W. The main
limitation of this method is the use of a very small context,
limited to the features of the pair of nodes, to determine
the intensity of the attention. Dual-Primal Graph CNN
(DPGCNN) [26] extends this approach by defining attention
using new features computed from the neighborhood of
each node of the pair, hence using a larger context.

Since the methods mentioned above are defined in the
spatial domain, they do not provide any analysis of their
frequency spectrum of filters. Moreover, their frequency
responses will be different for different graphs. Besides, they
need more multi-support (attention or sub-layer weights) to
produce high variability output, which drastically increases
the number of trainable parameters of the model.

2.2.3 Spectral-rooted Spatial Convolutions
As said before, some methods have recently been proposed
to get rid of the computation burden of graph Fourier and
inverse graph Fourier transforms, while still taking their
foundations in the spectral domain. These solutions rely on
the approximation of a spectral graph convolution proposed
in [27], based on the Chebyshev polynomial expansion
of the scaled graph Laplacian. Accordingly, the first two
Chebyshev kernels are C(1) = I and C(2) = 2L/λmax − I
and the remaining kernels are defined by

C(k) = 2C(2)C(k−1) − C(k−2). (8)

Researchers have shown that any desired filter can be writ-
ten as a linear combination of these kernels [27]. ChebNet is
the first method that used these kernels in ConvGNN [8].

One major extension and simplification of the Cheby-
shev polynomial expansion method is Graph Convolution
Network (GCN) [10]. GCN uses the subtraction of the
second Chebyshev kernels from the first one under the
assumption of λmax = 2 and L is the normalized graph

Laplacian. However, instead of using this subtracted kernel,
they used re-normalization trick and defined the final single
kernel by:

C = D̃−1/2ÃD̃−1/2, (9)

with D̃i,i =
∑
j Ãi,j and Ã = (A + I) the adjacency ma-

trix with added self-connections. This approach influenced
many other contributions. The method described in [28]
directly uses this convolution but changes the network ar-
chitecture by adding a fully connected layer as the last layer.
The MixHop algorithm [29] uses the 2nd or 3rd powers of
the same convolution.

The methods described in this section are quite different
from pure spatial and pure spectral convolutions. They
are not designed by using eigenvalues, but are implicitly
designed as a function of structural information (adjacency,
Laplacian) and perform convolution in spatial domain as
how all spatial convolutions do. However, their frequency
profiles are stable for different arbitrary graphs as how
spectral convolutions do. This aspect will be theoretically
and experimentally illustrated in the following sections.

3 BRIDGING SPATIAL AND SPECTRAL CONVGNN
This section presents the main theoretical contributions of
this paper. First, we provide a theoretical analysis demon-
strating that parameterized spectral ConvGNNs can be im-
plemented as spatial ConvGNNs when they use a fixed
frequency profile matrix B. Then, using this result, some
state-of-the-art GNNs described in the previous section are
analyzed from a spectral point of view. This analysis provide
a better understanding on these convolutions and reveal
their problematic sides. Finally, we propose a new method
that fully exploits spectral graph convolution capabilities,
called Depthwise Separable Graph Convolution Network.

3.1 Theoretical analysis
Theorem 1. Spectral ConvGNN parameterized with fixed fre-
quency profiles matrix B of entries Bi,j = zj(λi), defined as

H
(l+1)
j =σ

(fl∑
i=1

U diag
(
B
[
W

(l,1)
i,j , . . . ,W

(l,S)
i,j

]>)
U>H

(l)
i

)
,

(10)
is a particular case of spatial ConvGNN, defined as

H(l+1) = σ
(∑

s

C(s)H(l)W (l,s)
)
, (11)

with the convolution kernel set to

C(s) = U diag(zs(λ))U>, (12)

where the columns of U are the eigenvectors of the studied
graph, σ is the activation function, H(l) ∈ Rn×fl is the l-th
layer’s feature matrix with fl features, H(l)

i is the i-th column of
H(l), B ∈ Rn×S is an apriori designed matrix for each graph’s
eigenvalues, and zs(λ) is the s-th column of B. Both W (l,s) and
S are defined in (3).

Proof: First, let us expand the matrix B and rewrite it
as the sum of its columns, denoted z1(λ), . . . ,zS(λ) ∈ Rn:

H
(l+1)
j = σ

(
fl∑
i=1

U diag
(S∑
s=1

W
(l,s)
i,j zs(λ)

)
U>H

(l)
i

)
. (13)

PREPRINT 5

Now, we distribute U and U> over the inner summation:

H
(l+1)
j = σ

(
S∑
s=1

fl∑
i=1

U diag
(
W

(l,s)
i,j zs(λ)

)
U>H

(l)
i

)
. (14)

Then, we take out the scalars W (l,s)
i,j of the diag operator:

H
(l+1)
j = σ

(
S∑
s=1

fl∑
i=1

W
(l,s)
i,j U diag(zs(λ))U>H

(l)
i

)
. (15)

Let us define a convolution operator C(s) ∈ Rn×n as:

C(s) = U diag(zs(λ))U>. (16)

Using (15) and (16), we have thus:

H
(l+1)
j = σ

(
fl∑
i=1

S∑
s=1

W
(l,s)
i,j C(s)H

(l)
i

)
. (17)

Then, each term of the sum over s corresponds to a matrix
H(l+1) ∈ Rn×fl+1 with

H(l+1) = σ
(
C(1)H(l)W (l,1) + · · ·+ C(S)H(l)W (l,S)

)
,

(18)
with H(l) = [H

(l)
1 , . . . ,H

(l)
fl

]. We get by grouping the terms:

H(l+1) = σ

(
S∑
s=1

C(s)H(l)W (l,s)

)
, (19)

which corresponds to (11). Therefore, (10) corresponds to
(11) with C(s) defined as (16).

This theorem is general, since it covers many well-
known spectral ConvGNNs, such as non-parametric spec-
tral graph convolution [16], polynomial parameterization
[8], cubic B-spline parameterization [7] and CayleyNet [9].

From Theorem 1, designing a graph convolution either
in spatial or in spectral domain is equivalent. Therefore,
Fourier calculations are not necessary when convolutions
are parameterized by an initially designed matrix B. Using
that relation, it is not difficult to show the spatial equiva-
lence of non-parametric spectral graph convolution defined
in (2). It can be written in spatial domain with B = I in (3).
It thus corresponds to (11) where each convolution kernel is
defined by C(s) = UsU

>
s , where Us is the s-th eigenvector.

3.2 Spectral Analysis of Existing Graph Convolutions
This section aims at providing a deeper understanding
of the graph convolution process through an analysis of
existing GNNs in the spectral domain. To the best of our
knowledge, no one has led such an analysis concerning
graph convolutions in the literature. In this section, we show
how it can be done on four well-known graph convolutions:
ChebNet [8], CayleyNet [9], GCN [10] and GAT [11]. This
analysis is led using the following corollary of Theorem 1.

Corollary 1.1. The frequency profile of any given graph convo-
lution kernel C(s) can be defined in spectral domain by the vector

zs(λ) = diag−1(U>C(s)U). (20)

Proof: By using (12) from Theorem 1, we can obtain
a spatial convolution kernel C(s) whose frequency profile
is zs(λ). Since the eigenvector matrix is orthonormal (i.e.,
U−1 = U>), we can extract zs(λ), which yields (20).

Fig. 2. Standard frequency profiles of first 5 Chebyshev convolutions.

We denote the matrix zs = U>C(s)U as the full fre-
quency profile of the convolution kernel C(s), and zs(λ) =
diag(zs) as the standard frequency profile of the convolution
kernel. The full frequency profile includes all eigenvector-to-
eigenvector pairs contributions. Standard frequency profile
just includes each eigenvector’s self-contribution.

To show the frequency profiles of some well-known
graph convolutions, we used three graphs. The first one
corresponds to a 1D signal encoded as a regular circular line
graph with 1001 nodes. The second and third ones are the
Cora and Citeseer reference datasets, which consist of one
single graph with respectively 2708 and 3327 nodes [12].
Basically, each node of these graphs is labeled by a vector,
and edges are unlabeled and undirected. These two graphs
will be described in details in Section 4.

ChebNet

After computing the kernels of ChebNet by (8), Corollary 1.1
can be used to obtain their frequency profiles. As shown
in Appendix A, the first two kernel frequency profiles of
ChebNet are z1(λ) = 1 and z2(λ) = 2λ/λmax − 1, where
1 is the vector of ones. Since λmax = 2 for all three graphs,
we get z2(λ) = λ − 1. The third one and following kernel
frequency profiles can also be computed using zk(λ) =
2z2(λ)zk−1(λ) − zk−2(λ), leading to z3(λ) = λ2 − 4λ + 1
for example for the third kernel. The resulting 5 frequency
profiles are shown in Fig. 2 (in absolute value). Since the
full frequency profiles consist of zeros outside the diagonal,
they are not illustrated.

Analyzing the frequency profile of ChebNet, one can
argue that the convolutions mostly cover the spectrum.
However, none of the kernels focuses on some certain
parts of the spectrum. As an example, the second kernel is
mostly a low-pass and high-pass filter and stops the middle
band, while the third one passes very high, very low and
middle bands, but stops almost first and third quarter of the
spectrum. Therefore, if the relation between input-output

PREPRINT 6

Fig. 3. Standard frequency profiles of first 7 CayleyNet convolutions.

pairs can be figured out by just a low-pass, high-pass or
some specific band-pass filter, a high number of convolution
kernels is needed. However, in the literature, only 2 or 3
kernels are generally used for experiments [8], [10].

CayleyNet

CayleyNet uses spectral graph convolutions whose fre-
quency profiles can be changed by scaling eigenvalues [9].
The frequency profile is defined by a complex rational
function of eigenvalues, scaled by a trainable parameter h
in (4). As proven in Appendix B, CayleyNet can be defined
through the frequency profile matrixB. Using this represen-
tation, CayletNet can be seen as multi-kernel convolutions
with real-valued trainable coefficients. According to this
analysis, CayleyNet uses 2r + 1 graph convolution kernels,
with r being the number of complex coefficients [9]. The
first 7 kernel’s frequency profiles are illustrated in Fig. 3.
The scale parameter h affects the x-axis scaling but does not
change the global shape. When h = 1, frequency profiles
can be defined within the range [0, 2] (because λmax = 2 in
all three test graphs). If h = 1.5, the frequency profile can be
defined till 1.5λmax = 3 in Fig. 3 and rescale axis label from
[0, 3] to [0, 2] in original range.

Learning the scaling of eigenvalues may seem advan-
tageous. However, it induces extra computational cost in
order to calculate the new convolution kernel. To limit this
cost, an approximation is computed using a fixed number
of Jacobi iterations [9]. In addition, similarly to ChebNet,
CayleyNet does not have any band specific convolutions,
even when considering different scaling factors.

GCN

As for ChebNet, a theoretical analysis of frequency pro-
files of GCN convolution is carried out in Appendix C. It
shows that GCN frequency profile can be approximated
according to z (λ) ≈ 1 − λd/(d + 1), where d is the
average node degree. Therefore, the cut-off frequency of
the GCN convolution is λcut ≈ (1 + d)/d. Theoretically, if
all nodes degree are different, standard frequency profile

(a) Standard frequency profiles (b) Full frequency profile on 1D
regular line graph

(c) Full frequency profile on Cora (d) Full frequency profile on Cite-
seer

Fig. 4. Frequency profiles of GCN on different graphs.

will not be smooth and will include some perturbations. In
addition, full frequency profile will be composed of non-
zero components.

Analyzing experimentally the behavior of GCN [10] in
the spectral domain first implies to compute the convolution
kernel as given in (9). Then, the spectral representation
of the obtained convolution matrix can be back-calculated
using Corollary 1.1. This result leads to the frequency pro-
files illustrated in Fig. 4 for the three different graphs. The
three standard frequency profiles have almost the same low-
pass filter shape corresponding to a function composed of a
decreasing part on the three first quarters of the eigenvalues
range, followed by an increasing part on the remaining
range. This observation is coherent with the theoretical anal-
ysis. Hence, kernels used in GCN are transferable across the
three graphs at hand. In Fig. 4, the cut-off frequency of the
1-D linear circular graph is exactly 1.5, while it is about 1.35
for Citeseer. This observation can be explained by the fact
that when considering a 1-D linear circular graph, all nodes
have a degree equal to 2, hence λcut = 1.5. Since the average
node degree in Citeseer is 2.77, therefore λcut ≈ 1.36.

Concerning the full frequency profiles, there is no con-
tribution outside the diagonal for the regular line graph
(Fig. 4 b). Conversely, some off-diagonal values are not null
for Citeseer and Cora. Again, this observation confirms the
theoretical analysis.

Since GCN frequency profile does not cover the whole
spectrum, such an approach is not able to learn relations
that can be represented by high-pass or band-pass filtering.
Hence, even though it gives very good results on a single
graph node classification problem in [10], it may fail for
problems where discriminant information lies in particular
frequency bands. Therefore, such an approach can be con-
sidered as problem specific.

PREPRINT 7

GAT

Graph attention networks (GATs) rely on trainable convolu-
tions kernels [11]. For this reason, frequency profiles cannot
be directly computed similarly to GCN or ChebNet ones.
Thus, instead of back-calculating the kernels, we perform
simulations and evaluate the potential kernels of attention
mechanism for given graphs. Hence, we show the frequency
profiles of those simulated potential kernels.

In [11], 8 different attention heads are used. Assuming
that each attention head matrix is a convolution kernel,
multi-attention systems can be seen as multi-kernel convo-
lutions. The difference is that convolution kernels are not a
priori defined but are functions of node feature vectors and
trainable parameters a and W; see (7). To show the potential
output of GATs on the Cora graph (1433 features for each
node), we produce 250 random pairs of W ∈ R1433×8 and
a ∈ R16×1, which correspond to the convolution kernels
trained by GATs. The σ function in (7) is a LeakyReLU
activation with a 0.2 negative slope as in [11].

The mean and standard deviation of the frequency pro-
files for these simulated GAT kernels are shown in Fig. 5.
As one can see, the mean standard frequency profile has a
similar shape as those of GCN (Fig. 4). However, variations
on the frequency profile induce more variations on output
signal when compared to GCN.

The full frequency profile is not symmetric. According to
Fig. 5, variations are mostly on the right side of the diagonal
in the full frequency profile. This is related to the fact that
these convolution kernels are not symmetric. However, the
variation on frequency profile might not be sufficient in
problems that need some specific band-pass filters.

Discussion

This section has shown that most influential graph convo-
lutions [10], [11] operate as low-pass filters. Interestingly,
while being restricted to low-pass filters, they still obtain
state-of-the-art performance on particular node classifica-
tion problems such as Cora and Citeseer [12]. These results
on these particular problems are induced by the nature of
the graphs to be processed. Indeed, citation network prob-
lems are inherently low-pass filtering problems, similarly to
image segmentation problems, which are efficiently tackled
by low-pass filtering.

It is worth noting that, if we use enough convolution
kernels, the frequency response of ChebNet kernels [8] cov-
ers nearly all frequency profiles. However, these frequency
responses are not specific to special bands of frequency.
It means that they can act as high-pass filters, but not as
Gabor-like special band-pass filters.

As a conclusion, we claim that graph convolutions pre-
sented in this section are problem specific and not problem
agnostic. Experiments conducted in Section 4 provide em-
pirical results to validate the theoretical analysis conducted
in this section.

3.3 Depthwise Separable Graph Convolutions

Instead of designing the spatial convolution kernels C(s) of
(5) by functions of graph adjacency and/or graph Laplacian,
we propose in this section to use S convolution kernels that

have custom-designed standard frequency profiles. These
designed frequency profiles are a function of eigenvalues,
such as [z1(λ), . . . ,zS(λ)]. In this proposal, the number of
kernels and their frequency profiles are hyperparameters.
Then, we can back-calculate corresponding spatial convolu-
tion matrices using (12) in Theorem 1.

To obtain problem-agnostic graph convolutions, the sum
of all designed convolutions’ frequency profiles has to cover
most of the possible spectrum and each kernel’s frequency
profile must focus on some certain ranges of frequencies. As
a didactic example, we show in Fig. 6 an example of desired
spectral convolutions frequency profiles for S = 3 and its
application on two different graphs.

In order to figure out arbitrary relations of input-output
pairs, multiple convolution kernels have to be efficiently
designed. However, increasing the number S of convolution
kernels increases the number of trainable parameters lin-
early. Hence, the total number of multi-support ConvGNN
is given by S

∑L
i=0 fifi+1 where L is the number of layers

and fi is the feature length of the i-th layer.
To overcome this issue, we propose to use Depthwise

Separable Graph Convolution Network (DSGCN). Depth-
wise Separable Convolution framework has already been
used in computer vision problems to reduce the model size
and its complexity [30], [31]. To the best of our knowledge,
depthwise separable graph convolution has never been pro-
posed in the literature.

Instead of filtering all input features for each output
feature, DSGCN consists in filtering each input feature once.
Then, filtered signals are merged into the desired number
of output features through 1×1 convolutions with different
contribution coefficients. Detailed illustration of the pro-
posed depthwise separable graph convolution process is
presented in Fig. 7.

Mathematically, forward calculation of each layer of
DSGCN is defined by:

H(l+1) = σ

((S∑
s=1

w(s,l) � (C(s)H(l))
)
W (l)

)
. (21)

In this expression, the notation � denotes the element-
wise multiplication operator. Note that there is only one
trainable matrix W in each layer. Other trainable variables
w(s,l) ∈ R1×fl encode feature contributions for each con-
volution kernel and layer. The number of trainable param-
eters for this case becomes

∑L
i=0 Sfi + fifi+1. Previously,

adding a new kernel increases the number of parameters by∑L
i=0 fifi+1. Using separable convolutions, this number is

only increased by
∑L
i=0 fi. This modification is particularly

interesting when the number of features is high. On the
other hand, the variability of the model also decreases. If the
data has a smaller number of features, using this approach
might not be optimal.

4 EXPERIMENTAL EVALUATION

In this section, we describe the experiments carried out to
evaluate the proposed approach on both transductive and
inductive problems. In the first case, we target a single graph
node classification task while in the second case, both multi-
graph node classification task and entire graph classification

PREPRINT 8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Standard frequency profile (b) Mean of full frequency profile (c) Standard deviation of full frequency profile

Fig. 5. Frequency profiles of randomly generated 250 GAT convolutions using Cora graph.

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

Fig. 6. Three designed convolution kernel frequency profiles as a func-
tion of graph eigenvalues (λ) of two sample graphs G(i) and G(j) by
z1(λ) = λ

6
,z2(λ) = 1 − |λ−3|

3
and z3(λ) = 1 − λ

6
. There are three

shared coefficients. Each coefficient encodes the contribution of corre-
sponding frequency profiles. First row refers mostly to high frequencies,
middle row to middle frequencies and last row to low frequencies.

Fig. 7. Detailed schematic of Depthwise Separable Graph Convolution
Layer. Each node has a 2-length feature vector, indicated as H(l)

1 and
H

(l)
2 with values represented by colors. The following layer has a 3-

length feature vector, denoted H(l+1)
1 , H(l+1)

2 and H(l+1)
3 . Here, two

convolution kernels are used, denoted by C(1) and C(2). Convoluted
signals are multiplied by trainable weight w and are summed to obtain
interlayer signals. To obtain the 3 next layer features, a weighted sum is
computed using the other trainable parameter W .

task are considered (see Section 2.1). For all the experiments,
we compare our algorithm to state-of-the-art approaches.

TABLE 1
Summary of the transductive datasets used in our experiments.

Each dataset consists of one single graph

Cora Citeseer PubMed

Nodes 2708 3327 19717
Edges 5429 4732 44338
Features 1433 3703 500
Classes 7 6 3
Training Nodes 140 120 60
Validation Nodes 500 500 500
Test Nodes 1000 1000 1000

4.1 Transductive Learning Problem
4.1.1 Datasets
Experiments on transductive problems were led on the
three datasets summarized in TABLE 1. These datasets are
well-known paper citation graphs. Each node corresponds
to a paper. If one paper cites another one, there is an
unlabeled and undirected edge between the corresponding
nodes. Binary features on the nodes indicate the presence of
specific keywords in the corresponding paper. The task is to
attribute a class to each node (i.e., paper) of the graph using
for training the graph itself and a very limited number of
labeled nodes. Labeled data ratio is 5.1%, 3.6% and 0.3% for
Cora, Citeseer and PubMed respectively. We use predefined
train, validation and test sets as defined in [12] and follow
the test procedure of [10], [11] for fair comparisons.

4.1.2 Models
To evaluate the performance of convolutions designed in
the spectral domain independently from the architecture
design, a single hidden layer is used for all models, as
in [10] for GCN. This choice, even sub-optimal, enables a
deep understanding of the convolution kernels. For these
evaluations, a set of convolution kernels is experimented:

• A low-pass filter defined by z1(λ) = (1 − λ/λmax)η

where η impacts the cut-off frequency
• A high-pass filter defined by z2(λ) = λ/λmax

• Three band-pass filters defined by:

– z3(λ) = exp(−γ(0.25λmax − λ)2)
– z4(λ) = exp(−γ(0.5λmax − λ)2)
– z5(λ) = exp(−γ(0.75λmax − λ)2)

• An all-pass filter defined by z6(λ) = 1

PREPRINT 9

TABLE 2
Used kernels frequency profiles and architecture of models for each

transductive dataset. DSG refers to Depthwise Separable Graph
convolution layer, G to Graph convolution layer, D to Dense layer

Dataset Architecture

z1(λ) = (1− λ/λmax)
5

z3(λ) = exp(−0.25(0.25λmax − λ)2)

Cora z4(λ) = exp(−0.25(0.5λmax − λ)2)

z5(λ) = exp(−0.25(0.75λmax − λ)2)

DSG160-DSG7

Citeseer z1(λ) = (1− λ/λmax)
5, z6(λ) = 1

DSG160-DSG6

Pubmed z1(λ) = (1− λ/λmax)
3, z2(λ) = λ/λmax

DSG16-DSG3

Fig. 8. Designed convolution’s frequency profiles for Cora dataset.

We firstly consider a model composed of only z1. This
choice comes from the fact that state-of-the-art GNNs are
sort of low-pass filters (see Section 3.2) and perform well on
the datasets of TABLE 1. Hence, it is interesting to evaluate
our framework with z1. For the experiments, the value of η
are tuned for each dataset, using the validation loss value
and accuracy, yielding η = 5 for Cora and Citeseer, and
η = 3 for PubMed. Details concerning this tuning can be
found in TABLE A1 in Appendix D. Since there is only
one convolution kernel, depthwise separable convolutions
are not necessary for this model. Therefore, this model
can be seen as similar to those from [8], [10] but using a
different convolution kernel. This approach is denoted as
LowPassConv in the results section (Section 4.1.3).

Beyond this low-pass model, we also evaluate different
combinations of the zi(λ) through the depthwise separable
schema defined in Section 3.3. For experiments involv-
ing {z3(λ),z4(λ),z5(λ)}, the bandwidth parameter γ was
tuned using train and validation sets. TABLE 2 details the
best models found on the validation set. As an example,
for Cora dataset, 4 kernels are used by a DSGCN with 160
neurons: z1(λ), z3(λ), z4(λ), z5(λ). As an illustration, Fig. 8
provides the standard frequency profiles of this designed
convolution on Cora dataset. The models of TABLE 2 are
denoted as DSGCN in the following.

The training hyperparameters were tuned over a grid
search using a cross-validation procedure. Hyperparameter
values can be found in TABLE A2 of Appendix D. Other
protocol details are also given in this appendix.

TABLE 3
Comparison of methods on the transductive learning problems using
publicly defined train, validation and test sets. Accuracies on test set
are reported with their standard deviations under 20 random runs.

Method Cora Citeseer Pubmed

MLP 0.551 0.465 0.714
Planetoid [12] 0.757 0.647 0.744
MoNet [23] 0.817 ± 0.005 - 0.788 ± 0.003
ChebNet [8] 0.812 0.698 0.744
CayleyNet [9] 0.819 ± 0.007 - -
DPGCNN [26] 0.833 ± 0.005 0.726 ± 0.008 -
GCN [10] 0.819 ± 0.005 0.707 ± 0.004 0.789 ± 0.003
GAT [11] 0.830 ± 0.007 0.725 ± 0.007 0.790 ± 0.007

LowPassConv 0.827 ± 0.006 0.717 ± 0.005 0.794 ± 0.005
DSGCN 0.842 ± 0.005 0.733 ± 0.008 0.819 ± 0.003

TABLE 4
Summary of inductive learning datasets used in this paper.

PPI PROTEINS ENZYMES

Type Node Class. Graph Class. Graph Class.
Graph 24 1113 600
Avg.Nodes 2360.8 39.06 32.63
Avg.Edges 33584.4 72.82 62.14
Features 50 3 label 3 label + 18 cont.
Classes 2 (121 criterias) 2 6
Training 20 graphs 9-fold 9-fold
Validation 2 graphs 1-fold 1-fold
Test 2 graphs None None

4.1.3 Results
Obtained results on transductive learning are given in
TABLE 3. We compare the performance of the proposed
LowPassConv and DSGCN to state-of-the-art methods. We
first can see that our low-pass convolution kernel (Low-
PassConv) obtains comparative performance with existing
methods. This result confirms our theoretical analysis which
states that GCN and GAT mostly correspond to low-pass
filters (Section 3.2). Second, DSGCN outperforms state-of-
the-art methods thanks to the flexibility provided by the
different filters. It is worth noting that the good results
obtained by low-pass approaches show that these three
classification tasks are mainly low-pass specific problems.
Differences in accuracies may be significantly bigger for
band-pass or high-pass based problems.

4.2 Inductive Learning Problem

Inductive Learning problems are common in chemoinfor-
matics and bioinformatics. In an inductive setting, a given
instance is represented by a single graph. Thus, models are
trained and tested on different graph sets.

In the graph neural networks literature, there is a con-
troversy concerning the transferability of spectral designed
convolutions from learning graphs to unseen graphs. Some
authors consider that convolutions cannot be transferred
[23], while very recent theoretical [32] and empirical [33]
works show the contrary. In this subsection, we target to
bring an answer to this controversy by experimenting our
proposal on inductive learning problems.

PREPRINT 10

4.2.1 Datasets
Inductive experiments are led on 3 datasets (see TABLE 4
for a summary): a multi-graph node classification dataset
called Protein-to-Protein Interaction (PPI) [34] and on two
graph classification datasets called PROTEINS and EN-
ZYMES [35]. The protocols used for the evaluations are
those defined in [11] for PPI and [36], [37], [38], [39] for
PROTEINS and ENZYMES datasets.

The PPI dataset is a multi-label node classification prob-
lem on multi-graphs. Each node has to be classified either
True or False for 121 different criteria. All the nodes are
described by a 50-length continuous feature vector. The
PPI dataset includes 24 graphs, with a train/validation/test
standard splitting.

The PROTEINS and ENZYMES datasets are graph clas-
sification datasets. There are 2 classes in PROTEINS and 6
classes in ENZYMES. In PROTEINS dataset, there are three
different types of nodes and one continuous feature. But we
do not use this continuous feature on nodes. In ENZYMES
dataset, there are 18 continuous node features and three dif-
ferent kinds of node types. In the literature, some methods
use all provided continuous node features while others use
only node label. This is why ENZYMES results are given
using either all features (denoted by ENZYMES-allfeat) or
only node labels (denoted by ENZYMES-label).

Since there is no standard train, validation and test
sets split for PROTEINS and ENZYMES, the results are
given using a 10-fold cross-validation (CV) strategy under a
fixed predefined epoch number. The CV only uses training
and validation set. Specifically, after obtaining 10 validation
curves corresponding to 10 folds, we first take average of
validation curves across the 10 folds and then select the sin-
gle epoch that achieved the maximum averaged validation
accuracy. This procedure is repeated 20 times with random
seeds and random division of dataset. Mean accuracy and
standard deviation are reported. This is the same protocol
than [36], [37], [38], [39].

4.2.2 Models
For PPI, 7 depthwise graph convolution layers compose the
model. Each layer has 800 neurons, except the output layer
which has 121 neurons, each one classifying the node either
True or False. All layers use a ReLU activation except the
output layer, which is linear. No dropout or regularization
of the binary cross-entropy loss function is used. All graph
convolutions use three spectral designed convolutions: a
low-pass convolution given by z1(λ) = exp(−λ/10), a
high-pass one given by z2(λ) = λ/λmax and an all-pass
filter given by z3(λ) = 1.

For graph classification problems (PROTEINS and EN-
ZYMES), depthwise graph convolution layers are not
needed since these datasets have a reduced number of
features. Thus, it is tractable to use all multi-support graph
convolution layers instead of the depthwise schema. In these
cases, our models firstly consist of a series of graph convo-
lution layers. Then, a global pooling (i.e., graph readout) is
applied in order to aggregate extracted features at graph
level. For this pooling, we use a concatenation of mean
and max global pooling operator, as used in [37]. Finally,
a dense layer (except for ENZYMES-label) is applied, before
the output layer as in [39].

TABLE 5
Kernels frequency profiles and model architecture for each inductive
dataset. meanmax refers to global mean and max pooling layer.

Same legend as TABLE 2.

Dataset Architecture

z1(λ) = exp(−λ/10)
PPI z2(λ) = λ/λmax, z3(λ) = 1

DSG800-DSG800-DSG800-DSG800-
DSG800-DSG800-DSG121

PROTEINS z1(λ) = 1− λ/λmax, z2(λ) = λ/λmax

G200-G200-meanmax-D100-D2

z1(λ) = 1, z2(λ) = λs − 1

ENZYMES-label z3(λ) = 2λ2
s − 4λs + 1, λs = 2λ/λmax

G200-G200-G200-G200-meanmax-D6

z1(λ) = 1, z2(λ) = exp(−λ2)

ENZYMES-allfeat z3(λ) = exp(−(λ− 0.5λmax)
2)

z4(λ) = exp(−(λ− λmax)
2)

G200-G200-meanmax-D100-D6

TABLE 6
Comparison of methods on inductive learning problems using publicly
defined data split for PPI dataset and 10-fold CV for PROTEINS and
ENZYMES datasets. PPI results are the test set results reported by

micro-F1 metric percentage. Others are CV results reported by
accuracy percentage. Results denoted by ∗ were reproduced from

original source codes but denoted feature set.

Method PPI PROTEINS ENZYMES
All Features Node Label Node Label All Features

GraphSAGE [22] 76.8 - - -
GAT [11] 97.3 ± 0.20 - - -
GaAN [40] 98.7 ± 0.20 - - -
Hierarchical [37] - 75.46 64.17 -
Diffpool [36] - 76.30 62.50 66.66∗

ChebNet [33] - 75.50 ± 0.40 58.00 ± 1.40 -
Multigraph [33] - 76.50 ± 0.40 61.70 ± 1.30 68.00 ± 0.83
GIN [39] - 76.20 ± 0.86 - -
GFN [38] - 76.56 ± 0.30∗ 60.23 ± 0.92∗ 70.17 ± 0.86

MLP (C(1) = I) 46.2 ± 0.56 74.03 ± 0.92 27.83 ± 2.51 76.11 ± 0.87
GCN (9) 59.2 ± 0.52 75.12 ± 0.82 51.33 ± 1.23 75.16 ± 0.65
DSGCN 99.09 ± 0.03 77.28 ± 0.38 65.13 ± 0.65 78.39 ± 0.63

All details about the architecture and designed convolu-
tions can be found in TABLE 5. The hyperparameters used
in best models can be found on TABLE A2 in Appendix D.

4.2.3 Results
TABLE 6 compares the results obtained by the models
described above and state-of-the-art methods. A comparison
with the same models but without graph information, a
Multi-Layer Perceptron (MLP) that corresponds to C(1) = I
is also provided to discuss if structural data include in-
formation or not. To the best of our knowledge, such an
analysis is not provided in the literature. Finally, results
obtained by the same architecture with GCN kernel is also
provided.

As one can see in TABLE 6, the proposed method obtains
competitive results on inductive datasets. For PPI, DSGCN
clearly outperforms state-of-the-art methods with the same
protocol, reaching a micro-F1 percentage of 99.09 and an ac-
curacy of 99.45%. For this dataset, MLP accuracy is low since

PREPRINT 11

the percentage of micro-F1 is 46.2 (random classifier’s micro-
F1 being 39.6%). This means that the problem includes
significant structural information. Using the GCN kernel,
which operates as low-pass convolution (see Section 3.2),
the accuracy increases to 0.592, but again not comparable
with state-of-the-art accuracy.

For the PROTEINS dataset, one can see that MLP (C(1) =
I) reaches an accuracy that is quite comparable with state-
of-the-art GNN methods. Hence, MLP reaches a 74.03%
validation accuracy while the proposed DSGCN reaches
77.28%, which is the best performance among GNNs. This
means that PROTEINS problem includes very few structural
information to be exploited by GNNs.

ENZYMES dataset results are very interesting in order to
understand the importance of continuous features and their
processing through different convolutions. As one can see
in TABLE 6, there are important differences of performance
between the results on ENZYMES-label and ENZYMES-
allfeat. When node labels are used alone, without features,
MLP accuracy is very poor and nearly acts as a random
classifier. When using all features, MLP outperforms GCN
and even some state-of-the-art methods. A first explanation
is that methods are generally optimized for just node label
but not for continuous features. Another one is that the
continuous features already include information related to
the graph structure since they are experimentally measured.
Hence, their values are characteristic of the node when
it is included in the given graph. Since GCN is just a
low-pass filter, it removes some important information on
higher frequency and decreases the accuracy. Thanks to the
multiple convolutions proposed in this paper, our GNN DS-
GCN clearly outperforms other methods on the ENZYMES
dataset.

5 CONCLUSION

The success of convolutions in neural network strongly
depends on the capability of defined convolution kernels
on producing outputs as different as possible. While this
has been widely investigated for CNNs, there has not been
any study for ConvGNNs with graph convolution, to the
best of our knowledge. This paper proposed to fill this gap,
by examining the graph convolutions as custom frequency
profiles and taking advantage of using optimized multi-
frequency profile convolutions. By this way, we significantly
increased the performance on reference datasets.

Nevertheless, the proposed approach has some draw-
backs. First, it needs eigenvalues and eigenvectors of the
graph Laplacian. If the graph has more than 20k nodes,
computing these values is not tractable. Second, we did
not propose yet any automatic procedure to select the
best frequency profile of convolution. Hence, the proposed
approach needs expertise to find the appropriate graph
kernels. Third, although our theoretic complexity is the
same than GCN or ChebNet, in practice our convolutions
are more dense than GCN, which makes it slower in practice
since it cannot take advantage of sparse matrix multipli-
cations. Last, if edge type can be handled by designing
convolution for each type, the proposed method does not
handle continuous edge features and directed edges.

Our future work will target the automatic design of
graph convolutions in spectral domain. It may be done by
unsupervised manner as preprocessing step. Another future
work will be on handling given continuous edge features
and directed edge in our framework. Also, we have a plan
to design convolution frequencies not by function of eigen-
values but through linear combination of Chebyshev kernels
in order to skip the necessity of eigenvalue calculations.

ACKNOWLEDGMENTS

This work was partially supported by the ANR grant APi
(ANR-18-CE23-0014), the Normandy Region project AGAC
and the PAUSE Program.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012.

[2] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 2013, pp.
6645–6649.

[3] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” IEEE Transactions on
Neural Networks, vol. 20, no. 1, pp. 61–80, December 2009.

[4] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyal, and G. E. Dahl,
“Neural message passing from quantum chemistry,” in Proceedings
of the International Conference on Machine Learning, 2017.

[5] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst, “Geometric deep learning: Going beyond euclidean
data,” IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18–42,
July 2017.

[6] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” arXiv preprint
arXiv:1901.00596, 2019.

[7] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral net-
works and locally connected networks on graphs,” arXiv preprint
arXiv:1312.6203, 2013.

[8] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Advances in Neural Information Processing Systems, 2016, pp.
3844–3852.

[9] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets:
Graph convolutional neural networks with complex rational spec-
tral filters,” IEEE Transactions on Signal Processing, vol. 67, no. 1,
pp. 97–109, Jan 2019.

[10] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in International Conference on
Learning Representations (ICLR), 2017.

[11] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in International Conference
on Learning Representations (ICLR), 2018.

[12] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” in Proceedings of the
33rd International Conference on International Conference on Machine
Learning, ICML’16, 2016.

[13] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” arXiv preprint
arXiv:1901.00596, 2019.

[14] F. Chung, Spectral graph theory. American Mathematical Society,
1997.

[15] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other
irregular domains,” IEEE signal processing magazine, vol. 30, no. 3,
pp. 83–98, 2013.

[16] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks
on graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[17] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley,
“Molecular graph convolutions: moving beyond fingerprints,”
Journal of computer-aided molecular design, vol. 30, no. 8, pp. 595–
608, 2016.

PREPRINT 12

[18] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional net-
works on graphs for learning molecular fingerprints,” in Advances
in Neural Information Processing Systems, 2015, pp. 2224–2232.

[19] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proceedings of the International
Conference on Machine Learning, 2016, pp. 2014–2023.

[20] Y. Hechtlinger, P. Chakravarti, and J. Qui, “A generalization of
convolutional neuralnetworks to graph-structured data,” arXiv
preprint arXiv:1704.08165, 2017.

[21] J. Atwood and D. Towsley, “Diffusion-convolutional neural net-
works,” in Advances in Neural Information Processing Systems, 2016,
pp. 1993–2001.

[22] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Pro-
cessing Systems, 2017, pp. 1024–1034.

[23] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds
using mixture model cnns,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 5115–5124.

[24] M. Fey, J. Eric Lenssen, F. Weichert, and H. Müller, “Splinecnn:
Fast geometric deep learning with continuous b-spline kernels,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 869–877.

[25] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation
of rectified activations in convolutional network,” arXiv preprint
arXiv:1505.00853, 2015.

[26] F. Monti, O. Shchur, A. Bojchevski, O. Litany, S. Günnemann, and
M. M. Bronstein, “Dual-primal graph convolutional networks,”
2018.

[27] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” Applied and Computational
Harmonic Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[28] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end
deep learning architecture for graph classification,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[29] S. Abu-El-Haija, B. Perozzi, A. Kapoor, H. Harutyunyan,
N. Alipourfard, K. Lerman, G. V. Steeg, and A. Galstyan, “Mixhop:
Higher-order graph convolution architectures via sparsified neigh-
borhood mixing,” in International Conference on Machine Learning
(ICML), 2019.

[30] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1251–1258.

[31] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer
Society, 2018, pp. 4510–4520.

[32] R. Levie, E. Isufi, and G. Kutyniok, “On the transferability of
spectral graph filters,” arXiv preprint arXiv:1901.10524, 2019.

[33] B. Knyazev, X. Lin, M. R. Amer, and G. W. Taylor, “Spectral
multigraph networks for discovering and fusing relationships in
molecules,” arXiv preprint arXiv:1811.09595, 2018.

[34] M. Zitnik and J. Leskovec, “Predicting multicellular function
through multi-layer tissue networks,” Bioinformatics, vol. 33,
no. 14, pp. i190–i198, 2017.

[35] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neu-
mann, “Benchmark data sets for graph kernels,” 2016, http://
graphkernels.cs.tu-dortmund.de.

[36] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable
pooling,” in Advances in Neural Information Processing Systems,
2018, pp. 4800–4810.

[37] C. Cangea, P. Veličković, N. Jovanović, T. Kipf, and P. Liò,
“Towards sparse hierarchical graph classifiers,” arXiv preprint
arXiv:1811.01287, 2018.

[38] Y. S. Ting Chen, Song Bian, “Dissecting graph neural networks on
graph classification,” CoRR, vol. abs/1905.04579, 2019.

[39] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in International Conference on Learning
Representations, 2019.

[40] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan:
Gated attention networks for learning on large and spatiotemporal
graphs,” in Conference on Uncertainty in Artificial Intelligence, UAI,
2018.

Muhammet Balcilar is a postdoctoral re-
searcher at LITIS Lab, University of Rouen Nor-
mandy. He received his B.S., M.S. and Ph.D. de-
grees in Computer Engineering from Yıldız Tech-
nical University, Istanbul in 2005, 2007 and 2013
respectively. Machine Learning, Image Process-
ing and Robotics are the major research areas
of the researcher.

Guillaume Renton started his PHD at the Litis
laboratory in the university of Rouen in 2017.
His research interest are machine learning,
deep neural network and their applications over
graphs.

Pierre Héroux obtained his PhD from the Uni-
versity of Rouen in 2001. Since 2001, he is
an assistant professor in the Learning Team
of LITIS at University of Rouen. His current
research interests include the development of
pattern recognition methods for graphs with a
focus on subgraph isomorphism, integer linear
programming for the computation/approximation
of graph edit distance and metric learning on
graphs by means of deep architectures.

Benoit Gaüzère obtained his phD from Univer-
sity of Caen in 2013 on the definition of graph
kernels for chemoinformatics. Since 2015, he’s
an assistant professor in the App team of INSA
Rouen Normandie and LITIS lab.

Sébastien Adam is full Professor at the LITIS
lab in Rouen, Normandy University, France. His
domains of interest are at the merging of ma-
chine learning and graph-based pattern recogni-
tion with applications in document image analy-
sis.

Paul Honeine (M’07) obtained in 2007 his Ph.D.
degree in Systems Optimisation and Security
from the University of Technology of Troyes,
France, and was a Postdoctoral Research as-
sociate with the Systems Modeling and De-
pendability Laboratory, from 2007 to 2008. From
September 2008 till August 2015, he was an as-
sistant Professor at the University of Technology
of Troyes, France. Since September 2015, he is
full professor at the LITIS Lab of the University
of Rouen (Normandie Université), France.

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

PREPRINT 13

Bridging the Gap Between Spectral and Spatial Domains in Graph Neural Networks

Muhammet Balcilar, et al.

APPENDIX A
THEORETICAL ANALYSIS OF CHEBYSHEV KERNELS
FREQUENCY PROFILE

In this appendix, we provide the expressions of the full and
standard frequency profiles of the Chebyshev convolution
kernels.

Theorem A.1. The frequency profile of the first Chebyshev
convolution kernel for any undirected arbitrary graph defined by
C(1) = I can be defined by

z1(λ) = 1, (22)

where 1 denotes the vector of ones of appropriate size.

Proof: When the identity matrix is used as convolu-
tion kernel, it just directly transmits the inputs to the outputs
without any modification. This process is called all-pass
filter. Mathematically, we can calculate the full frequency
profile for kernel I by using Corollary 1.1, namely

z1 = U>IU = U>U = I, (23)

since the eigenvectors are orthonormal. Therefore, we can
parameterize the diagonal of the full frequency profile by λ
and reach the standard frequency profile as follows:

z1(λ) = diag(I) = 1. (24)

Theorem A.2. The frequency profile of the second Chebyshev
convolution kernel for any undirected arbitrary graph given by
C(2) = 2L/λmax − I can be defined by

z2(λ) =
2λ

λmax
− 1. (25)

Proof: We can compute the C(2) kernel full frequency
profile using Corollary 1.1:

z2 = U>
(

2

λmax
L− I

)
U. (26)

Since U>IU = I , (26) can be rearranged as

z2 =
2

λmax
U>LU − I. (27)

Since λ = [λ1, . . . , λn] are the eigenvalues of the graph
Laplacian L, those must conform to the following condition:

LU = U diag(λ); (28)
U>LU = diag(λ). (29)

Replacing (29) into (27), we get

z2 =
2

λmax
diag(λ)− I. (30)

This full frequency profile consists of two parts, a diagonal
matrix and the negative identity matrix. Therefore, we can

parameterize the full frequency matrix diagonal to show the
standard frequency profile as follows:

z2(λ) = diag(z2) =
2λ

λmax
− 1. (31)

Theorem A.3. The frequency profile of third and followings
Chebyshev convolution kernels for any undirected arbitrary graph
can be defined by

zk = 2z2zk−1 −zk−2, (32)

and their standard frequency profiles by

zk(λ) = 2z2(λ)zk−1(λ)−zk−2(λ). (33)

Proof: Given the third and following Chebyshev ker-
nels defined by C(k) = 2C(2)C(k−1) − C(k−2) and using
Corollary 1.1, the corresponding frequency profile is

zk = U>
(

2C(2)C(k−1) − C(k−2)
)
U. (34)

By expanding (34), we get

zk = 2U>C(2)C(k−1)U − U>C(k−2)U. (35)

Since UU> = I , we can insert the product UU> into (35).
Thus, we have

zk = 2U>C(2)UU>C(k−1)U − U>C(k−2)U (36)

zk = 2
(
U>C(2)U

)(
U>C(k−1)U

)
− U>C(k−2)U. (37)

Since zk′ = U>C(k′)U for any k′, it follows that (37) and
(32) are identical.

Hence z1 and z2 are diagonal matrices, and the rest of
the kernels frequency profiles become diagonal matrices in
(32). Therefore, we can write the corresponding standard
frequency profiles of third and followings Chebyshev con-
volution kernels as follows:

zk(λ) = 2z2(λ)zk−1(λ)−zk−2(λ). (38)

APPENDIX B
THEORETICAL ANALYSIS OF CAYLEYNET FRE-
QUENCY PROFILE

CayleyNet uses in (2) the weight vector parametrization
Fi,j,l = [gi,j,l(λ1, h), ..., gi,j,l(λn, h)]>, where the function
g(·, ·) is defined in [9] by

g(λ, h) = c0 + 2Re

(
r∑

k=1

ck

(
hλ− ı
hλ+ i

)k)
, (39)

where i2 = −1, Re(·) is the function that returns the real
part of a given complex number, c0 is a trainable real coef-
ficient, and c1, . . . , cr are complex trainable coefficients. We

PREPRINT 14

can write hλ − i in Euler form by
√
h2λ2 + 1.ei atan2(−1,hλ)

and for hλ + i by
√
h2λ2 + 1.ei atan2(1,hλ). By this substitu-

tion, (39) becomes

g(λ, h) = c0 + 2Re

(
r∑

k=1

cke
ik(atan2(−1,hλ)−atan2(1,hλ))

)
.

(40)
where atan2(y, x) is the inverse tangent function, which
finds the angle (in range of [−π, π]) of a point given its y and
x coordinates. For further simplification, let us introduce the
θ(·) function defined by

θ(x) = atan2(−1, x)− atan2(1, x). (41)

Since the cks are complex numbers, we can write them as
a sum of real and imaginary parts, ck = ak/2 + ibk/2 (the
scale factor 2 is added for convenience). Thus, (40) can be
rewritten as follows:

g(λ, h) = c0 +Re

(
r∑

k=1

(ak + ibk)eikθ(hλ)

)
. (42)

We can replace eikθ(hλ) with its polar coordinate equiva-
lence form cos(kθ(hλ)) + i sin(kθ(hλ)). When we remove
the imaginary components because of Re(·) function, (42)
becomes

g(λ, h) = c0 +
r∑

k=1

ak cos(kθ(hλ))− bk sin(kθ(hλ)). (43)

In this definition, there is no complex coefficient, but only
real coefficients (c0, ak and bk for k = 1, . . . , r) to be tuned
by training. By using the form in (43), we can parametrize
CayleyNet by the parametrization matrix B ∈ Rn×2r+1, as
in (3), by

[g(λ0, h), . . . , g(λn, h)]> = B[c0, a1, b1, . . . , ar, br]
>. (44)

The s-th column vector of matrix B, denotes Bs, must fulfill
the following conditions:

Bs = zs(λ) =

1 if s = 1
cos(s2θ(hλ)) if s ∈ {2, 4, . . . , 2r}
− sin(s−12 θ(hλ)) if s ∈ {3, 5, . . . , 2r + 1}

(45)
We can see CayleyNet as a spectral graph convolution that
uses 2r + 1 convolution kernels. The first kernel is an
all-pass filter, and the frequency profiles of remaining 2r
kernels (zs(λ)) are created using sine and cosine functions,
with a parameter h used to scale the eigenvalues in (45).
Considering (12) in Theorem 1, we can write CayleyNet’s
convolutions (C(s)) in spatial domain. CayleyNet includes
the tuning of this scaling parameter in the training pipeline.
Note that because of the function definition in (41), θ(hλ) is
not linear in λ. Therefore, zs cannot be a perfect sinusoidal
in λs.

APPENDIX C
THEORETICAL ANALYSIS OF GCN FREQUENCY
PROFILE

In this appendix, we study the GCN and its convolution
kernel. We start by deriving the expression of its frequency
profile.

Theorem C.1. The frequency profile of GCN convolution kernel
is defined by

CGCN = D̃−1/2ÃD̃−1/2, (46)

and can be written as

zGCN (λ) = 1− p

p+ 1
λ, (47)

where λ is the eigenvalues of the normalized graph Laplacian and
the given graph is an undirected regular graph whose node degrees
are all equal to p.

Proof: Since D̃i,i =
∑
j Ãi,j and Ã = (A+ I), we can

rewrite (46) as:

CGCN = (D + I)−1/2(A+ I)(D + I)−1/2. (48)

Under the assumption that all node degrees are equal to p,
we can write the diagonal degree matrix by D = pI . Then,
(48) can be rewritten as

CGCN = ((p+ 1)I)−1/2(A+ I)((p+ 1)I)−1/2, (49)

which is equivalent to

CGCN =
A+ I

p+ 1
. (50)

Using Corollary 1.1, we can express the frequency profile of
CGCN in matrix form by

zGCN =
1

p+ 1
U>AU +

1

p+ 1
I. (51)

Since λ = [λ1, . . . , λn] are the eigenvalues of the normalized
graph Laplacian L = I−D−1/2AD−1/2, they must conform
to the following condition:(

I −D−1/2AD−1/2
)
U = U diag(λ). (52)

According to D = pI , it conforms to D−1/2AD−1/2 = A/p.
Thus, (52) can be written as

U − AU

p
= U diag(λ). (53)

Then AU is expressed as

AU = pU − pU diag(λ) (54)

Replacing AU in (51), we obtain

zGCN =
1

p+ 1
U> (pU − pU diag(λ)) +

1

p+ 1
I. (55)

Since U>U = I , then we have

zGCN =
pI − p diag(λ) + I

p+ 1
. (56)

This expression can be simplified to

zGCN = I − p

p+ 1
diag(λ), (57)

which is equal to the matrix form defined in (47) since
zGCN (λ) = diag(zGCN).

This demonstration shows that the GCN frequency pro-
file acts as a low-pass filter. When the given graph is a
circular undirected graph, all node degrees are equal to
p = 2, leading to a frequency profile defined by 1 − 2λ/3.
Since the normalized graph Laplacian eigenvalues are in the

PREPRINT 15

range [0, 2], the filter magnitude linearly decreases until the
third quarter of the spectrum (cut-off frequency) where it
reaches zero. Then it linearly increases until the end of the
spectrum. This explains the shape of the frequency profile of
GCN convolutions for 1D regular graph observed in Fig. 4.

However, this conclusion cannot explain the perturba-
tions on the GCN frequency profile. To analyse this point,
we relax the assumption D = pI and rewrite (48) as

CGCN = (D + I)−1 + (D + I)−1/2A(D + I)−1/2. (58)

We can see that the GCN kernel consists of two parts,
CGCN = c1 +c2, where first part is given by c1 = (D+I)−1

and the second one is c2 = (D + I)−1/2A(D + I)−1/2.
For the second part (c2), we can write it using the

element-wise multiplication operator � (Hadamard multi-
plication)

c2 = A�
√
1/(d+ 1) ·

√
1/(d+ 1)

>
, (59)

where d is the column degree vector d = diag(D) and the
division and square-root are also element-wise (Hadamard)
operations. With the same notation, we can rewrite the
Chebyshev second kernel, assuming that λmax = 2,

C(2) = −A�
√
1/d ·

√
1/d

>
. (60)

The two expressions (59) and (60) show that negative c2 is
an approximation of the second Chebyshev kernel if vector
d consists of same values, as it was assumed in Theorem C.1.
When the vector d is composed of different values, the two
matrices

√
1/d.

√
1/d

>
and

√
1/(d+ 1).

√
1/(d+ 1)

>
are

not proportional for each coordinate (i.e., entry). To obtain
c2 from C(2), we need to use different coefficients for each
coordinate of the kernel. If the difference between node
degrees is important, these coefficients have the strong in-
fluence, and c2 may be very different from C(2). Conversely,
if the node degrees are quite uniform, these coefficients
may be neglected. This phenomenon is the first cause of
perturbation on GCN frequency profile.

The first part (c1) of the GCN kernel in (58) is more
interesting. Actually, it is a diagonal matrix that shows
the contribution of each node in the convolution process.
Instead of looking for some approximations of known fre-
quency profiles such as those of Chebyshev kernels, we can
write its frequency profile directly. Using Corollary 1.1, we
can express the frequency profile of c1 in matrix form by

zc1 = (U>c1 U), (61)

where U is the eigenvectors matrix. By taking advantage of
having a diagonal kernel c1, we can express each component
of full frequency profile as

zc1(i, j) =
n∑
k=1

(
1

1 + dk
Ui,kUj,k

)
, (62)

where n is the number of nodes in the graph, dk is degree of
the k-th node, Ui,k is the k-th element of i-th eigenvector. As
eigenvectors Ui and Uj are orthogonal for i 6= j, their scalar
product is null. However, in (62), the weighting coefficient

1
1+dk

is not constant over all the dimensions of the eigen-
vectors. Therefore, there is no guarantee that zc1(i, j) is null.

This is another reason that explains that the GCN frequency
profile has many non-zero elements outside of the diagonal.

In addition, it is also clear that the standard frequency
profile of c1 (diagonal of zc1 , i.e., zc1(i, i) in (62)) is not
smooth. Indeed, the diagonal elements of zc1 can be written
as a weighted sum of squared eigenvalues elements, which
again is weighted by 1/(1 + dk). If the latter is constant
for all k, the sum of squared eigenvectors elements has to
be 1 since the eigenvectors have unit L2-norm. But in the
general case where 1/(1 + dk) are not necessarily constant
over all the dimensions of eigenvectors, the diagonal of the
matrix may have some perturbations. This point constitutes
another explanation on the fact that the GCN standard
frequency profile is not smooth.

On the other hand, under the assumption that the node
degrees distribution is uniform, we can derive the following
approximation:

p ≈ d =
1

n

n∑
k=1

dk. (63)

We can then write an approximation of the GCN frequency
profile as a function of the average node degree by replacing
p with d in (54) and obtain the final approximation:

zGCN (λ) ≈ 1− d

d+ 1
λ. (64)

We can theoretically show the cut-off frequency where GCN
kernel’s frequency profile reach 0 by

λcut ≈
d+ 1

d
. (65)

APPENDIX D
APPLICATION DETAILS

This section presents some additional details on the experi-
mental settings and parameter tuning.

In the experiments of transductive learning problems,
we tuned single convolution low-pass filter’s parameter η in
z1(λ) = (1 − λ/λmax)η . TABLE A1 shows searching space
of η and their loss and accuracy performance over different
datasets. One can see that we decided to use η = 5 for
Cora and Citeseer, and η = 3 for PubMed dataset where it
maximizes the validation set performance.

TABLE A1
Minimum validation set loss value and maximum validation set

accuracy over different low-pass filters.

Convolution Cora Citeseer PubMed
z1(λ) Loss Acc Loss Acc Loss Acc

(1− λ/λmax)1 1.116 80.4 1.12 73.0 0.654 77.1
(1− λ/λmax)3 0.745 81.8 1.02 72.6 0.572 81.1
(1− λ/λmax)5 0.705 81.8 1.02 73.8 0.592 80.5
(1− λ/λmax)10 0.752 81.2 1.01 72.2 - -
(1− λ/λmax)20 0.792 80.8 1.01 71.2 - -

In depthwise separable graph convolution layer, the
initialization of the trainable parameters w(s,l) affects the
performance. If designed convolutions are supposed to
have equal effect on the model, these parameters can be

PREPRINT 16

TABLE A2
Used hyperparameters.

Hyperparameters Cora Citeseer PubMed PPI PROTEINS ENZYMES-label ENZYMES-allfeat
Hidden Activations ReLU ReLU ReLU ReLU ReLU ReLU ReLU
Output Activation Linear Linear ReLU Linear Linear Linear Linear
Hidden Biases False False False True False False False
Output Bias True True False True True True True
Input Dropout 0.75 0.75 0.25 0 0 0.1 0.1
Kernel Dropout 0.75 0.75 0 0 0 0.1 0.1
Weight Decay 3e-4 3e-4 5e-4 0 0 1e-4 1e-4
Weight Decay on DSG 3e-3 3e-3 5e-3 0 - - -
Learning Coeff 0.01 0.01 0.01 0.01 0.0005 0.001 0.001
Batch Size 1 1 1 1 333 180 180
Epoch 400 100 250 500 100 500 500

initialized randomly. But, if one is supposed to have more
effect on the model, the important convolution kernel’s
correspondence weights can be initialized by 1, the rest
of them initialized by 0. In our model, we assumed the
first kernel is always the most important kernel. Thus, we
initialized the first kernel’s depthwise separable weights as
w(1,l) = 1, and the rest of the kernel’s depthwise separable
weights w(s,l) = 0 when s > 1. In this way, the model starts
training as there is only kernel, which is supposed to be the
most important one.

The used hyperparameters in our experiments are pre-
sented in Table A2. We applied softmax to the output
of the models and calculate cross entropy loss function
for all problems expect PPI dataset. Since PPI is two class
classification problem and we coded output by one neuron,
we applied tansig to the output of the PPI model and used
binary cross entropy as loss function. In our models we did
not consider any regularization on the bias parameter, but
we applied the L2-loss to the trainable weights. In the depth-
wise separable layer, there are two different kinds of weights
where additional one is depthwise weights. That is why in
TABLE A2, there is two different weight decays. We always
used ReLU activation on the hidden layers and the Linear
for output layers. The table also provides if bias values are
used in the hidden and output layers. In our model, we
used two different types of dropout: the dropout applied on
the inputs of the layer as usually used in the literature, and
the dropout applied on the convolution kernel, which was
first used in [11] according to the best of our knowledge.
Since Cora, Citeseer and PubMed datasets consist of one
single graph, batch size is 1 for these problems. For the PPI
dataset of only 24 graphs, we still prefer to update the model
for each training graph. But for PROTEINS and ENZYMES
datasets, we update the model 3 times in each epoch. Since
in PROTEINS there are 1113 graphs and in each fold there
are 1000 graphs in the train set, we used a 333 batch size.
As the same in ENZYMES there is 540 graphs in each train
fold, we used a 180 batch size to update the model 3 times
in a single epoch. We used the Adam optimization and a
fixed learning-coefficient in all models. The used learning
coefficient and the maximum epoch number can be found
in the Table A2.

	Introduction
	ConvGNN: Problem Statement and State of the Art
	Graph Learning Problems
	Literature review
	Spectral ConvGNN
	Spatial ConvGNN
	Spectral-rooted Spatial Convolutions

	Bridging Spatial and Spectral ConvGNN
	Theoretical analysis
	Spectral Analysis of Existing Graph Convolutions
	Depthwise Separable Graph Convolutions

	Experimental evaluation
	Transductive Learning Problem
	Datasets
	Models
	Results

	Inductive Learning Problem
	Datasets
	Models
	Results

	Conclusion
	References
	Biographies
	Muhammet Balcilar
	Guillaume Renton
	Pierre Héroux
	Benoit Gaüzère
	Sébastien Adam
	Paul Honeine

	Appendix A: Theoretical Analysis of Chebyshev Kernels Frequency Profile
	Appendix B: Theoretical Analysis of CayleyNet Frequency Profile
	Appendix C: Theoretical Analysis of GCN Frequency Profile
	Appendix D: Application Details

