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Abstract

Descriptive complexity provides intrinsic, that is, machine-independent, characterizations of the
major complexity classes. On the other hand, logic can be useful for designing programs in a
natural declarative way. This is particularly important for parallel computation models such as
cellular automata, because designing parallel programs is considered a difficult task.

This paper establishes three logical characterizations of the three classical complexity classes
modeling minimal time, called real-time, of one-dimensional cellular automata according to their
canonical variants: unidirectional or bidirectional communication, input word given in a parallel or
sequential way.

Our three logics are natural restrictions of existential second-order Horn logic with built-in
successor and predecessor functions. These logics correspond exactly to the three ways of deciding
a language on a square grid circuit of side n according to one of the three canonical locations of an
input word of length n: along a side of the grid, on the diagonal that contains the output cell, or
on the diagonal opposite to the output cell.

The key ingredient of our results is a normalization method that transforms a formula from one
of our three logics into an equivalent normalized formula that faithfully mimics a grid circuit.

Then, we extend our logics by allowing a limited use of negation on hypotheses like in Stratified
Datalog. By revisiting in detail a number of representative classical problems - recognition of the set
of primes by Fisher’s algorithm, Dyck language recognition, Firing Squad Synchronization problem,
etc. - we show that this extension makes easier programming and we prove that it does not change
the complexity of our logics in real-time.

Finally, starting from our experience in expressing those representative problems in logic, we
argue that our logics are high-level programming languages: they allow to express in a natural,
precise and synthetic way the algorithms of literature, based on signals, and to translate them
automatically into cellular automata of the same complexity.

Keywords: computational complexity, descriptive complexity, cellular automata, real-time
computation, inductive logic, programming

1. Introduction

Descriptive complexity and programming

There are two criteria for a complexity class: it contains a number of “natural” problems that
are complete in the class; it has machine-independent “natural” characterizations, usually in logic,
i.e., in so-called descriptive complexity. The most famous example is Fagin’s Theorem [11, 25],5

which characterizes NP as the class of problems definable in existential second-order logic (ESO).
Similarly, Immerman-Vardi’s Theorem [25, 21] and Grädel’s Theorem [13, 14] characterize the
class P by first-order logic plus least fixed-point, and second-order logic restricted to Horn formulas,
respectively.

Another interest of descriptive complexity is that it allows to automatically derive from a logical10

description of a problem a program that solves it. This is particularly interesting for the design
of parallel programs that is considered a difficult task [24, 30]. A number of algorithmic problems
(product of integers, product of matrices, sorting, etc.) are computable in linear time on cellular
automata (CA), a local and massively parallel model. For each such problem, the literature presents
an “ad hoc” parallel and local algorithmic strategy and gives the program of the final CA in an15

informal way [12, 8]. However, the considered problems can be defined inductively in a natural way.
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Logical Definitions Versus Programs of Real-Time CA 3

For instance, the product of two integers in binary notation is simply defined by the usual school
method and one may hope to directly derive a parallel program from such an inductive process.

Descriptive complexity and linear time on cellular automata

The present paper is a considerably extended version of the conference paper [18] which is20

in some sense the sequel of the paper [3] (see also [19]). First, [3] observes that the inductive
processes defining the considered problems (product of integers, product of matrices, sorting, etc.)
are “local” and are naturally formalized by Horn formulas, that is by conjunctions of first-order
Horn clauses. Therefore, the computation is nothing else than the classical resolution method on
Horn clauses, as in Prolog and Datalog [25, 14, 1]. Moreover, on every concrete problem defined by25

a Horn formula with d + 1 first-order variables, this inductive computation by Horn rules can be
geometrically modeled as the displacement of a d-dimensional hyperplane along some fixed line in
a space of dimension d+ 1. To capture these inductive behaviors, [3] defines a logic denoted monot-
ESO-HORNd(∀d+1, arityd+1) obtained from the logic ESO-HORN tailored by Grädel [14] to characterize
P, by restricting both the number of first-order variables and the arity of second-order predicate30

symbols. Besides, it includes an additional restriction – the “monotonicity condition” – that reflects
the geometrical consideration above-mentioned. [3] proves that this logic exactly characterizes the
linear time complexity class of cellular automata: more precisely, for each integer d ≥ 1, a set L of
d-dimensional pictures can be decided in linear time on a d-dimensional CA – written L ∈ DLINdCA
– if and only if it can be expressed in monot-ESO-HORNd(∀d+1, arityd+1). For short:35

DLINdCA = monot-ESO-HORNd(∀d+1, arityd+1).

To summarize, expressing a concrete problem in this logic – which seems an easy task in practice
and is also a necessary and sufficient condition according to the above equality – guarantees that
this problem can be solved in linear time on a CA; moreover, the Horn formula that defines the
problem can be automatically translated into a program of CA that computes it in linear time.40

Logics for minimal time of cellular automata?

At this point, two natural questions arise:

1. Besides linear time, a robust and very expressive complexity class, what are the other signif-
icant and robust complexity classes of CA?

2. Can we exhibit characterizations of those complexity classes in some naturally (syntactically)45

defined logics so that any definition of a problem in such a logic can be automatically translated
into a program of the complexity considered?

Besides linear time, the main complexity notion well-studied for a long time in the literature
of CA is real-time, i.e., minimal time [5, 33, 10]. A cellular automaton is said to run in real-
time if it stops, i.e., gives the answer yes or no, at the minimal time sufficient for the output cell50

(the cell that gives the answer) to have received each letter of the input. Real-time complexity
appears as a sensitive/fragile notion and one generally thinks it is so for CA of dimension 2 or
more [35, 15]. However, maybe surprisingly, one knows that real-time complexity is a robust notion
for one-dimensional CA in the following sense: according to the many natural variants of the
definition of a one-dimensional CA, which essentially rest on the choice of the neighborhood of the55

CA and the parallel or sequential presentation of its input word, exactly three real-time classes of
one-dimensional CA2 have been proved to be distinct [5, 4, 20, 31, 34, 39, 40]:

1. RealTimeCA = RealTimeOIA;

2. RealTimeIA;

3. Trellis = RealTimeOCA.60

2By default, a CA has a two-way communication and a parallel input mode. Any CA (resp. one-way CA or
OCA) with sequential input mode is also called an iterative array or IA (resp. one-way IA or OIA).
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The final and decisive step to establish this classification is a nice dichotomy of [31] on admissible
neighborhoods3 of CA, which can be rephrased as follows: for each neighborhood N admissible with
respect to the first cell as output cell, the real-time complexity class of one-dimensional CA with
parallel input mode and neighborhood N ,

• either is equal to the real-time class for the neighborhood {−1, 0, 1}, i.e., RealTimeCA (class 165

above),

• or is equal to the real-time class for the neighborhood {−1, 0}, i.e., Trellis (class 3 above).

Further, it is surprising to notice that

• the mutual relations between those three real-time classes are wholly elucidated : classes
Trellis and RealTimeIA are mutually incomparable for inclusion whereas we have the strict70

inclusion Trellis∪ RealTimeIA $ RealTimeCA [5, 7, 34],

• it is unknown whether the trivial inclusion RealTimeCA ⊆ DLIN1
CA is strict; worse, whether the

inclusion RealTimeCA ⊆ LinSpace is strict is an open problem!

Logics and grid circuits for real-time classes

Each of the three real-time classes 1-3 is robust, i.e, is not modified for many variants of CA (change75

of neighborhoods, etc.) and has two or three quite different equivalent definitions. For example,
RealTimeCA is equal to the linear time class of one-way CA with parallel input mode [4, 39].
Similarly, [28] has proved the surprising result that Trellis is the class of languages generated
by linear conjunctive grammars (see also [29]) and [36] has established that a language L is in
RealTimeIA if and only if its reverse language LR is recognized in real-time by a one-way alternating80

automaton with one counter.
Logics have two nice and complementary properties: they are flexible, hence expressive; they

have normal forms, so can be tailored for efficient programming. The main idea that led us to
conceive the different logics for real-time classes can be summarized by the following simple question:
what are the different ways to decide a language on a square grid circuit?85

For any integer n ≥ 1 and any input word w = w1 . . . wn of length n, let Cn be the grid circuit
n× n where the state q ∈ S (for finite S) of any site (i, j), 1 ≤ i, j ≤ n, is determined by the states
of its “predecessors” (i−1, j), if it exists (i > 1), and (i, j−1), if it exists (j > 1), and by the letter
wh of the input word if this letter is placed on the site (i, j). The input word w is accepted by the
grid circuit Cn if the state of the output cell (n, n) is accepting. Up to symmetries, there are three90

canonical ways to arrange an input word w = w1 . . . wn on the grid Cn, see Figure 1:

1. GRID1: place the input on any side (or, equivalently, on both sides4) that does (do) not contain
the output cell;

2. GRID2: place the input on the diagonal that contains the output cell;

3. GRID3: place the input on the diagonal opposite to the output cell.95

Remark 1. To be complete, one should say that there is a fourth arrangement: place the input word
on a side containing the output cell. In this case, the grid circuit behaves like a finite automaton
(CA of dimension zero).

Remark 2. In order to get a natural logic corresponding to GRID3 (called inclusion logic) it will be
convenient to rotate Figure 1 by an anticlockwise rotation of 90◦: see Figure 11 below.100

A simple (reversible) deformation transforms a grid circuit of GRIDi, i = 1, 2, 3, into a time-
space diagram of a CA of the real-time class i considered (recall: 1: RealTimeCA; 2: RealTimeIA;
3: Trellis), and conversely. More precisely, to characterize the three real-time classes, we will
define three sub-logics of the Horn logic that characterizes linear time of one-dimensional CA
(DLIN1

CA = monot-ESO-HORN1(∀2, arity2)), called respectively pred-ESO-HORN, pred-dio-ESO-HORN105

and incl-ESO-HORN (defined in the next section), and we will prove the following equalities:

3The neighborhood of a CA is the finite set of integers N such that the state of any cell x at any non-initial
instant t is determined by the states of the cells x + d, for d ∈ N , at instant t − 1. A neighborhood is admissible
with respect to a fixed output cell (in general the first or the last cell) if it allows to communicate each bit of the
input to the output cell.

4This equivalence is the consequence of Step 7 (folding the domain) in the proof of Lemma 1 below.



Logical Definitions Versus Programs of Real-Time CA 5

w1w1

w2

w2

w3

w3

w4

w4

w5

w5

GRID1

w1

w2

w3

w4

w5

GRID2

w1

w2

w3

w4

w5

GRID3

Figure 1: The three ways to arrange the input on the grid

1. pred-ESO-HORN = GRID1 = RealTimeCA;

2. pred-dio-ESO-HORN = GRID2 = RealTimeIA;

3. incl-ESO-HORN = GRID3 = Trellis.

To establish the double nature of our three logics and deduce the previous equalities 1-3, we110

present each logic in two forms:

• we try to define it as large as possible, showing the extent of its expressiveness;

• we prove for it the most restricted normal form.

In each case, a formula in normal form can be translated literally into a grid program, which is
essentially a CA of the considered real-time complexity class.115

More flexible logics for programming real-time cellular automata

The best argument in favor of our logics is that they allow many properties to be expressed
naturally and therefore to be easily programmed on a grid, or equivalent, on a cellular automaton
in real time. However, the obligation to formalize everything with Horn clauses seems too strict for a
natural expression of some reference languages of the literature, for example, the Dyck language (the120

set of well-parenthesed expressions, see [28], pp 81-83, or [10]), or the set of prime integers [12, 9, 27],
or the Čulik language (the set of words of the form aibi+jaj) [20, 6, 39]. Fortunately, we will show in
this paper that all these examples are naturally expressed in slightly extended versions of our logics.
They now allow a limited use of negation on hypothesis computation atoms. This is comparable to
the Datalog extension called Stratified Datalog, see e.g. [1].125

An essential point should be emphasized: even if they allow more flexible expression, our ex-
tended logics, called inductive logics (they are no longer Horn logics), are equivalent to the original
logics pred-ESO-HORN, pred-dio-ESO-HORN and incl-ESO-HORN, respectively, because we establish
that they still characterize the same complexity classes, RealTimeCA, RealTimeIA and Trellis, re-
spectively. Overall, the main new contribution of this paper compared to its conference version [18]130

is the study of a number of reference problems of the literature that we express in our logics in a
natural way. This is made possible thanks to the extensions of our Horn logics we call inductive
logics.

Structure of the paper: In preliminaries, we recall the classical definitions of one-dimensional
cellular automata and of their real-time classes; moreover, after defining our three Horn logics, we135

succinctly present our main results and, as examples, we give natural expressions of some classical
problems in our Horn logics ; in Subsection 3.2, a simplified version of the translation process from a
logical formula to some cellular automaton is detailed for one of those examples. Section 4 formally
describes the first step of this translation process, i.e., the normalization of our Horn logics, in
the general case. In Section 5, we define extensions of our Horn logics with negation — so-called140

inductive logics — and similarly describe their normalization process. Using those normal forms,
we show in Section 6 that our logics exactly characterize the three real-time complexity classes
of cellular automata and also – for inclusion logic – the class of linear conjunctive languages of
Okhotin [28]. In Sections 7 and 8, some famous problems of the literature are programmed in our
logics. Finally, Section 9 gives a conclusion with open problems and suggests some lines of research.145
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2. Preliminaries

2.1. Cellular automata and real-time complexity

A one-dimensional cellular automaton (CA) is a linear array of identical finite state automata
(called cells). Each cell takes its values from a finite set of states S and interact with its adjacent
neighbors at discrete time steps. At initial time t = 1, each cell receives a state from S. Then the150

computation is carried out locally: the new state of a cell is the result of a transition function f

that depends on the states of its neighborhood at the previous time step. This transition function
applies synchronously to all cells at each time step. Formally said:

Definition 1. A cellular automaton (CA) is a triple (S,N , f) where:

• S is a finite set of states155

• N = {n1, . . . , n|N |} ⊂ Z is the neighborhood

• f : S|N | → S is the transition function.

Denoting by 〈c, t〉 the state of the cell c at time t, the state is updated in this way: 〈c, t + 1〉 =
f(〈c+ n1, t〉, . . . , 〈c+ n|N |, t〉)

Example 1. Consider the cellular automaton A = ({0, 1}, {−1, 0, 1}, f) where f : {0, 1}3 → {0, 1}160

is defined by f(x, y, z) = max(x, z)× (1− y) + min(1− x, 1− z)× y. The first steps of the compu-
tation on the initial configuration . . . 11011010000111 . . . are depicted in the following space-time
diagram.

. . . . . .1

. . . . . .2

. . . . . .3

. . . . . .4

Time ...
...

Space

: 0

: 1

Let us look at another cellular automaton T = ({d, p, s, r}, {−1, 0}, f) where f : {p, s, d, r}2 →165

{p, s, d, r} is presented in the table below. On the right, the space-time diagram depicts the beginnings
of the computation on the input . . . psspsppspss.

p s d r

p p d p p
s r s r r
d r s r p
r r s s r

. . .

. . .

. . .

. . .

. . .

p s s p s p p s p s s

r d s r d r p d r d s

r s s r s p r p p s s

r s s r s r p r p d s

p s s r s r r p r p s

One main difference between these two CA is that the information flow goes in both directions
for A since its neighborhood is {−1, 0, 1}, whereas the information flow is restricted from left to170

right for T since its neighborhood is {−1, 0}. Below we will refer to automata with bidirectional
communication (whose canonic neighborhood is {−1, 0, 1}) as two-way CA and to those with uni-
directional communication (whose canonic neighborhood is {−1, 0}) as one-way CA.

In what follows, we will consider CA as a language recognizer which operates on input word w175

and answers either “accept” or “reject”. For that, it should be made clear how the input w is given
to the CA and how the result of the computation is obtained.

First, we state some conditions on the set of states S.

• The input word letters belong to the set of states: Σ ⊂ S.
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• A subset of accepting states Sacc ⊂ S is identified.180

• Two special states are also distinguished: one permanent state ] and one quiescent state λ.
A cell in the permanent state ] remains in this state forever. A cell in the quiescent state λ
remains in this state as long as its neighborhood is quiescent.

Regarding on how to present the input to the array, two modes are usually considered: the
parallel mode and the sequential mode. In parallel mode, the whole input is supplied at initial time:185

the i-th symbol of the input w = w1 . . . wn is given to the cell i at time 1: 〈i, 1〉 = wi. In sequential
mode, for an input of length n, all cells of index in [1, n] are initially in the quiescent state λ and
the n input symbols are read one after other by a distinguished cell, the cell 1: wt is given to the
cell 1 at time t. This requires a specific transition function finput : Σ × S|N | → S that applies
to the distinguished cell 1: 〈1, 1〉 = finput(w1, λ, . . . , λ), 〈1, t〉 = finput(wt, 〈1 + n1, t − 1〉, . . . , 〈1 +190

n|N |, t− 1〉), for t > 1. Furthermore, in both modes, the computation is bounded by the length of
the input: initialized to the permanent state ], the cells of index outside [1, n] remain inactive. In
the literature, a CA that reads the input word sequentially is known as iterative array (IA).

With outputs being “accept” or “reject”, one specific cell, called output cell, is enough to indicate
the answer of the computation. For the neighborhood {−1, 0, 1} that permits two-way communica-195

tion, the output cell is usually chosen to be the cell 1. For the neighborhood {−1, 0} that induces
one-way communication, the output cell is the cell n, the single one able to get all information of
the input. Now a word w is said to be accepted if there is a time t such that the output cell reaches
a state in Sacc.

200

In the sequel, we will focus exclusively on minimal computation time. In minimal time, called
real-time, the computation on an input w is completed as soon as the output cell has received each
letter of the input. Then a language is said to be recognized in real-time if each of its words is
accepted in minimal time. It gives us four classes of real-time CA languages, according to:

• the input mode is parallel or sequential;205

• the communication is two-way with the neighborhood {−1, 0, 1} or one-way with the neigh-
borhood {−1, 0}.

Definition 2 (Real-time complexity classes). Figure 2 illustrates these classes.

1. L belongs to RealTimeCA, the class of languages recognized in real-time by two-way cellular
automata with parallel input mode, if L consists of all the words for which the output cell 1210

is in an accepting state at time n.

2. L belongs to RealTimeOIA, the class of languages recognized in real-time by one-way iterative
arrays with sequential input mode, if L consists of all the words for which the output cell n is
in an accepting state at time 2n− 1.

3. L belongs to RealTimeIA, the class of languages recognized in real-time by two-way iterative215

arrays with sequential input mode, if L consists of all the words for which the output cell 1 is
in an accepting state at time n.

4. L belongs to RealTimeOCA, the class of languages recognized in real-time by one-way cellular
automata with parallel input mode, if L consists of all the words for which the output cell n
is in an accepting state at time n.220

It turns out that RealTimeCA and RealTimeOIA characterize the same class of languages (see [4,
20]). Further, as illustrated in Figure 2, the time-space diagram of a RealTimeOCA is topologically
equivalent to what is called a Trellis. Just to recapitulate, we have exactly three distinct real-time
classes of cellular automata:

1. RealTimeCA = RealTimeOIA;225

2. RealTimeIA;

3. Trellis = RealTimeOCA.
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Figure 2: The space-time diagrams of the three natural real-time classes

2.2. Our logics

The “local” nature of our logics requires that the underlying structure encoding an input word
w = w1 . . . wn on its index interval [1, n] only uses the successor and predecessor functions and the230

monadic predicates min and max as its only arithmetic functions/predicates:

Definition 3 (structure encoding a word). Each nonempty word w = w1 . . . wn ∈ Σn on a fixed
finite alphabet Σ is represented by the first-order structure

〈w〉 := ([1, n]; (Qs)s∈Σ, min, max, suc, pred)

of domain [1, n], monadic predicates Qs, s ∈ Σ, min and max, such that Qs(i) ⇐⇒ wi = s,
min(i) ⇐⇒ i = 1, and max(i) ⇐⇒ i = n, and unary functions suc and pred such that
suc(i) = i+ 1 for i < n and suc(n) = n, pred(i) = i− 1 for i > 1 and pred(1) = 1. Let SΣ denote
the signature {(Qs)s∈Σ, min, max, suc, pred} of structure 〈w〉. The monadic predicates Qs, s ∈ Σ,235

min, and max of SΣ are called input predicates.

Notation. Let x + k and x − k abbreviate the terms suck(x) and predk(x), for a fixed integer
k ≥ 0.

Let us now define two of our logics:

Definition 4 (predecessor logics). A predecessor Horn formula (resp. predecessor Horn formula240

with diagonal input-output) is a formula of the form Φ = ∃R∀x∀yψ(x, y) where R is a set of binary
predicates called computation predicates and ψ is a conjunction of Horn clauses on the variables
x, y, of signature SΣ ∪R (resp. SΣ ∪R∪ {=}), of the form δ1 ∧ . . .∧ δr → δ0 where the conclusion
δ0 is either a computation atom R(x, y) with R ∈ R, or ⊥ ( False) and each hypothesis δi is

1. either an input literal (resp. input conjunction) of one of the forms:245

• Qs(x− a), Qs(y − a) (resp. Qs(x− a) ∧ x = y), for s ∈ Σ and an integer a ≥ 0,

• U(x− a), ¬U(x− a), U(y − a) or ¬U(y − a), for U ∈ {min, max} and an integer a ≥ 0,

2. or a computation atom of the form S(x − a, y − b) or S(y − b, x − a), for S ∈ R and some
integers a, b ≥ 0.
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Let pred-ESO-HORN (resp. pred-dio-ESO-HORN) denote the class of predecessor Horn formulas250

(resp. predecessor Horn formulas with diagonal input-output) and, by abuse of notation, the class
of languages they define.

The formulas of the “predecessor” logics defined above use the predecessor function but not the
successor function: both logics inductively define problems in increasing both coordinates x and
y. The inductive principle of our last logic is seemingly different: it lies on inclusions of intervals255

[x, y].

Definition 5 (inclusion logic). An inclusion Horn formula is a formula of the form Φ = ∃R∀x∀yψ(x, y)
where R is a set of binary predicates called computation predicates and ψ is a conjunction of Horn
clauses of signature SΣ ∪R∪{=,≤, <}, of the form x ≤ y∧ δ1 ∧ . . .∧ δr → δ0 where the conclusion
δ0 is either a computation atom R(x, y) with R ∈ R, or the atom ⊥ ( False), and each hypothesis260

δi is

1. either an input literal of the form5 U(x + a), ¬U(x + a), U(y + a) or ¬U(y + a), for U ∈
{(Qs)s∈Σ, min, max} and an integer a ∈ Z,

2. or an (in)equality x = y or x < y 6,

3. or a conjunction of the form

S(x+ a, y − b) ∧ x+ a ≤ y − b

for S ∈ R and some integers a, b ≥ 0.265

Let incl-ESO-HORN denote the class of inclusion Horn formulas and, also, the class of languages
they define.

Note that the “inclusion” meaning of logic incl-ESO-HORN is given by the hypotheses x ≤ y and
x+a ≤ y− b. It means that the inductive computation of each value R(x, y), for x ≤ y and R ∈ R,
only use values of the form S(x+ a, y− b), for S ∈ R and an included interval [x+ a, y− b] ⊆ [x, y].270

Notation. We will freely use the intuitive abbreviations x > a, x = a, for a constant integer a ≥ 1,
and x ≤ n−a, x < n−a, x = n−a, for a constant integer a ≥ 0, and similarly for y. For example,
x > 3 is written in place of ¬min(x− 2) and y ≤ n− 2 is written in place of ¬max(y + 1).

Remark 3. Without loss of generality, we can suppose that each clause having a hypothesis atom
of the form S(x− a, y − b) or S(y − b, x− a), for a, b ≥ 0, has also the hypotheses x > a (if a > 0)275

and y > b (if b > 0). The same for each hypothesis atom of the form Qs(x − a) or Qs(y − b),
for a, b > 0. Similarly, we assume that each clause with a hypothesis of the form Qs(x + a) (resp.
Qs(y + a)), with a > 0, also contains the hypothesis x ≤ n − a (resp. y ≤ n − a). Similarly, for
each atom S(x+ a, y − b), for a, b ≥ 0.

Remark 4. The presentation of the input is more restrictive in Definition 4 of predecessor logics280

than in that of inclusion logic (Definition 5) because we have forbidden the use of the successor
function for uniformity/aesthetics. However, allowing the largest set of input literals (¬)U(x+ a),
(¬)U(y + a), for U ∈ {(Qs)s∈Σ, min, max} and a ∈ Z, does not modify the expressive power of
predecessor logics: Steps 5 and 6 of the normalization of inclusion logic in Section 4 can be easily
adapted to predecessor logics.285

Remark 5. As usual, it is convenient to adopt the semantics of the minimal model of Horn
formulas. That means that if we have 〈w〉 |= Φ for a formula Φ = ∃R∀x∀yψ(x, y) in any of our
logics, then there is a model (〈w〉,R) |= ∀x∀yψ(x, y) for which each R ∈ R is minimal. We will
say that the formula ∀x∀yψ(x, y) defines the (minimal) predicates R ∈ R on 〈w〉.

5Without loss of generality, we assume that there is no negation on a predicate Qs.
6Then, the hypothesis x ≤ y is redundant.
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2.3. Our main results290

Much of the paper will be devoted to show that our three logics characterize the three real-time
complexity classes of CA. Precisely, we will prove the following statements.

The languages accepted in real-time by two-way CA’s with input fed in a parallel way and output
read on the first cell are exactly the languages defined by the predecessor logic:

Theorem 1. RealTimeCA = pred-ESO-HORN.295

The languages accepted in real-time by IA are exactly the languages defined by the predecessor
logic with diagonal input-output:

Theorem 2. RealTimeIA = pred-dio-ESO-HORN.

The languages accepted by Trellis are exactly the languages defined by the inclusion logic:

Theorem 3. Trellis = incl-ESO-HORN.300

In order to facilitate the programming (= expression) of the problems, we will also extend
our Horn logics by a limited use of negation on hypothesis computation atoms (like in Stratified
Datalog) while preserving their computational complexity, i.e., extending Theorems 1, 2 and 3 to
those extended logics.

3. First examples: express problems; translate formulas into automata305

In this section, we give an illustration of our logics and their transformation techniques about
three classical problems.

3.1. Three examples of problems expressed in our three Horn logics

Our logics make it possible to express problems in a natural way.

Example 2. The language Palindrome = {w ∈ Σ+ | w = wR}.310

The language Palindrome is defined by the formula ∃notPal∀x∀yψ of incl-ESO-HORN where ψ is
the conjunction of the following clauses in which the inductively defined predicate notPal(x, y)
means that the factor wx . . . wy is not a palindrome:

• x < y ∧Qs(x) ∧Qt(y)→ notPal(x, y), for s, t ∈ Σ, s 6= t;

• x < y ∧ notPal(x+ 1, y − 1)→ notPal(x, y);315

• x ≤ y ∧ min(x) ∧ max(y) ∧ notPal(x, y)→ ⊥.

As a consequence of Theorem 3, Palindrome belongs to Trellis (see [10], ex. 4, pp 267-268).

Example 3. The language Unbordered is the set of words w ∈ Σ+ with no proper prefix of length
at least 2 equal to a suffix. Equivalently,

Unbordered := Σ+ \ {uvu | u, v ∈ Σ∗ ∧ |u| ≥ 2}.

The language Unbordered, which is the complement of the language L studied in [34], can be
defined by the formula ΦUnbordered := ∃Border∀x∀yψ of pred-ESO-HORN, where ψ is the conjunction
of the following clauses involving the binary predicate Border whose intuitive meaning is given by320

the equivalence Border(x, y) ⇐⇒ 2 ≤ x < y∧w1 . . . wx = wy−x+1 . . . wy, as expressed by clauses 1
and 2:

1. ¬min(x)∧ min(x− 1)∧¬min(y − 1)∧Qs(x− 1)∧Qs(y − 1)∧Qt(x)∧Qt(y)→ Border(x, y),
for all s, t ∈ Σ (meaning: 2 = x < y ∧ w1w2 = wy−1wy → Border(2, y));

2. ¬min(x) ∧ ¬min(y) ∧ Border(x − 1, y − 1) ∧ Qs(x) ∧ Qs(y) → Border(x, y), for s ∈ Σ325

(meaning: 2 ≤ x − 1 < y − 1 ∧ w1 . . . wx−1 = wy−x+1 . . . wy−1 ∧ wx = wy →
(3 ≤ x < y ∧ w1 . . . wx = wy−x+1 . . . wy));
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3. max(y) ∧ Border(x, y)→ ⊥ (meaning: ∀x ¬Border(x, n)).

Justification: We have the equivalence:
∃x Border(x, n) ⇐⇒ ∃x(2 ≤ x < n ∧ w1 . . . wx = wn−x+1 . . . wn) ⇐⇒ w /∈ Unbordered.330

A geometric view of the “algorithm” is given in Figure 3 where the usual x and y axes are implicit.

a

b

b

a

a

b

b

a b b a a b b

⊥

Qs(x) ∧Qs(y)

Border(x, y)

⊥
the “false”

Figure 3: Computation of ΦUnbordered on the word abbaabb

So, as a consequence of Theorem 1, Unbordered belongs to RealTimeCA. In fact, we know much
more: [34] has proved Unbordered ∈ RealTimeCA \(Trellis∪ RealTimeIA).

The next example uses geometric constructions defined inductively in logic.

Example 4. The language Disj is the set of words w = w1 . . . wn ∈ {0, 1}+ of even length n = 2k,335

w = x1 . . . xky1 . . . yk, such that xiyi 6= 11, for all i ∈ [1, k].

The language Disj (well known in Communication Complexity [23] and studied in [40]) can be de-
fined by the formula ΦDisj := ∃{D, Ix, Iy, H, T}∀x∀yψ of pred-dio-ESO-HORN where D, Ix, Iy, H, T
are binary predicates such that

• D(x, y) (intuitively) means y = 2x,340

• Ix(x, y) means Q1(x) ∧ y ≥ x,

• Iy(x, y) means Q1(y) ∧ x ≥ y,

• H(x, y) means y is even, y ≤ 2x and Q1(y/2),

• T (x, y) means x is even, x/2 < y ≤ x and Q1(y − x/2),

and ψ is the following conjunction of clauses:345

• for (inductively) defining D: x = 1 ∧ y = 2 → D(x, y), and x > 1 ∧ y > 2 ∧
D(x− 1, y − 2)→ D(x, y);

• for defining Ix: x = y ∧Q1(x)→ Ix(x, y), and y > 1 ∧ Ix(x, y − 1)→ Ix(x, y), and similarly
for Iy;

• for defining H: 1) y = 2x ∧ Ix(x, y)→ H(x, y), and 2) x > 1 ∧H(x− 1, y)→ H(x, y);350

• for defining T : 3) x = y∧H(x, y)→ T (x, y), and 4) x > 2∧y > 1∧T (x−2, y−1)→ T (x, y).

Justification: The definitions of D, Ix and Iy are obvious. Let us explain why the definitions of
H and T are correct. The hypotheses of clause 1 mean D(x, y) ∧ Q1(x) ∧ y ≥ x which implies y
even, y ≤ 2x, and Q1(y/2); the hypotheses of clause 3 mean x = y, y even, y ≤ 2x, and Q1(y/2),
which imply together x even, x/2 < y ≤ x, y − x/2 = y/2, and then Q1(y − x/2); clause 4 is355

justified by the trivial implication (x − 2)/2 < y − 1 ≤ x − 2 → x/2 < y ≤ x and the identity
(y − 1)− (x− 2)/2 = y − x/2.
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Here are the last two clauses of ψ. First, in order to reject all words of odd length n, we use the
clause y = n−1∧D(x, y)→ ⊥. Second, for words of even length n, the comparison between wy and
wy−n/2 with y > n/2 is handled by the clause x = n ∧360

Iy(x, y) ∧ T (x, y) → ⊥, which expresses the falsity of the conjunction Iy(n, y) ∧ T (n, y), equiv-
alent to wy = 1 ∧ wy−n/2 = 1 by the previous clauses; hence, this clause means w /∈ Disj. See
Figure 4 where the contradiction is expressed by the “signal line” in bold Ix → H → T → Iy,
which connects two points of the diagonal of ordinates y − n/2 and y with wy−n/2 = wy = 1.

⊥ x = y

x = y ∧Q1(x)

Ix(x, y)

Iy(x, y)

H(x, y)

T (x, y)

y = 2x

⊥ the “false”

Figure 4: Computation of ΦDisj on the word 1101000110 /∈ Disj

So, Theorem 2 implies Disj ∈ RealTimeIA. The language Disj is also known not to belong to365

Trellis as it is proved in [40].

3.2. Normalizing and translating a formula into a cellular automaton: an introduction example

In this subsection, we give an illustration, on an example, of the translation processes which
will be presented rigorously and in their general form in the following sections. We take as example
the formula ΦUnbordered ∈ pred-ESO-HORN constructed in Subsection 3.1 (to describe the language370

Unbordered). Our first goal is to turn the formula into a normalized formula mimicking a grid
circuit. Intuitively, a normalized formula meets the following contraints:

• it should only have one clause with conclusion ⊥ and this clause should have the hypothesis
(x, y) = (n, n) to mimic the output of the grid circuit at vertex (n, n);

• in order to mimic an input on the grid circuit, all clauses using information about the input375

word should have the hypothesis x = 1;

• the only computation atoms in the hypotheses of computation clauses should be of the form
R(x− 1, y) or R(x, y − 1).

Our second goal will be to deduce from this normalized formula a cellular automaton recognizing
the language Unbordered.380

Normalizing the formula defining Unbordered:

Let us detail the normalization process, i.e., the successive steps turning ΦUnbordered into a
formula in normal form (= mimicking a grid circuit). First, let us define what this means.

Definition 6 (normal form). A formula Φ := ∃R∀x∀yψ of pred-ESO-HORN is in normal form if
each clause of ψ is of one of the following forms:385

• an input clause of the form, for s ∈ Σ and R ∈ R:
min(x) ∧ min(y) ∧Qs(y)→ R(x, y), or min(x) ∧ ¬min(y) ∧Qs(y)→ R(x, y);

• the contradiction clause, for a fixed R⊥ ∈ R: max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;
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• a computation clause of the form δ1 ∧ . . . ∧ δr → R(x, y), for R ∈ R, where each
hypothesis δi is a conjunction of the form S(x − 1, y) ∧ ¬min(x) or390

S(x, y − 1) ∧ ¬min(y), for S ∈ R.

Remark 6. It will also be convenient to allow input clauses of the form min(x)∧min(y)→ R(x, y)
(resp. min(x)∧¬min(y)→ R(x, y)). Indeed, such a clause is obviously equivalent to the conjunction
of input clauses

∧
s∈Σ(min(x)∧min(y)∧Qs(y)→ R(x, y)) (resp.

∧
s∈Σ(min(x)∧¬min(y)∧Qs(y)→

R(x, y))).395

The main difficulty encountered in the normalization process will be to maintain or restore the
constraint that no computation atom of the form R(x, y) occurs as a hypothesis of a computation
clause. This will be performed in an “ad hoc” way on our example. However, in Step 10 of
Subsection 4.1, we will describe and justify a general procedure to eliminate the computation
atoms R(x, y) in the hypotheses of Horn clauses.400

0: Before normalization. Recall that ΦUnbordered is the formula ∃Border∀x∀yψ where ψ is the
conjunction of the following clauses:

0.a: ¬min(x) ∧ min(x− 1) ∧ ¬min(y − 1) ∧Qs(x− 1) ∧Qs(y − 1) ∧Qt(x) ∧Qt(y)→ Border(x, y),
for all s, t ∈ Σ;

0.b: ¬min(x) ∧ ¬min(y) ∧ Border(x− 1, y − 1) ∧Qs(x) ∧Qs(y)→ Border(x, y), for s ∈ Σ;405

0.c: max(y) ∧ Border(x, y)→ ⊥.

Remark 7. Since Border(x, y) implies 2 ≤ x < y ≤ n, hence x < n, clause (0.c) can be replaced
by the equivalent clause

0.c’: max(y) ∧ Border(x− 1, y)→ ⊥.

1: Processing the contradiction clause. In order to push the contradiction to the vertex (n, n), we410

introduce the binary predicate R
max(y)
⊥ of intuitive meaning: R

max(y)
⊥ (x, y) ⇐⇒ (max(y)→ ⊥). For

this purpose, we replace clause (0.c’) by the following three clauses:

1.a: ¬min(x) ∧ Border(x − 1, y) → R
max(y)
⊥ (x, y) (of intuitive meaning:

¬min(x) ∧ Border(x− 1, y)→ (max(y)→ ⊥), equivalent to clause (0.c’));

1.b: ¬min(x) ∧Rmax(y)
⊥ (x− 1, y)→ R

max(y)
⊥ (x, y) (clause transporting R

max(y)
⊥ to the side x = n);415

1.c: max(x) ∧ max(y) ∧Rmax(y)
⊥ (x, y)→ ⊥ (clause giving the meaning of R

max(y)
⊥ ).

2: Processing the input. For each s ∈ Σ, we introduce two new binary predicates W x
s and W y

s (with
intuitive meaning W x

s (x, y) ⇐⇒ Qs(x) and W y
s (x, y) ⇐⇒ Qs(y)) to replace the unary predicates

Qs when x or y is greater than 1. W x
s and W y

s are defined by the following clauses:

2.a: min(y) ∧Qs(x)→W x
s (x, y);420

2.b: ¬min(y) ∧W x
s (x, y − 1)→W x

s (x, y);

2.c: min(x) ∧Qs(y)→W y
s (x, y);

2.d: ¬min(x) ∧W y
s (x− 1, y)→W y

s (x, y).

This justifies replacing, for any s ∈ Σ, atoms Qs(x − 1) and Qs(y − 1) by W x
s (x − 1, y) and

W y
s (x, y−1), respectively, and replacing atoms Qs(x) and Qs(y) by W x

s (x, y−1) and W y
s (x−1, y),425

respectively. So, clauses (0.a) and (0.b) become respectively:

2.e: ¬min(x) ∧ min(x − 1) ∧ ¬min(y − 1) ∧ W x
s (x − 1, y) ∧ W y

s (x, y − 1) ∧ W x
t (x, y − 1) ∧

W y
t (x− 1, y)→ Border(x, y), for s, t ∈ Σ;

2.f: ¬min(x) ∧ ¬min(y) ∧ Border(x− 1, y − 1) ∧W x
s (x, y − 1) ∧W y

s (x− 1, y)→ Border(x, y), for
s ∈ Σ.430

Remark 8. Our substitutions respect the constraint that hypotheses of the form R(x, y) are forbid-
den in the computation clauses of a normalized formula (Definition 6).
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3: Restriction of computation atoms to the forms R(x−1, y) and R(x, y−1). A new binary predicate
Borderx−1 is introduced with the intuitive meaning Borderx−1(x, y) ⇐⇒ (x > 1∧Border(x−1, y)).
This predicate is defined by the following clause:435

3.a: ¬min(x) ∧ Border(x− 1, y)→ Borderx−1(x, y).

In this way, the clause (2.f) ¬min(x)∧¬min(y)∧Border(x−1, y−1)∧W x
s (x, y−1)∧W y

s (x−1, y)→
Border(x, y), for s ∈ Σ, is replaced by the following clause:

3.b: ¬min(x) ∧ ¬min(y) ∧ Borderx−1(x, y − 1) ∧W x
s (x, y − 1) ∧W y

s (x − 1, y) → Border(x, y), for
s ∈ Σ.440

4: Processing of min and max. In order to get rid of the atoms min(x−1) and ¬min(y−1) in clause
(2.e) ¬min(x)∧min(x−1)∧¬min(y−1)∧W x

s (x−1, y)∧W y
s (x, y−1)∧W x

t (x, y−1)∧W y
t (x−1, y)→

Border(x, y), for s, t ∈ Σ, we introduce two binary predicates Rmin(x) and R¬min(y) (with intuitive
meaning Rmin(x)(x, y) ⇐⇒ min(x) and R¬min(y)(x, y) ⇐⇒ ¬min(y)) defined by the following
clauses:445

4.a: min(x) ∧ min(y)→ Rmin(x)(x, y);

4.b: ¬min(y) ∧Rmin(x)(x, y − 1)→ Rmin(x)(x, y);

4.c: min(x) ∧ ¬min(y)→ R¬min(y)(x, y);

4.d: ¬min(x) ∧R¬min(y)(x− 1, y)→ R¬min(y)(x, y).

After substitution, clause (2.e) becomes, for s, t ∈ Σ:450

4.e: ¬min(x) ∧ Rmin(x)(x − 1, y) ∧ ¬min(y) ∧ R¬min(y)(x, y − 1) ∧ W x
s (x − 1, y) ∧

W y
s (x, y − 1) ∧W x

t (x, y − 1) ∧W y
t (x− 1, y)→ Border(x, y).

Remark 9. We have added the hypothesis atom ¬min(y) in clause (4.e) in order that this clause
fulfills the conditions of a computation clause, as given in Definition 6.

5: Defining equality and inequalities. In the next part of the normalization process, we will fold455

the square domain [1, n]2 along the diagonal x = y on the over-diagonal triangle where x ≤ y.
Therefore, we need predicates representing the equality x = y (R=) and the inequalities x < y (R<)
and x ≤ y (R≤). R= is defined jointly with the predicate Rpred, of intuitive meaning Rpred(x, y)
⇐⇒ x = y − 1, by the following clauses:

5.a: min(x) ∧ min(y)→ R=(x, y);460

5.b: ¬min(y) ∧R=(x, y − 1)→ Rpred(x, y);

5.c: ¬min(x) ∧Rpred(x− 1, y)→ R=(x, y).

The predicates R< and R≤ are defined by the next clauses:

5.d: ¬min(y) ∧R=(x, y − 1)→ R<(x, y);

5.e: ¬min(y) ∧R<(x, y − 1)→ R<(x, y);465

5.f: min(x) ∧ min(y)→ R≤(x, y);

5.g: min(x) ∧ ¬min(y)→ R≤(x, y);

5.h: ¬min(x) ∧R<(x− 1, y)→ R≤(x, y).
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wy0 = t

wx0
= s

P0 = (x0, y0)

W y
t

W y
s

W x
s

y

x

Figure 5: Behaviour of Wx
s and W y

s after the folding

6: Folding the domain. We want to restrict the access to the input to the axis x = 1 with the only
input clauses (i.e., the only clauses involving the input predicates Qs) min(x) ∧Qs(y)→W y

s (x, y).470

In other words, we want to get rid of the clauses min(y)∧Qs(x)→W x
s (x, y). For this purpose, we

fold the square domain [1, n]2 along the diagonal x = y on the over-diagonal triangle Tn = {(x, y) ∈
[1, n]2 | 1 ≤ x ≤ y ≤ n} by the transformation that maps any point (y, x) such that x ≤ y to the
point (x, y). Observe that the computation predicates Border and Borderx−1 are included in Tn
(see Figure 5) so that the only computation predicates really acting on (x, y) sites such that x > y475

are the (in)equality predicates R=, Rpred, R<, R≤, and the “transport” predicates W x
s and W y

s of
the input, which are the “folding” of each other. The “folded” versions on Tn of the clauses defining
W x
s and W y

s are, for all s ∈ Σ, the following clauses defining W y
s :

• min(x) ∧ Qs(y) → W y
s (x, y), that will be replaced by the equivalent conjunction of the next

clauses (6.a) and (6.b), which are of the allowed forms of input clauses of Definition 6:480

6.a: min(x) ∧ min(y) ∧Qs(y)→W y
s (x, y),

6.b: min(x) ∧ ¬min(y) ∧Qs(y)→W y
s (x, y), and

• 6.c:¬min(x) ∧W y
s (x− 1, y) ∧R<(x− 1, y)→W y

s (x, y) (where R<(x− 1, y) means x ≤ y),

and the following clauses defining W x
s :

• x = y ∧W y
s (x, y)→W x

s (x, y) (“rebound” of the horizontal signal W y
s on the diagonal as the485

vertical signal W x
s ), which can be equivalently rewritten as the conjunction of the following

two clauses:
6.d: min(x) ∧ min(y) ∧Qs(y)→W x

s (x, y),
6.e: ¬min(x)∧Rpred(x−1, y)∧W y

s (x−1, y)→W x
s (x, y) (where Rpred(x−1, y) means x = y),

and490

• x < y ∧ ¬min(y) ∧W x
s (x, y − 1)→W x

s (x, y), which can be rewritten as
6.f: ¬min(y) ∧R≤(x, y − 1) ∧W x

s (x, y − 1)→W x
s (x, y).

Figure 5 depicts the new behaviour of W x
s and W y

s . Note that after the folding, the computation
predicates W x

s and W y
s are included in the upper-diagonal triangle Tn.

A normalized formula describing the language Unbordered. We recapitulate the final list of clauses495

obtained after steps 1-6:

• the clauses of steps 4 and 5 defining the “arithmetic” computation predicates Rmin(x), R¬min(y),
R=, Rpred, R< and R≤;

500

• the clauses defining the “input” computation predicates W x
s and W y

s , for s ∈ Σ:

6.a: min(x) ∧ min(y) ∧Qs(y)→W y
s (x, y);
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6.b: min(x) ∧ ¬min(y) ∧Qs(y)→W y
s (x, y);

6.c: ¬min(x) ∧W y
s (x− 1, y) ∧R<(x− 1, y)→W y

s (x, y);

6.d: min(x) ∧ min(y) ∧Qs(y)→W x
s (x, y);505

6.e: ¬min(x) ∧Rpred(x− 1, y) ∧W y
s (x− 1, y)→W x

s (x, y);

6.f: ¬min(y) ∧R≤(x, y − 1) ∧W x
s (x, y − 1)→W x

s (x, y);

• the clauses defining the “main” computation predicates Border, Borderx−1 and R
max(y)
⊥ , i.e,

describing the main computation and its output:

4.e: ¬min(x) ∧ Rmin(x)(x − 1, y) ∧ ¬min(y) ∧ R¬min(y)(x, y − 1) ∧ W x
s (x − 1, y) ∧510

W y
s (x, y − 1) ∧W x

t (x, y − 1) ∧W y
t (x− 1, y)→ Border(x, y) for s, t ∈ Σ;

3.a: ¬min(x) ∧ Border(x− 1, y)→ Borderx−1(x, y);

3.b: ¬min(y) ∧ ¬min(x) ∧ Borderx−1(x, y − 1) ∧W x
s (x, y − 1) ∧W y

s (x − 1, y) → Border(x, y), for
s ∈ Σ;

1.a: ¬min(x) ∧ Border(x− 1, y)→ R
max(y)
⊥ (x, y);515

1.b: ¬min(x) ∧Rmax(y)
⊥ (x− 1, y)→ R

max(y)
⊥ (x, y);

1.c: max(x) ∧ max(y) ∧Rmax(y)
⊥ (x, y)→ ⊥.

We observe that each of those clauses fulfills the conditions of Definition 6:

• clauses (4.a), (4.c), (5.a), (5.f), (5,g), (6,a), (6,b) and (6,d) are input clauses;

• the clause (1.c) max(x) ∧ max(y) ∧ R⊥(x, y) → ⊥ where R⊥ := R
max(y)
⊥ is the contradiction520

clause;

• the other clauses are computation clauses.

Let ψ′ be the conjunction of those clauses and let R be the set of computation predicates, which

are Rmin(x), R¬min(y), R=, Rpred, R<, R≤, W y
s ,W

y
s , for s ∈ Σ, Border, Borderx−1 and R

max(y)
⊥ . The

formula obtained ∃R∀x∀yψ′ is the equivalent normal form of the formula ΦUnbordered in pred-ESO-HORN.525

The reader may object that although we have tried to present the final list of (normalized)
clauses in the least artificial way possible, it is much longer and less readable than the original
(short) list of clauses (0,a), (0,b) and (0,c). It means that while the expression of a problem in
pred-ESO-HORN (a high-level language) is natural and synthetic, the only interest of its normal form
lies in its ability to be translated into an automaton in a straightforward way, as formally established530

in the next sections.

A real real-timetime CA recognizing Unbordered:

Now that the formula ΦUnbordered has been normalized, we can easily deduce from it a grid
circuit recognizing the language Unbordered. A computation example on this grid circuit and its
transformation into a computation of a real-time CA is shown in Figure 6.535



Logical Definitions Versus Programs of Real-Time CA 17

W y
a

W y
b

W x
a

W x
b

Border

Borderx−1

R
max(y)
⊥

⊥

a

b

b

a

a

b

b

(a) On a grid circuit
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⊥

(b) On a real-time CA

Figure 6: Computation of the word abbaabb /∈ Unbordered

After this introduction example of the normalization of a specific formula (with its final trans-
formation into an automaton), let us describe and justify in the next Sections 4 and 5 how to
normalize our logics in the general case.

4. Normalizing our Horn logics

The most difficult and main parts of the proofs of our descriptive complexity results, i.e., equalities540

1-3 of Subsection 2.3, are the following normalization lemmas.

Lemma 1 (normalization of predecessor logics). Each formula Φ ∈ pred-ESO-HORN (resp. Φ ∈
pred-dio-ESO-HORN) is equivalent to a formula Φ′ ∈ pred-ESO-HORN (resp. Φ′ ∈ pred-dio-ESO-HORN)
where each clause is of one of the following forms:

• input clause of the form, for s ∈ Σ and R ∈ R:545

min(x) ∧ min(y) ∧Qs(y)→ R(x, y), or min(x) ∧ ¬min(y) ∧Qs(y)→ R(x, y)
(resp. x = y ∧ min(x) ∧Qs(x)→ R(x, y), or x = y ∧ ¬min(x) ∧Qs(x)→ R(x, y));

• the contradiction clause, for a fixed R⊥ ∈ R: max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;

• computation clause of the form δ1 ∧ . . . ∧ δr → R(x, y), for R ∈ R, where each hypothesis δi
is a conjunction of the form S(x− 1, y) ∧ ¬min(x) or S(x, y − 1) ∧ ¬min(y), for S ∈ R.550

Let normal-pred-ESO-HORN (resp. normal-pred-dio-ESO-HORN) denote the class of formulas (lan-
guages) so defined.

Lemma 2 (normalization of inclusion logic). Each formula Φ ∈ incl-ESO-HORN is equivalent to a
formula Φ′ ∈ incl-ESO-HORN where each clause is of one of the following forms:

• input clause of the form x = y ∧Qs(x)→ R(x, y), for s ∈ Σ and R ∈ R;555

• the contradiction clause, for a fixed R⊥ ∈ R, min(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;

• computation clause of the form7 x < y∧ δ1 ∧ . . .∧ δr → R(x, y), where R ∈ R and where each
hypothesis δi is a computation atom of either form S(x+ 1, y) or S(x, y − 1), for S ∈ R.

Let normal-incl-ESO-HORN denote the class of formulas (languages) so defined.

The normalization processes of our three logics are quite similar to each other; further, some560

steps are exactly the same. Therefore, we choose to present here below the successive normalization
steps for one logic: pred-ESO-HORN. Afterwards, we will succinctly describe how those steps should
be adapted for the two other logics.

7Note that the hypothesis x < y is equivalent to the expected inequality x+ 1 ≤ y or x ≤ y − 1.
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4.1. Normalizing predecessor Horn logic

Let a formula Φ ∈ pred-ESO-HORN. For simplicity of notation, we first assume that the only565

computation atoms of Φ are of the form R(x−a, y−b), a, b ≥ 0 (no atom of the form R(y−b, x−a)).
We will show at the end of the proof how to manage the general case. Φ will be transformed into
an equivalent normalized form Φ′ by a sequence of 10 steps:

1. Processing the contradiction clauses;

2. Processing the input;570

3. Restriction of computation atoms to R(x− 1, y), R(x, y − 1), and R(x, y);

4. Elimination of atoms x > a, x = a, y > a, y = a;

5. Processing of min and max;

6. Defining equality and inequalities;

7. Folding the domain;575

8. Deleting max in the initialization clauses;

9. From initialization clauses to input clauses;

10. Elimination of atoms R(x, y) as hypotheses.

In each of those 10 steps, we will introduce new (binary) computation predicates, to be added to
the set R of existentially quantified predicates, and new clauses to define them.580

1. Processing the contradiction clauses. Without loss of generality, one can assume there is only the
contradiction clause max(x)∧max(y)∧R⊥(x, y)→ ⊥. Indeed, each contradiction clause `1∧. . .∧`k →
⊥ can be equivalently replaced by the conjunction of computation clauses `1 ∧ . . . ∧ `k → R⊥(x, y)
with the clause R⊥(x, y)→ ⊥ where R⊥ is a new computation predicate (intuitively, always false).
However, in place of the previous clause, we “delay” the contradiction, by propagating predicate585

R⊥ till point (n, n), thanks to the conjunction of the “transport” clauses R⊥(x− 1, y)∧¬min(x)→
R⊥(x, y) and R⊥(x, y − 1) ∧ ¬min(y) → R⊥(x, y) and of the unique contradiction clause max(x) ∧
max(y) ∧R⊥(x, y)→ ⊥ required by the normal form.

2. Processing the input. The idea is to make available the letters of the input word only on the
sides x = 1 and y = 1 of the square {(x, y) ∈ [1, n]2}, this by carrying out their transport thanks to590

new “transport” predicates W x
s and W y

s , for s ∈ Σ, inductively defined by the following clauses:

initialization clauses: Qs(x) ∧ min(y)→W x
s (x, y) and Qs(y) ∧ min(x)→W y

s (x, y);

transport clauses: W x
s (x, y − 1) ∧ ¬min(y)→W x

s (x, y) and W y
s (x− 1, y) ∧ ¬min(x)→W y

s (x, y).

By transitivity, these clauses imply clauses Qs(x) → W x
s (x, y) and Qs(y) → W y

s (x, y). In other
words, the minimal model of the conjunction of those clauses that expands structure 〈w〉 satisfies595

equivalences ∀x∀y (W x
s (x, y) ⇐⇒ Qs(x)) and ∀x∀y (W y

s (x, y) ⇐⇒ Qs(y)). This justifies the
replacement of the input atoms of form Qs(x−a) and Qs(y−b) by the respective atoms W x

s (x−a, y)
and W y

s (x, y − b) in all the clauses, except in the initialization clauses.

3. Restriction of computation atoms to R(x− 1, y), R(x, y − 1), R(x, y). The idea is to introduce
new “shift” predicates Rx−a, Ry−b and Rx−a,y−b, for fixed integers a, b > 0 and R ∈ R. We define
the predicate Rx−a,y−b that intuitively satisfies the equivalence Rx−a,y−b(x, y) ⇐⇒ R(x−a, y−b).8
Let us explain the method by an example. Assume we have initially the Horn clause

x > 3 ∧ y > 2 ∧R(x− 2, y − 1) ∧ S(x− 3, y − 2)→ T (x, y).

8As Remark 5 says, we use the semantics of the minimal model of Horn formulas. Here, we assert that the
equivalence Rx−a,y−b(x, y) ⇐⇒ R(x− a, y − b) holds in the minimal model of the Horn formula we construct.
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This clause is replaced by the clause

x > 3 ∧ y > 2 ∧Rx−2(x, y − 1) ∧ Sx−2,y−2(x− 1, y)→ T (x, y),

for which the predicates Rx−1 and Rx−2 are defined by the clauses
x > 1∧R(x−1, y)→ Rx−1(x, y) and x > 2∧Rx−1(x−1, y)→ Rx−2(x, y) which imply x > 2∧R(x−600

2, y)→ Rx−2(x, y) and then x > 2∧y > 1∧R(x−2, y−1)→ Rx−2(x, y−1), and the predicates Sx−1,
Sx−2, Sx−2,y−1 and Sx−2,y−2 defined by the respective clauses: x > 1 ∧ S(x− 1, y) → Sx−1(x, y),
x > 2 ∧ Sx−1(x − 1, y) → Sx−2(x, y), x > 2 ∧ y > 1 ∧ Sx−2(x, y − 1) → Sx−2,y−1(x, y), and
x > 2 ∧ y > 2 ∧ Sx−2,y−1(x, y − 1)→ Sx−2,y−2(x, y), which imply together the clause x > 2 ∧ y >
2∧S(x−2, y−2)→ Sx−2,y−2(x, y) and then also x > 3∧y > 2∧S(x−3, y−2)→ Sx−2,y−2(x−1, y).605

Remark 10. Atoms on min and x are of the forms min(x − a) or ¬min(x − a), for a ≥ 0, or,
equivalently, x ≤ a+ 1 or x > a+ 1. Besides, for each integer a ≥ 1, the atom max(x− a) is false.
Therefore, one may consider that the only literals on x involving min or max are of the form min(x),
¬min(x), max(x), ¬max(x), x ≤ a, x > a, for an integer a > 1, and similarly, for y.

4. Elimination of atoms x > a, x ≤ a, y > a, y ≤ a. By recurrence on integer a ≥ 1, let us define610

the binary predicates Rx>a (and, similarly, Rx≤a, Ry>a, Ry≤a) whose intuitive meaning is x > a
(resp. x ≤ a, y > a, y ≤ a). The predicate Rx>1 is defined by the clause ¬min(x)→ Rx>1(x, y). For
a > 1, let us define Rx>a from Rx>a−1 by the clause Rx>a−1(x− 1, y)∧¬min(x)→ Rx>a(x, y). By
recurrence on integer a ≥ 1, these clauses imply x > a→ Rx>a(x, y). This justifies the replacement
of the atoms x > a and x ≤ a, for a > 1, by Rx>a(x, y) and Rx≤a(x, y), respectively, and similarly615

for y in place of x.

After Step 4, the only literals involving min or max are (¬)min(x), (¬)max(x), (¬)min(y),
(¬)max(y).

5. Processing of min and max. To each literal η(x) of the form min(x), ¬min(x), max(x) or ¬max(x),
associate the new binary predicate Rη(x) defined by the conjunction of the initialization clause620

η(x)∧min(y)→ Rη(x)(x, y) and of the transport clause Rη(x)(x, y−1)∧¬min(y)→ Rη(x)(x, y). Do
similarly for the literals η(y) ∈ {(¬)min(y), (¬)max(y)}. This justifies the replacement of each such
literal η(x) (resp. η(y)) by the “equivalent” atom Rη(x)(x, y) (resp. Rη(y)(x, y)) in all the clauses,
except in the above initialization clauses and in the contradiction clause or in case η(x) (resp. η(y))
is ¬min(x) (resp. ¬min(y)) and is joined to a hypothesis of the form R(x− 1, y) (resp. R(x, y− 1)).625

Recapitulation. After Step 5 each clause is of one of the following forms:

1. an initialization clause of one of the two forms:

• min(x) ∧ η(y)→ R(x, y), with η(y) ∈ {(Qs(y))s∈Σ, (¬)min(y), (¬)max(y)};
• min(y) ∧ η(x)→ R(x, y), with η(x) ∈ {(Qs(x))s∈Σ, (¬)min(x), (¬)max(x)};

2. “the” contradiction clause max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;630

3. a computation clause of the form δ1(x, y) ∧ . . . ∧ δr(x, y) → R(x, y), where each hypothesis
δi is of one of the three forms R(x, y), R(x − 1, y) ∧ ¬min(x), R(x, y − 1) ∧ ¬min(y). In
fact, without loss of generality, we can assume that each computation clause is of one of the
following forms:

(a) S(x− 1, y) ∧ ¬min(x)→ R(x, y);635

(b) S(x, y − 1) ∧ ¬min(y)→ R(x, y);

(c) S(x, y) ∧ T (x, y)→ R(x, y).

Justification of the assumption: “Decompose” each computation clause into clauses of forms (a,b,c)
by introducing new intermediate predicates. For example, the computation clause R1(x − 1, y) ∧
¬min(x) ∧ R2(x, y − 1) ∧ ¬min(y) ∧ R3(x, y) → R4(x, y) is “equivalent” to the conjunction of the640

following clauses using new predicates R5, R6, R7: R1(x − 1, y) ∧ ¬min(x) → R5(x, y); R2(x, y −
1) ∧ ¬min(y)→ R6(x, y); R5(x, y) ∧R6(x, y)→ R7(x, y); R7(x, y) ∧R3(x, y)→ R4(x, y).

We now plan to fold the square domain {(x, y) ∈ [1, n]2} along the diagonal x = y on the
overdiagonal triangle Tn = {(x, y) ∈ [1, n]2| x ≤ y}. This requires to first define equality and
inequalities.645
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6. Defining equality and inequalities. Let us jointly define the predicates R= and Rpred of intu-
itive meaning R=(x, y) ⇐⇒ x = y and Rpred(x, y) ⇐⇒ x − 1 = y by the following clauses:
min(x) ∧ min(y) → R=(x, y); ¬min(x) ∧ R=(x − 1, y) → Rpred(x, y); ¬min(y) ∧ Rpred(x, y − 1) →
R=(x, y). Then define the predicate R< such that R<(x, y) ⇐⇒ x < y with the two clauses
¬min(y) ∧ R=(x, y − 1) → R<(x, y) and ¬min(y) ∧ R<(x, y − 1) → R<(x, y). Define similarly the650

predicate R≤ such that R≤(x, y) ⇐⇒ x ≤ y with the two clauses min(x)∧ min(y)→ R≤(x, y) and
¬min(x) ∧R<(x− 1, y)→ R≤(x, y).

For easy reading, we will freely write x = y, x < y and x ≤ y in place of the atoms R=(x, y),
R<(x, y) and R≤(x, y), respectively.

7. Folding the domain. Let us fold the square domain {(x, y) ∈ [1, n]2} along the diagonal x = y655

on the overdiagonal triangle Tn = {(x, y) ∈ [1, n]2| x ≤ y} so that each point (y, x) such that x ≤ y
is sent to its symmetrical point (x, y) ∈ Tn. For that purpose, let us associate to each predicate
R ∈ R a new (inverse) predicate Rinv whose intuitive meaning is the following: for each x ≤ y, we
have Rinv(x, y) ⇐⇒ R(y, x). So, each clause C will be replaced by two clauses: the first one is
the restriction of C to the triangle Tn; the second one is the folding on Tn of the restriction of C to660

the subdiagonal triangle using predicates Rinv. Finally, we will express that each R ∈ R coincides
with its inverse Rinv on the fold x = y.

Folding the initialization clauses: Each initialization clause of the form min(x) ∧ η(y) → R(x, y)
(with η(y) ∈ {Qs(y)|s ∈ Σ} ∪ {(¬)min(y), (¬)max(y)}) applies to the line x = 1 which is
included in the triangle Tn and consequently it should be unchanged in the folding; in contrast,665

each initialization clause of the form min(y) ∧ η(x) → R(x, y) (with η(x) ∈ {Qs(x)|s ∈ Σ} ∪
{(¬)min(x), (¬)max(x)}) is replaced by its folded version min(x) ∧ η(y)→ Rinv(x, y).

Folding the computation clauses: Let us describe how to fold the clauses (a) and (b) (to fold clauses
(c) is easy):

• Folding clauses (a): A clause of the form S(x− 1, y) ∧ ¬min(x)→ R(x, y) is equivalent to670

the conjunction of clauses i) x ≤ y ∧S(x− 1, y)∧¬min(x)→ R(x, y) and ii) x > y ∧S(x−
1, y) ∧ ¬min(x) → R(x, y). Notice that clause (i) applies to the triangle Tn since x ≤ y
implies x − 1 < y: therefore, clause (i) should be left unchanged. Clause (ii) is equivalent
(by exchanging variables x and y) to the clause y > x ∧ S(y − 1, x) ∧ ¬min(y) → R(y, x)
whose folded (equivalent) form on Tn is x < y∧Sinv(x, y− 1)∧¬min(y)→ Rinv(x, y) since675

x < y implies x ≤ y − 1.

• Folding clauses (b): Similarly, a clause of the form S(x, y − 1) ∧ ¬min(y) → R(x, y) is
equivalent to the conjunction of clauses x < y ∧ S(x, y − 1) ∧ ¬min(y) → R(x, y) and
x ≤ y ∧ Sinv(x− 1, y) ∧ ¬min(x)→ Rinv(x, y).

Folding the contradiction clause: Clearly, it is harmless to confuse the (contradiction) predicate R⊥680

and its inverse (R⊥)inv; consequently, the contradiction clause itself max(x)∧max(y)∧R⊥(x, y)→
⊥ is its own folded version.

The diagonal fold: Finally, for each R ∈ R, the following two clauses mean that R coincides with
its inverse Rinv on the diagonal: x = y ∧R(x, y)→ Rinv(x, y); x = y ∧Rinv(x, y)→ R(x, y).

Recapitulation. By a careful examination of the set of clauses obtained after Steps 1-7, we can check685

that each of them is of one of the following forms:

1. an initialization clause of the form min(x) ∧ η(y)→ R(x, y) with
η(y) ∈ {Qs(y)|s ∈ Σ} ∪ {(¬)min(y), (¬)max(y)};

2. “the” contradiction clause max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;

3. a computation clause of one of the following forms:690

(a) x ≤ y ∧ S(x− 1, y) ∧ ¬min(x)→ R(x, y);

(b) x < y ∧ S(x, y − 1) ∧ ¬min(y)→ R(x, y);

(c) x ≤ y ∧ S(x, y) ∧ T (x, y)→ R(x, y);

(d) x = y ∧ S(x, y)→ R(x, y).
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8. Deleting max in the initialization clauses. The idea is to consider in parallel for each point (x, y)695

the case where the hypothesis max(y) holds and the opposite case where the negation ¬max(y)
holds. For that purpose, we duplicate each computation predicate R in two new predicates called
Ry←max and Ry←¬max. Intuitively, the atom Ry←max(x, y) (resp. Ry←¬max(x, y)) expresses the implication
max(y)→ R(x, y) (resp. ¬max(y)→ R(x, y)).

Transforming the initialization clauses: According to the desired semantics of Ry←max and Ry←¬max,700

each initialization clause of the form min(x) ∧ max(y) → R(x, y) (resp. min(x) ∧ ¬max(y) →
R(x, y)) should be rewritten as min(x) → Ry←max(x, y) (resp. min(x) → Ry←¬max(x, y)). Simi-
larly, each initialization clause of the form min(x) ∧ η(y)→ R(x, y), for η(y) ∈ {Qs(y)|s ∈ Σ} ∪
{(¬)min(y)} should be replaced by the conjunction of the following two clauses:
min(x) ∧ η(y)→ Ry←max(x, y) and min(x) ∧ η(y)→ Ry←¬max(x, y).705

Transforming the computation clauses: We describe it for each above form (a-d).

• Each clause (a) x ≤ y ∧ S(x − 1, y) ∧ ¬min(x) → R(x, y) is replaced by the “equivalent”
conjunction of the following two clauses x ≤ y ∧ Sy←max(x− 1, y) ∧ ¬min(x)→ Ry←max(x, y)
and x ≤ y ∧ Sy←¬max(x− 1, y) ∧ ¬min(x)→ Ry←¬max(x, y).

• Each clause (b) x < y ∧ S(x, y − 1) ∧ ¬min(y) → R(x, y) is “equivalent” to x < y ∧710

Sy←¬max(x, y − 1) ∧ ¬min(y) → R(x, y) since the hypothesis ¬max(y − 1) always holds.
Consequently, clause (b) should be replaced by the “equivalent” conjunction of the following
two clauses:

x < y ∧ Sy←¬max(x, y − 1) ∧ ¬min(y)→ Ry←max(x, y), and

x < y ∧ Sy←¬max(x, y − 1) ∧ ¬min(y)→ Ry←¬max(x, y).715

• Each clause (c) x ≤ y ∧ S(x, y) ∧ T (x, y) → R(x, y) is replaced by the “equivalent” con-
junction of the following two clauses: x ≤ y ∧Sy←max(x, y)∧ T y←max(x, y)→ Ry←max(x, y) and
x ≤ y ∧ Sy←¬max(x, y) ∧ T y←¬max(x, y)→ Ry←¬max(x, y).

• Perform a similar substitution for each above clause (d).

Processing the contradiction clause: Obviously, the contradiction clause max(x)∧max(y)∧R⊥(x, y)→720

⊥ is equivalent to the formula max(x)∧max(y)∧(max(y)→ R⊥(x, y))→ ⊥ and should be rewrit-
ten as max(x) ∧ max(y) ∧ (R⊥)y←max(x, y) → ⊥, which is of the required form if the predicate
(R⊥)y←max is renamed R⊥.

9. From initialization clauses to input clauses. The initialization clauses are now of the form
min(x)→ R(x, y) or min(x) ∧ η(y)→ R(x, y), for η(y) ∈ {Qs(y)|s ∈ Σ} ∪ {(¬)min(y)}. By a case725

analysis, it is easy to transform each of these clauses into an equivalent conjunction of input clauses
of the required (normalized) forms: min(x)∧min(y)∧Qs(y)→ R(x, y); min(x)∧¬min(y)∧Qs(y)→
R(x, y).

After Step 9, the formula obtained is of the claimed normal form, except that some computation
clauses may have atoms R(x, y) as hypotheses. Our last step is to eliminate such hypotheses.730

10. Elimination of atoms R(x, y) as hypotheses. This is the most technical step but the general
ideas are rather simple. The first idea is to group together in each computation clause the hypotheses
of the clause of the form R(x, y) and its conclusion. Accordingly, the formula can be rewritten in
the form

Φ := ∃R∀x∀y

∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y)→ θi(x, y))


where the Ci’s are the input clauses and the contradiction clause, and each computation clause is
written in the form αi(x, y)→ θi(x, y) where

• αi(x, y) is a conjunction of formulas of the only forms R(x − 1, y) ∧ ¬min(x), R(x, y − 1) ∧
¬min(y), but not R(x, y),

• and θi(x, y) is a Horn clause whose all atoms are of the form R(x, y).735
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The second idea is to “solve” the Horn clauses θi (containing only atoms of the form R(x, y))
according to the input clauses and all the possible conjunctions of hypotheses αi that may be
true. Notice the two following facts: the hypotheses of the input clauses are input literals and the
conjuncts of the αi’s have the only forms R(x− 1, y)∧¬min(x) and R(x, y− 1)∧¬min(y). Roughly
expressed, we will prove by induction on the sum values x + y ∈ [2, 2n] that the obtained formula740

Φ′ which is a conjunction of clauses (whose hypotheses no longer include any atom of the form
R(x, y)) is equivalent to formula Φ.

We now give the transformation process in detail with its proof. Let us number R1, . . . , Rm the
computation predicates of R. To each subset J ⊆ [1, k] of the family of implications (αi(x, y) →
θi(x, y))i∈[1,k] let us associate the set745

KJ := {h ∈ [1,m] |
∧
i∈J θi(x, y)→ Rh(x, y) is a tautology}.

Note that the notion of tautology used in the definition of KJ is purely “propositional” because
all the atoms involved are of the form Ri(x, y), i.e., refer to the same pair of variables (x, y).
Also, note that the function J 7→ KJ is monotonous: for J ′ ⊆ J , we have KJ′ ⊆ KJ because∧
i∈J′ θi(x, y)→ Rh(x, y) implies

∧
i∈J θi(x, y)→ Rh(x, y).750

Clearly, it is enough to prove the following claim:

Claim 1. The formula Φ is equivalent to the normalized formula

Φ′ := ∃R∀x∀y

∧
i

Ci(x, y) ∧
∧

J⊆[1,k]

∧
h∈KJ

(∧
i∈J

αi(x, y)→ Rh(x, y)

) .
Notation. The formula between brackets can be rewritten

∧
i

Ci(x, y) ∧
∧

J⊆[1,k]

(∧
i∈J

αi(x, y)→
∧
h∈KJ

Rh(x, y)

)
.

Proof of the implication Φ⇒ Φ′. It is enough to prove the implication ∧
i∈[1,k]

(αi(x, y)→ θi(x, y))

→ [∧
i∈J

αi(x, y)→
∧
h∈KJ

Rh(x, y)

]

for all set J ⊆ [1, k] and all h ∈ KJ .
The implication to be proved can be equivalently written:∧

i∈J
αi(x, y) ∧

∧
i∈[1,k]

(αi(x, y)→ θi(x, y))

→ ∧
h∈KJ

Rh(x, y).

This implication is a straightforward consequence of the two following facts:

• The sub-formula between brackets above implies the conjunction
∧
i∈J θi(x, y).

• As the implication
∧
i∈J θi(x, y) →

∧
h∈KJ

Rh(x, y) is a tautology (by definition of KJ), the
implication to be proved is a tautology too.755

The converse implication Φ′ ⇒ Φ is more difficult to prove. It uses a folklore property of
propositional Horn formulas easy to prove:

Lemma 3 (Horn property [22]). Let F be a strict Horn formula of propositional calculus, that is
a conjunction of clauses of the form p1 ∧ . . . ∧ pk → p0 where k ≥ 0 and the pi’s are propositional760

variables. Let F ′ be the conjunction of propositional variables q such that the implication F → q is
a tautology. F has the same minimal model9 as F ′.

9For example, for F := p1 ∧ p3 ∧ (p1 ∧ p3 → p5)∧ (p1 ∧ p2 → p4), we have F ′ := p1 ∧ p3 ∧ p5 which has the same
minimal model I as F ; this model is given by I(p1) = I(p3) = I(p5) = 1 and I(p2) = I(p4) = 0.
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Proof of the implication Φ′ ⇒ Φ. Let 〈w〉 be a model of Φ′ and let (〈w〉,R) be the minimal model
of the Horn formula

ϕ′ := ∀x∀y

∧
i

Ci(x, y) ∧
∧

J⊆[1,k]

∧
h∈KJ

(∧
i∈J

αi(x, y)→ Rh(x, y)

) .
It is enough to show that (〈w〉,R) also satisfies the formula

ϕ := ∀x∀y

∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y)→ θi(x, y))


As each αi is a conjunction of formulas of the form R(x− 1, y)∧¬min(x), or R(x, y− 1)∧¬min(y),
all the computation atoms of the conjunctions αi are of the form R(x−1, y) (with also the conjunct
¬min(x)) or R(x, y − 1) (with also the conjunct ¬min(y)) we make an induction on the domain
{(a, b) ∈ [1, n]2 | a+ b ≤ t}, for t ∈ [1, 2n]. More precisely, we are going to prove, by recurrence on
the integer t ∈ [1, 2n], that the minimal model (〈w〉,R) of ϕ′ satisfies the “relativized” formula ϕt
of the formula ϕ defined by

ϕt := ∀x∀y

x+ y ≤ t→

∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y)→ θi(x, y))


As the hypothesis x + y ≤ 2n holds for all x, y in the domain [1, n], ϕ2n is equivalent to ϕ on the
structure (〈w〉,R).

Basis case: For t = 1 the set {(a, b) ∈ [1, n]2 | a+ b ≤ t} is empty so that the “relativized” formula765

ϕ1 is trivially true in the minimal model (〈w〉,R) of ϕ′.

Recurrence step: Suppose (〈w〉,R) |= ϕt−1, for an integer t ∈ [2, 2n]. It is enough to show that, for
each couple (a, b) ∈ [1, n]2 such that a+ b = t, we have (〈w〉,R) |=

∧
i∈[1,k](αi(a, b)→ θi(a, b)).

Let Ja,b be the set of indices i ∈ [1, k] such that the couple (a, b) satisfies αi:

Ja,b := {i ∈ [1, k] | (〈w〉,R) |= αi(a, b)}.

Recall that each αi(a, b) is a (possibly empty) conjunction of atoms R(a′, b′) with (a′, b′) =
(a − 1, b) or (a′, b′) = (a, b − 1), therefore such that a′ + b′ = t − 1. This is the basis of the
inductive construction of the minimal model (〈w〉,R) of the Horn formula ϕt and of the proof
by recurrence. Let a set J ⊆ [1, k]. Let us examine the two possible cases:770

(1) J ⊆ Ja,b: then the conjunction
∧
i∈J αi(a, b) holds in (〈w〉,R); hence, in (〈w〉,R), the

conjunction
∧
h∈KJ

(∧
i∈J αi(a, b)→ Rh(a, b)

)
is equivalent to

∧
h∈KJ

Rh(a, b);

(2) J \ Ja,b 6= ∅: then the conjunction
∧
i∈J αi(a, b) is false in (〈w〉,R); hence, the conjunction∧

h∈KJ
(
∧
i∈J αi(a, b)→ Rh(a, b)) holds in (〈w〉,R).

From (1) and (2), we deduce that in (〈w〉,R) the conjunction

∧
J⊆[1,k]

∧
h∈KJ

(∧
i∈J

αi(a, b)→ Rh(a, b)

)

is equivalent to the conjunction
∧
J⊆Ja,b

∧
h∈KJ

Rh(a, b), which can be simplified as
∧
h∈KJa,b

Rh(a, b)775

because J ⊆ Ja,b implies KJ ⊆ KJa,b
. Consequently, for all h ∈ [1,m], the minimal model

(〈w〉,R) of the Horn formula ϕ′ satisfies the atom Rh(a, b) iff h belongs to KJa,b
. By definition,

KJa,b
:= {h ∈ [1,m] |

∧
i∈Ja,b

θi(x, y)→ Rh(x, y) is a tautology}.
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As a consequence of Lemma 3, the two conjunctions
∧
i∈Ja,b

θi(a, b) and
∧
h∈KJa,b

Rh(a, b) have

the same minimal model, which is also the restriction of the minimal model (〈w〉,R) of ϕ′ to
the set of atoms Rh(a, b), for h ∈ [1,m]. Therefore, if i ∈ Ja,b, then (〈w〉,R) |= θi(a, b). If
i ∈ [1, k] \ Ja,b, then we have (〈w〉,R) |= ¬αi(a, b), by the definition of Ja,b. Therefore, for all
i ∈ [1, k], we get (〈w〉,R) |= ¬αi(a, b)∨ θi(a, b). In other words, for all (a, b) such that a+ b = t:

(〈w〉,R) |=
∧

i∈[1,k]

(αi(a, b)→ θi(a, b))

and then (〈w〉,R) |= ϕt.

This concludes the inductive proof that (〈w〉,R) |= ϕt, for all t ∈ [1, 2n], and then 〈w〉 |= Φ.780

This proves the implication Φ′ ⇒ Φ and completes the proof of Claim 1, hence the justification of
Step 10.

General case of Lemma 1. Steps 1-6 are easy to adapt in the general case where the initial formula
may contain hypotheses of the form R(y − b, x − a). The new points are the following: Step 3
restricts the computation atoms to four forms: R(x, y), R(y, x), R(x−1, y) and R(x, y−1); the key785

point is the adaptation of Step 7 (folding the domain) so that it eliminates the atoms of the form
R(y, x). Without loss of generality, assume that each computation clause is of one of the following
forms:

(a) S(x− 1, y) ∧ ¬min(x)→ R(x, y);

(b) S(x, y − 1) ∧ ¬min(y)→ R(x, y);790

(c) S(x, y) ∧ T (x, y)→ R(x, y);

(d) S(y, x)→ R(x, y).

Here again, this is obtained by “decomposing” each computation clause into an “equivalent”
conjunction of clauses using new intermediate predicates. For instance, the computation clause
R1(x−1, y)∧¬min(x)∧R2(x, y−1)∧¬min(y)∧R3(y, x)→ R4(x, y) is “equivalent” to the conjunc-795

tion of the following clauses using the new predicates R5, R6, R7, R8: R1(x − 1, y) ∧ ¬min(x) →
R5(x, y); R2(x, y − 1) ∧ ¬min(y) → R6(x, y); R5(x, y) ∧ R6(x, y) → R7(x, y); R3(y, x) →
R8(x, y); R7(x, y) ∧R8(x, y)→ R4(x, y).

The folding of clauses (a-c) is not modified. Let us describe how to fold the (new) clauses (d):
S(y, x)→ R(x, y). Obviously, such a clause is equivalent to the conjunction of the two clauses800

(i) x ≤ y ∧ S(y, x)→ R(x, y) and

(ii) y ≤ x ∧ S(y, x)→ R(x, y).

The equivalent “folded” form of clause (i) is x ≤ y∧Sinv(x, y)→ R(x, y). Clause (ii) is equivalent to
the clause x ≤ y∧S(x, y)→ R(y, x) whose equivalent “folded” form is x ≤ y∧S(x, y)→ Rinv(x, y).
Finally, Steps 8-10 are not modified. So the equality pred-ESO-HORN = normal-pred-ESO-HORN of805

Lemma 1 is proved.

4.2. Normalizing predecessor Horn logic with diagonal input-output

The purpose of this section is the normalization of the predecessor logic with diagonal input-
output (second part of Lemma 1). It consists in transforming each formula Φ ∈ pred-dio-ESO-HORN
into a formula where each clause is of one of the following forms:810

• input clause of the form, for s ∈ Σ and R ∈ R: x = y ∧ min(x) ∧ Qs(x) → R(x, y), or
x = y ∧ ¬min(x) ∧Qs(x)→ R(x, y);

• the contradiction clause, for a fixed R⊥ ∈ R: max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;

• computation clause of the form δ1 ∧ . . . ∧ δr → R(x, y), for R ∈ R, where each hypothesis δi
is a conjunction of the form S(x− 1, y) ∧ ¬min(x) or S(x, y − 1) ∧ ¬min(y), for S ∈ R.815
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To this end, we adapt the steps of the previous normalization.
Step 1 is not modified. In Step 2, the initialization clauses are now x = y ∧Qs(x)→ W x

s (x, y)
and x = y ∧Qs(y)→W y

s (x, y) whereas the transport clauses are not modified.

Steps 3 to 5 and the recapitulation after Step 5 are not modified either, except that now each
initialization clause is of one of the three forms:820

1) x = y ∧Qs(x)→ R(x, y);

2) min(x) ∧ η(y)→ R(x, y), with η(y) ∈ {(¬)min(y), (¬)max(y)};

3) min(y) ∧ η(x)→ R(x, y), with η(x) ∈ {(¬)min(x), (¬)max(x)}.

Steps 6 and 7 (folding the domain) and the recapitulation after Step 7 are not modified either,
except that now each initialization clause has one of the only forms 1 and 2 above.825

Step 8 (deleting max in the initialization clauses) can be easily adapted according to those initial-
ization clauses whose forms after Step 8 are now restricted to

1) x = y ∧Qs(x)→ R(x, y);

2) min(x) ∧ min(y)→ R(x, y);

3) min(x) ∧ ¬min(y)→ R(x, y).830

Clause 2 can be replaced by the equivalent clause 2’) x = y ∧ min(x)→ R(x, y).

Step 9 (from initialization clauses to input clauses) is modified as follows. Define the predicates
Rmin(x), Rmin(y) and R¬min(y) by the initialization clauses

4) x = y ∧ min(x)→ Rmin(x)(x, y) and

5) x = y ∧ min(x)→ Rmin(y)(x, y),835

and the computation clauses ¬min(y) ∧ Rmin(x)(x, y − 1) → Rmin(x)(x, y), ¬min(y) ∧ Rmin(y)(x, y −
1) → R¬min(y)(x, y), and ¬min(y) ∧ R¬min(y)(x, y − 1) → R¬min(y)(x, y). This allows to replace the
initialization clause 3 by the computation clause Rmin(x)(x, y) ∧ R¬min(y)(x, y) → R(x, y). After
those transformations all the initialization clauses are of the form x = y ∧Qs(x)→ R(x, y) (clause
1 above) or x = y ∧ min(x) → R(x, y) (clauses 2’, 4 and 5 above). By a case analysis, it is easy840

to transform each of these clauses into an equivalent conjunction of input clauses of the required
(normalized) forms: x = y ∧ min(x) ∧Qs(x)→ R(x, y), or x = y ∧ ¬min(x) ∧Qs(x)→ R(x, y).

Step 10 (Elimination of atoms R(x, y) as hypotheses) and the end of the proof are the same as
those for pred-ESO-HORN.
This achieves the proof of the equality pred-dio-ESO-HORN = normal-pred-dio-ESO-HORN and of845

Lemma 1. �

4.3. Normalizing inclusion Horn logic

Now, we present the normalization of inclusion logic (Lemma 2), i.e., we show how to transform
each formula Φ ∈ incl-ESO-HORN into a formula of normal-incl-ESO-HORN where each clause is of
one of the following forms:850

• input clause of the form x = y ∧Qs(x)→ R(x, y), for s ∈ Σ and R ∈ R;

• the contradiction clause, for a fixed R⊥ ∈ R, min(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;

• computation clause of the form x < y ∧ δ1 ∧ . . .∧ δr → R(x, y), where R ∈ R and where each
hypothesis δi is a computation atom of either form S(x+ 1, y) or S(x, y − 1), for S ∈ R.

It divides into seven steps.855

1. Processing the contradiction clauses. Here again, we delay the contradiction and propagate
the predicate R⊥ till the output site (1, n) by the conjunction of the computation clauses x <
y ∧ R⊥(x + 1, y) → R⊥(x, y) and x < y ∧ R⊥(x, y − 1) → R⊥(x, y) with the unique contradiction
clause min(x) ∧ max(y) ∧R⊥(x, y)→ ⊥.
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2. Processing the input. We make available the letters of the input word only on the diagonal860

x = y and in the forms Qs(x − a) and Qs(y + b) only (for a, b ≥ 0), by introducing new compu-
tation predicates W x+a

s and W y+a
s , for a ∈ Z, inductively defined and whose intuitive meaning is:

W x+a
s (x, y) ⇐⇒ Qs(x+ a) ∧ 1 ≤ x+ a ≤ n (resp. W y+a

s (x, y) ⇐⇒ Qs(y + a) ∧ 1 ≤ y + a ≤ n).
They are inductively defined by the following clauses:

Initialization clauses (on the diagonal): for s ∈ Σ and a ≥ 1,865

x = y ∧Qs(x)→W x
s (x, y); x = y ∧Qs(x)→W y

s (x, y);
x = y ∧ Qs(x − a) ∧ x > a → W x−a

s (x, y), x = y ∧ Qs(x − a) ∧ x > a → W y−a
s (x, y),

x = y ∧Qs(y + a) ∧ y ≤ n− a→W x+a
s (x, y), x = y ∧Qs(y + a) ∧ y ≤ n− a→W y+a

s (x, y);

Transport clauses: for a ∈ Z,
x < y ∧W x+a

s (x, y − 1)→W x+a
s (x, y), and x < y ∧W y+a

s (x+ 1, y)→W y+a
s (x, y).870

This allows to replace each input atom Qs(x+ a) (resp. Qs(y+ a)), a ∈ Z, by the computation
atom W x+a

s (x, y) (resp. W y+a
s (x, y)), in all the clauses, except in the initialization clauses.

Note that after Step 2 the atoms on input predicates Qs occur always jointly with x = y and in
the only three forms Qs(x), Qs(x− a) (jointly with x > a), or Qs(y + a) (jointly with y ≤ n− a),
for a ≥ 1 (see the initialization clauses above).875

3. Processing the min/max literals. One may consider that the only literals on x involving min or
max are of the forms x = a, x > a, for an integer a ≥ 1, or x = n − a, x < n − a, for a ≥ 0, and
similarly for y. By a similar process as we have done for the Qs, we can manage to make available
the information about min and max, i.e., about extrema, on the diagonal x = y only and in one of
the following forms only: x = a or x > a, for some a ≥ 1, or y = n − b or y < n − b, for some880

b ≥ 0. We introduce for that new computation predicates defined inductively: Rx=a, Rx>a, for
a ≥ 1, and Rx=n−a, Rx<n−a, for a ≥ 0, and similarly for y, with obvious intuitive meaning: for
instance, Rx>a(x, y) ⇐⇒ x > a. For example, define the predicate Rx=a (resp. Ry=a) by the two
clauses x = y ∧ x = a → Rx=a(x, y) and x < y ∧ Rx=a(x, y − 1) → Rx=a(x, y) (resp. x = y ∧ x =
a→ Ry=a(x, y) and x < y ∧Ry=a(x+ 1, y)→ Ry=a(x, y)). As another example, define Rx<n−a by885

the clauses x = y ∧ y < n− a→ Rx<n−a(x, y) and x < y ∧Rx<n−a(x, y − 1)→ Rx<n−a(x, y).
This allows to replace the “extremum” atoms x = a, x > a, x = n−a, x < n−a by the respective

computation atoms Rx=a(x, y), Rx>a(x, y), Rx=n−a(x, y), Rx<n−a(x, y), in all the clauses, except
in the initialization clauses and in the contradiction clause. And similarly for y. The important
fact is that after Step 3, the predicate min (resp. max) only occurs in the form x = a or x > a (resp.890

in the form y = n− a or y < n− a) and always occurs jointly with x = y, i.e., is only used on the
diagonal.

4. Restriction of computation atoms to R(x + 1, y), R(x, y − 1), and R(x, y). This is a variant
of the similar step in the normalization of predecessor logics (Step 3). We introduce new “shift”
predicates Rx+a, Ry−b and Rx+a,y−b, for fixed integers a, b > 0 and R ∈ R, with easy inter-895

pretation and definitions. In particular, the intuitive interpretation of the predicate Rx+a,y−b is:
Rx+a,y−b(x, y) ⇐⇒ x + a ≤ y − b ∧ R(x + a, y − b). As an example, the “normalized” clause
x < y ∧ Sx+2,y−2(x + 1, y) → Sx+3,y−2(x, y) defines the predicate Sx+3,y−2 from the predicate
Sx+2,y−2.

Recapitulation. After Step 4, one may consider that each clause is of one of the following forms900

(1-3):

1. an initialization clause x = y ∧ δ → R(x, y), where δ is

• either an input atom Qs(x),

• or an equality x = a, for a fixed a ≥ 1, or y = n− b, for a fixed b ≥ 0,

• or a conjunction Qs(x− a) ∧ x > a, or Qs(y + b) ∧ y ≤ n− b, for a, b ≥ 1;905

2. a computation clause of one of the forms (a,b,c):

(a) x < y ∧ S(x+ 1, y)→ R(x, y);

(b) x < y ∧ S(x, y − 1)→ R(x, y);



Logical Definitions Versus Programs of Real-Time CA 27

(c) x � y ∧ S(x, y) ∧ T (x, y)→ R(x, y), where � ∈ {<,=};

3. “the” contradiction clause min(x) ∧ max(y) ∧ R⊥(x, y) → ⊥, which can be rephrased x =910

1 ∧ y = n ∧R⊥(x, y)→ ⊥.

Justification for initialization clauses: By a case analysis, one easily obtains the above three forms
of initialization clauses.

Justification for computation clauses: Here again, “break down” each computation clause into clauses
of forms (a,b,c) above by introducing new intermediate predicates. For example, the computa-915

tion clause x < y ∧ R1(x + 1, y) ∧ R2(x, y − 1) → R3(x, y) is “equivalent” to the conjunction
of the following clauses that use the new predicates R4, R5: x < y ∧ R1(x + 1, y) → R4(x, y);
x < y ∧R2(x, y − 1)→ R5(x, y); x < y ∧R4(x, y) ∧R5(x, y)→ R3(x, y).

Steps 5 and 6 that follow rest on a generalization of the method used in Step 8 of the normaliza-
tion of predecessor logics above (eliminating max in the initialization clauses). Roughly expressed,
for any computation predicate R ∈ R and any hypothesis η, we introduce a new predicate Rη←
whose intuitive meaning is:

Rη←(x, y) ⇐⇒ (η → R(x, y)).

5. Elimination of equalities x = a (a ≥ 1) and y = n − b (b ≥ 0), in the initialization clauses.
Let A (resp. B) be the maximum of the integers a (resp. b) that occur in the equalities x = a920

(resp. y = n − b) of the clauses. For each R ∈ R, we introduce the new predicates Rx=a
← , Ry=n−b

←
and Rx=a,y=n−b

← , for all a ∈ [1, A] and b ∈ [0, B], whose intuitive meaning has been announced. For
example, we should have Rx=a,y=n−b

← (x, y) ⇐⇒ (x = a ∧ y = n− b→ R(x, y)).

Transforming the initialization clauses: Each initialization clause
x = y ∧ x = a → R(x, y) (resp. x = y ∧ y = n − b → R(x, y)) is transformed into the clause925

x = y → Rx=a
← (x, y) (resp. x = y → Ry=n−b

← (x, y)).

Transforming the computation clauses: For each clause (a) x < y ∧ S(x+ 1, y)→ R(x, y), add the
clauses x < y ∧ Sx=a,y=n−b

← (x + 1, y) → Rx=a−1,y=n−b
← (x, y), for all a ∈ [2, A] and b ∈ [0, B]

(justification: the hypothesis x+ 1 = a is equivalent to x = a− 1). Similarly, for each clause (b)
x < y∧S(x, y−1)→ R(x, y), add the clauses x < y∧Sx=a,y=n−b

← (x, y−1)→ Rx=a,y=n−(b−1)
← (x, y),930

for all a ∈ [1, A] and b ∈ [1, B]. Also add for clauses (a,b) the similar (simpler) clauses with
only one (instead of two) equality hypothesis. For example, for clause (a) we add the clauses
x < y ∧ Sx=a

← (x + 1, y) → Rx=a−1
← (x, y), for all a ∈ [2, A], and x < y

∧ Sy=n−b
← (x+ 1, y)→ Ry=n−b

← (x, y), for all b ∈ [0, B].

For each clause (c) x � y ∧ S(x, y) ∧ T (x, y) → R(x, y), where � ∈ {<,=}, add clauses that935

cumulate the hypotheses as long as they are compatible. More precisely, for all a ∈ [1, A] and
b ∈ [0, B] and any two compatible (possibly empty) subsets η, θ of the set of two hypotheses
{x = a, y = n − b}, we have the clause x � y ∧ Sη←(x, y) ∧ T θ←(x, y) → Rη∪θ← (x, y). For
example, x � y ∧ Sx=a

← (x, y) ∧ T y=n−b
← (x, y) → Rx=a,y=n−b

← (x, y) and x � y ∧ Sy=n−b
← (x, y) ∧

T x=a,y=n−b
← (x, y)→ Rx=a,y=n−b

← (x, y).940

Processing the contradiction clause: The contradiction clause is equivalent to
x = 1 ∧ y = n ∧ (x = 1 ∧ y = n → R⊥(x, y)) → ⊥. Consequently, it should be replaced
by the clause x = 1∧ y = n∧ (R⊥)x=1,y=n

← (x, y)→ ⊥, which is the contradiction clause required
if the predicate (R⊥)x=1,y=n

← is renamed R⊥.

6. Elimination of atoms Qs(x − a), Qs(y + b), for a, b > 0. This step is quite similar to Step 5.
For each R ∈ R, we introduce new predicates:

Rx−a1,...,x−al,y+b1,...,y+bm
←s1,...,sl,t1,...,tm

with l,m ≥ 0, the si, tj ∈ Σ, 0 ≤ a1 < a2 . . . < al ≤ A and 0 ≤ b1 < b2 . . . < bm ≤ B, where A945

(resp. B) is the maximal a in atoms Qs(x−a) (resp. maximal b in atoms Qs(y+b)). Their intuitive
meaning is as follows:

Rx−a1,...,x−al,y+b1,...,y+bm
←s1,...,sl,t1,...,tm (x, y) ⇐⇒

[ [
∧
i=1,...,l(Qsi(x− ai) ∧ x > ai) ∧

∧
j=1,...,m(Qtj (y + bj) ∧ y ≤ n− bj)]→ R(x, y) ].
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Transforming the initialization clauses: Each initialization clause x = y ∧ Qs(x − a) ∧950

x > a → R(x, y), a ≥ 1, (resp. x = y ∧ Qs(y + b) ∧ y ≤ n − b → R(x, y), b ≥ 1) is trans-
formed into the clause x = y ∧Rx−a←,s (x, y)→ R(x, y) (resp. x = y ∧Ry+b

←,s(x, y)→ R(x, y)).

Transforming the computation clauses: To each clause (a) x < y ∧ S(x + 1, y) → R(x, y) add the
following clauses justified by the identity x+ 1− ai = x− (ai − 1):

x < y ∧ Sx−a1,...,x−al,y+b1,...,y+bm
←s1,...,sl,t1,...,tm (x+ 1, y)→ R

x−(a1−1),...,x−(al−1),y+b1,...,y+bm
←s1,...,sl,t1,...,tm (x, y).

Similarly, to each clause (b) x < y ∧ S(x, y − 1)→ R(x, y) add the clauses

x < y ∧ Sx−a1,...,x−al,y+b1,...,y+bm
←s1,...,sl,t1,...,tm (x, y − 1)→ R

x−a1,...,x−al,y+(b1−1),...,y+(bm−1)
←s1,...,sl,t1,...,tm (x, y).

Moreover, add for a1 = 0 and each s1 ∈ Σ, the following “verification” clauses, which intu-
itively delete the hypothesis Qs1(x) after verifying that it is satisfied because of the equivalence
W x
s1(x, y) ⇐⇒ Qs1(x):

x < y ∧ Sx,x−a2,...,x−al,y+b1,...,y+bm
←s1,s2,...,sl,t1,...,tm (x, y) ∧W x

s1(x, y)→ Rx−a2,...,x−al,y+b1,...,y+bm
←s2,...,sl,t1,...,tm (x, y).

Similarly, add for b1 = 0 and each t1 ∈ Σ, the “verification” clauses (justified by W y
t1(x, y) ⇐⇒

Qt1(y)):

x < y ∧ Sx−a1,...,x−al,y,y+b2,...,y+bm
←s1,...,sl,t1,t2,...,tm (x, y) ∧W y

t1(x, y)→ Rx−a1,...,x−al,y+b2,...,y+bm
←s1,...,sl,t2...,tm (x, y).

For each clause (c) x � y ∧ S(x, y) ∧ T (x, y)→ R(x, y), where � ∈ {<,=}, add similar clauses
that cumulate the hypotheses provided they are compatible: for example, the clause

x � y ∧ Sx−1,x−3,y+2
s1,s2,t1 (x, y) ∧ T x−1,y+2,y+4

s1,t1,t2 (x, y)→ Rx−1,x−3,y+2,y+4
s1,s2,t1,t2 (x, y).

Recapitulation. After Step 6, all the initialization clauses are of the form
x = y ∧Qs(x)→ R(x, y) as required10.

7. Elimination of atoms R(x, y) as hypotheses. This step is absolutely similar to the corresponding955

Step 10 of normalization of predecessor logics.

This completes the proof of the equality incl-ESO-HORN = normal-incl-ESO-HORN, i.e., Lemma 2.
�

5. Extending our logics with negation and normalizing them

In this section, we will extend our logics by allowing a limited use of negation. The main interest of960

this extension is to make easier the natural expression of problems within the logics without changing
the complexity classes involved. More precisely, we now allow the negations of computation atoms
¬α as hypotheses of the clauses provided α is not in the form R(x, y) nor R(y, x). We will see that
such an extension does not increase the computation power (complexity) of the logics because it
does not modify the nature of their inductive process.965

Let us give the precise definitions of our formulas with negation called inductive formulas since
they are no longer Horn formulas.

Definition 7 (predecessor logics). A predecessor inductive formula (resp. predecessor inductive
formula with diagonal input-output) is a formula of the form Φ = ∃R∀x∀yψ(x, y) where R is a
set of binary predicates called computation predicates and ψ is a conjunction of clauses on the970

variables x, y, of signature SΣ ∪R (resp. SΣ ∪R ∪ {=}), of the form δ1 ∧ . . . ∧ δr → δ0 where the
conclusion δ0 is either a computation atom R(x, y) with R ∈ R, or ⊥, and each hypothesis δi is

1. either an input literal (resp. input conjunction) of one of the forms:

10Note that an initialization clause of the form x = y → R(x, y) can be rewritten
∧

s∈Σ(x = y ∧Qs(x)→ R(x, y))
(case analysis).
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• Qs(x− a), Qs(y − a) (resp. Qs(x− a) ∧ x = y), for s ∈ Σ and a ≥ 0,

• (¬)U(x− a) or (¬)U(y − a), for U ∈ {min, max} and a ≥ 0,975

2. or a computation literal of the form S(x, y), S(y, x), (¬)S(x − a, y − b) or
(¬)S(y − b, x− a), for S ∈ R and a, b ≥ 0 such that a+ b > 0.

Let pred-ESO-IND (resp. pred-dio-ESO-IND) denote the class of predecessor inductive formulas
(resp. predecessor inductive formulas with diagonal input-output) and, also, the class of languages
they define.980

Definition 8 (inclusion logic). An inclusion inductive formula is a formula of the form Φ =
∃R∀x∀yψ(x, y) where R is a set of binary predicates called computation predicates and ψ is a
conjunction of clauses of signature SΣ ∪R∪{=,≤, <}, of the form x ≤ y∧ δ1 ∧ . . .∧ δr → δ0 where
the conclusion δ0 is either a computation atom R(x, y) with R ∈ R, or ⊥, and each hypothesis δi is

1. either an input literal of the form (¬)U(x+a) or (¬)U(y+a), for a ∈ Z and U ∈ {(Qs)s∈Σ, min, max},985

2. or an (in)equality x = y or x < y,

3. or a conjunction of the form S(x, y) ∧ x ≤ y or (¬)S(x+ a, y − b) ∧ x+ a ≤ y − b, for S ∈ R
and a, b ≥ 0 such that a+ b > 0.

Let incl-ESO-IND denote the class of inclusion inductive formulas and, also, the class of lan-
guages they define. Here again, it is convenient to normalize the logics.990

Normalizing logics with negation

Lemma 4 (normalization of predecessor logics). Each formula Φ ∈ pred-ESO-IND (resp.
Φ ∈ pred-dio-ESO-IND) is equivalent to a formula Φ′ ∈ pred-ESO-IND (resp.
Φ′ ∈ pred-dio-ESO-IND) where each clause is of one of the following forms:

• an input clause of the form995

min(x) ∧ min(y) ∧ Qs(y) → R(x, y), or min(x) ∧ ¬min(y) ∧ Qs(y) → R(x, y)
(resp. x = y ∧ min(x) ∧ Qs(x) → R(x, y), or x = y ∧ ¬min(x) ∧ Qs(x) → R(x, y)), for
s ∈ Σ and R ∈ R;

• the contradiction clause max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥, for a fixed R⊥ ∈ R;

• a computation clause of the form δ1∧ . . .∧ δr → R(x, y), for R ∈ R, where each hypothesis δi1000

is a conjunction of the form (¬)S(x− 1, y)∧¬min(x) or (¬)S(x, y− 1)∧¬min(y), for S ∈ R.

Let normal-pred-ESO-IND (resp. normal-pred-dio-ESO-IND) denote the class of formulas (lan-
guages) so defined.

Lemma 5 (normalization of inclusion logic). Each formula Φ ∈ incl-ESO-IND is equivalent to a
formula Φ′ ∈ incl-ESO-IND where each clause is of one of the following forms:1005

• an input clause of the form x = y ∧Qs(x)→ R(x, y), for s ∈ Σ and R ∈ R;

• the contradiction clause, for a fixed R⊥ ∈ R, min(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;

• a computation clause of the form x < y ∧ δ1 ∧ . . . ∧ δr → R(x, y), where R ∈ R and each
hypothesis δi is a computation atom of either forms (¬)S(x + 1, y) or (¬)S(x, y − 1), for
S ∈ R.1010

Let normal-incl-ESO-IND denote the class of formulas (languages) so defined.

5.1. Proof of Lemma 4: Normalizing predecessor logics with negation

The transformation still divides into the same 10 steps of the normalization of predecessor
Horn logics (proof of Lemma 1). Steps 1-2, 4-6 and 9-10 are exactly the same or can be trivially
adapted. Let us explain how to adapt Steps 3, 7 and 8 for formulas in pred-ESO-HORN (the case1015

pred-dio-ESO-HORN is similar).
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Step 3: Restriction of the computation literals to (¬)R(x− 1, y), (¬)R(x, y − 1)
and R(x, y). In addition to the “shift” predicates Rx−a, Ry−b, and Rx−a,y−b, we define “shift
negative” computation predicates of the forms R¬,x−a, R¬,y−b, R¬,x−a,y−b, for fixed integers a, b >
0, with intuitive meaning: R¬,x−a(x, y) ⇐⇒ ¬R(x − a, y); R¬,y−b(x, y) ⇐⇒ ¬R(x, y − b);1020

R¬,x−a,y−b(x, y) ⇐⇒ ¬R(x − a, y − b). Let us describe the transformation on an example. The
computation clause

y > 2 ∧ x > 3 ∧ S(x, y − 2) ∧ ¬T (x− 3, y − 1)→ R(x, y) (1)

is transformed into the clause without negation

y > 2 ∧ x > 3 ∧ Sy−1(x, y − 1) ∧ T¬,x−2,y−1(x− 1, y)→ R(x, y). (2)

The predicate Sy−1 is defined by the implication y > 1 ∧ S(x, y − 1) → Sy−1(x, y)
which implies1025

y > 2 ∧ S(x, y − 2)→ Sy−1(x, y − 1). (3)

The predicates T¬,x−1, T¬,x−2 and T¬,x−2,y−1 are defined successively by the implications
x > 1 ∧¬T (x− 1, y)→ T¬,x−1(x, y), x > 2 ∧ T¬,x−1(x− 1, y)→ T¬,x−2(x, y), and x > 2 ∧ y > 1 ∧
T¬,x−2(x, y − 1) → T¬,x−2,y−1(x, y), which imply by transitivity
x > 2 ∧ y > 1 ∧ ¬T (x− 2, y − 1)→ T¬,x−2,y−1(x, y) and then

x > 3 ∧ y > 1 ∧ ¬T (x− 3, y − 1)→ T¬,x−2,y−1(x− 1, y). (4)

Justification: Since the clauses defining the “shift” predicates Sy−1, T¬,x−1, T¬,x−2 and T¬,x−2,y−1
1030

imply the clauses 3 and 4, and since the conjunction of the clauses 3, 4 and 2 implies clause 1 by
transitivity, the conjunction of clause 2 with the clauses defining the “shift” predicates also implies
clause 1 as required. Besides, one observes that after the transformation, all the clauses obtained,
which in our example are clause 2 and the clauses defining the “shift” predicates, are of the forms
required (¬)R(x− 1, y), (¬)R(x, y − 1), and R(x, y).1035

Moreover, note that after Step 3 the only clauses involving negation are of the forms x >
1 ∧ ¬S(x− 1, y)→ R(x, y) or y > 1 ∧ ¬S(x, y − 1)→ R(x, y).

Recapitulation. We can assume that after Steps 1-6 each clause is of one of the following forms:

1. an initialization clause of one of the two forms:
min(x) ∧ η(y)→ R(x, y) with η(y) ∈ {(Qs(y))s∈Σ, (¬)min(y), (¬)max(y)};1040

min(y) ∧ η(x)→ R(x, y) with η(x) ∈ {(Qs(x))s∈Σ(¬)min(x), (¬)max(x)};

2. “the” contradiction clause max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;

3. a computation clause of one of the following forms:

(a) (¬)S(x− 1, y) ∧ ¬min(x)→ R(x, y);

(b) (¬)S(x, y − 1) ∧ ¬min(y)→ R(x, y);1045

(c) S(x, y) ∧ T (x, y)→ R(x, y).

Step 7: Folding the domain. Recall briefly this transformation by adding the slight extensions due
to the negation of hypotheses.

Folding the initialization clauses: Each clause of the form min(x) ∧ η(y) → R(x, y) (with η(y) ∈
{Qs(y)|s ∈ Σ}∪{(¬)min(y), (¬)max(y)}) is unchanged ; each clause of the form min(y)∧η(x)→1050

R(x, y) (with η(x) ∈ {Qs(x)|s ∈ Σ} ∪ {(¬)min(x), (¬)max(x)}) is replaced by its folded version
min(x) ∧ η(y)→ Rinv(x, y).

Folding the computation clauses: • Clause (a) (¬)S(x−1, y)∧¬min(x)→ R(x, y) is replaced by
the equivalent conjunction of the clause x ≤ y ∧ (¬)S(x− 1, y) ∧ ¬min(x) → R(x, y) with
the folded clause x < y ∧ (¬)Sinv(x, y − 1) ∧ ¬min(y)→ Rinv(x, y).1055

• Clause (b) (¬)S(x, y − 1) ∧ ¬min(y) → R(x, y) is replaced by the equivalent conjunc-
tion of the clause x < y ∧ (¬)S(x, y − 1) ∧ ¬min(y) → R(x, y) with the folded clause
x ≤ y ∧ (¬)Sinv(x− 1, y) ∧ ¬min(x)→ Rinv(x, y).

Folding the contradiction clause: The clause max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥ is not modified.

The diagonal fold: Add for each R ∈ R the clauses x = y ∧ R(x, y) → Rinv(x, y) and x = y ∧1060

Rinv(x, y)→ R(x, y).
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Recapitulation. After Steps 1-7, each clause is of one of the following forms:

1. an initialization clause of the form min(x) ∧ η(y) → R(x, y) with η(y) ∈ {Qs(y)|s ∈ Σ} ∪
{(¬)min(y), (¬)max(y)};

2. “the” contradiction clause max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;1065

3. a computation clause of one of the following forms:

(a) x ≤ y ∧ (¬)S(x− 1, y) ∧ ¬min(x)→ R(x, y);

(b) x < y ∧ (¬)S(x, y − 1) ∧ ¬min(y)→ R(x, y);

(c) x ≤ y ∧ S(x, y) ∧ T (x, y)→ R(x, y);

(d) x = y ∧ S(x, y)→ R(x, y).1070

Step 8: Deleting max in the initialization clauses. It is sufficient to describe the transformation of
the clauses that contain a negation (the transformation of the other clauses is not modified). First,
note that any clause of the form

(a) x ≤ y ∧ ¬S(x− 1, y) ∧ ¬min(x)→ R(x, y)

is equivalent to the conjunction of the two following clauses:1075

• x ≤ y ∧ max(y) ∧ ¬S(x− 1, y) ∧ ¬min(x)→ (max(y)→ R(x, y)), and

• x ≤ y ∧ ¬max(y) ∧ ¬S(x− 1, y) ∧ ¬min(x)→ (¬max(y)→ R(x, y)),

which are equivalent to

1) x ≤ y ∧ ¬(max(y)→ S(x− 1, y)) ∧ ¬min(x)→ (max(y)→ R(x, y)), and

2) x ≤ y ∧ ¬(¬max(y)→ S(x− 1, y)) ∧ ¬min(x)→ (¬max(y)→ R(x, y)), respectively.1080

Using the equivalence Sy←max(x, y) ⇐⇒ (max(y)→ S(x, y)) and the similar equivalences for Ry←max,
Sy←¬max and Ry←¬max we can transform clauses 1 and 2 into the “equivalent” clauses

1’) x ≤ y ∧ ¬Sy←max(x− 1, y) ∧ ¬min(x)→ Ry←max(x, y), and

2’) x ≤ y ∧ ¬Sy←¬max(x− 1, y) ∧ ¬min(x)→ Ry←¬max(x, y), respectively.

This justifies to replace clause (a) above by the conjunctions of clauses (1’) and (2’).1085

Similarly, any clause (b) x < y∧¬S(x, y−1)∧¬min(y)→ R(x, y) is equivalent to x < y∧¬max(y−
1) ∧ ¬S(x, y − 1) ∧ ¬min(y) → R(x, y) and therefore to x < y ∧
¬Sy←¬max(x, y−1)∧¬min(y)→ R(x, y). This justifies the replacement of clause (b) by the conjunc-
tion of clauses x < y ∧¬Sy←¬max(x, y− 1)∧¬min(y)→ Ry←max(x, y) and x < y ∧¬Sy←¬max(x, y− 1)∧
¬min(y)→ Ry←¬max(x, y).1090

This concludes the proof of Lemma 4. �

5.2. Proof of Lemma 5: Normalizing inclusion logic with negation

It is a variant of the seven steps of the normalization of inclusion Horn formulas (see the proof
of Lemma 2). Steps 1-3 are not modified.

Step 4: Restriction of computation atoms to (¬)R(x+ 1, y), (¬)R(x, y− 1), and R(x, y). As this is1095

a straightforward variant of the similar step (Step 3) of the normalization of inductive predecessor
logics (proof of Lemma 4 above) we let the reader complete the details.
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Recapitulation. After Step 4, one may consider that each clause is of one of the following forms
(1-3):

1. an initialization clause x = y ∧ δ → R(x, y), where δ is1100

• either an input atom Qs(x),

• or an equality x = a, for a fixed a ≥ 1, or y = n− b, for a fixed b ≥ 0,

• or a conjunction Qs(x− a) ∧ x > a, or Qs(y + b) ∧ y ≤ n− b, for a, b ≥ 1;

2. a computation clause of one of the forms (a,b,c):

(a) x < y ∧ (¬)S(x+ 1, y)→ R(x, y);1105

(b) x < y ∧ (¬)S(x, y − 1)→ R(x, y);

(c) x � y ∧ S(x, y) ∧ T (x, y)→ R(x, y), where � ∈ {<,=};

3. “the” contradiction clause x = 1 ∧ y = n ∧R⊥(x, y)→ ⊥.

Steps 5 and 6 are deeply modified. They use the following notions. Let A (resp. B) be the
maximum of integers a (resp. b) that occurs in equalities x = a (resp. y = n− b) and conjunctions1110

Qs(x−a)∧x > a (resp. Qs(y+ b)∧y ≤ n− b) of the initialization clauses. We call an x-description

any conjunction of the form x = a ∧
∧a−1
i=1 Qsi(x − i), for a ∈ [1, A] and (s1, . . . , sa) ∈ Σa, or

x > A ∧
∧A
i=1Qsi(x − i), for (s1, . . . , sA) ∈ ΣA. The first form is called an x-equal-description.

The second form is called an x-sup-description. Similarly, a y-description is any conjunction of the
form y = n − b ∧

∧b
j=1Qtj (y + j), for b ∈ [0, B − 1] and (t1, . . . , tb) ∈ Σb (y-equal-description), or1115

y ≤ n − B ∧
∧B
j=1Qtj (y + j), for (t1, . . . , tB) ∈ ΣB (y-inf-description). Let H denote the set of

x-descriptions and Θ the set of y-descriptions. Notice as special cases the x-description x = 1 and
the y-description y = n. Here are the key conditions satisfied by x-descriptions and y-descriptions:

• x = a (resp. Qs(x−a)∧x > a), for a ∈ [1, A], is equivalent to the disjunction of the set Hx=a

(resp. Hx−a
s ) of x-descriptions that contain x = a (resp. Qs(x− a)) as a conjunct;1120

• similarly, y = n− b, for b ∈ [0, B] (resp. Qt(y + b)∧ y ≤ n− b, for b ∈ [1, B]), is equivalent to

the disjunction of the set Θy=n−b (resp. Θy+b
t ) of y-descriptions that contain y = n− b (resp.

Qt(y + b)) as a conjunct;

• the x-descriptions (resp. y-descriptions) cover all possible cases, i.e., the disjunctions
∨
η∈H η

and
∨
θ∈Θ θ are tautologies.1125

Step 5: Processing the initialization clauses.. Replace each initialization clause of the form x =
y ∧ δ → R(x, y) where δ is x = a (resp. δ is Qs(x − a) ∧ x > a) by the equivalent conjunction
of clauses x = y ∧ η ∧ θ → R(x, y) where η ∈ Hx=a (resp. η ∈ Hx−a

s ) and θ ∈ Θ. Similarly,
replace each initialization clause of the form x = y ∧ δ → R(x, y) where δ is y = n − b (resp. δ
is y ≤ n − b ∧ Qt(y + b)) by the equivalent conjunction of clauses x = y ∧ η ∧ θ → R(x, y) where1130

η ∈ H and θ ∈ Θy=n−b (resp. θ ∈ Θy+b
t ). Notice that each initialization clause is now of the form

x = y ∧Qs(x)→ R(x, y) or x = y ∧ η ∧ θ → R(x, y) where η ∈ H and θ ∈ Θ.

Step 6: Processing the clauses with conditional hypotheses. Let us introduce the new computation
predicates Rη,θ← , for each R ∈ R, each x-description η and each y-description θ, with the following
intuitive meaning: Rη,θ← (x, y) ⇐⇒ (η ∧ θ → R(x, y)). We now transform all the clauses by using1135

the predicates Rη,θ← instead of the initial computation predicates R.

Transforming the initialization clauses: Replace each clause x = y∧Qs(x)→ R(x, y) by the “equiv-
alent” conjunction of clauses

∧
(η,θ)∈H×Θ(x = y ∧Qs(x)→ Rη,θ← (x, y)), and replace each clause

of the form x = y ∧ η ∧ θ → R(x, y) which is “equivalent” to the clause x = y → Rη,θ← (x, y) by
the conjunction of clauses

∧
s∈Σ(x = y ∧Qs(x)→ Rη,θ← (x, y)).1140

Transforming the computation clauses: Let us consider successively the clauses of forms (a), (b)
(with or without negation) and (c).

Transforming clauses x < y ∧ ¬S(x+ 1, y)→ R(x, y):
The transformation rests on the three following obvious facts:
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• ¬S(x+ 1, y) is equivalent to
∨
η∈H,θ∈Θ(η(x+ 1) ∧ θ(y) ∧ ¬S(x+ 1, y));1145

• η(x + 1) ∧ θ(y) ∧ ¬S(x + 1, y) is equivalent to ¬(η(x + 1) ∧ θ(y) → S(x + 1, y)), that is
¬Sη,θ← (x+ 1, y);

• R(x, y) is equivalent to
∧
η∈H,θ∈Θ(η(x) ∧ θ(y)→ R(x, y)), that is

∧
η∈H,θ∈ΘR

η,θ
← (x, y).

These facts justify the replacement of the clause x < y ∧ ¬S(x+ 1, y)→ R(x, y) by the “equiv-
alent” conjunction of clauses x < y ∧ ¬Sη,θ← (x+ 1, y)→ Rη

′,θ′

← (x, y), for η, η′ ∈ H and θ, θ′ ∈ Θ.1150

Transforming clauses x < y ∧ S(x+ 1, y)→ R(x, y):

Let η
x=a,x−1,...,x−(a−1)
s1,...,sa−1 (x) (resp. ηx>A,x−1,...,x−A

s1,...,sA (x)) denote the x-description x = a∧
∧a−1
i=1 Qsi(x−

i), for a ∈ [1, A] and (s1, . . . , sa−1) ∈ Σa (resp. x > A∧
∧A
i=1Qsi(x− i), for (s1, . . . , sA) ∈ ΣA).

The following equivalences which are easy to check11 will be useful to justify the transformation
of clauses (a):1155

ηx=a,x−1,...,x−(a−1)
s1,...,sa−1

(x+ 1) ⇐⇒
(
Qs1(x) ∧ ηx=a−1,x−1,...,x−(a−2)

s2,...,sa−1
(x)
)

(5)

ηx>A,x−1,...,x−A
s1,...,sA (x+ 1) ⇐⇒

∨
s∈Σ

(
Qs1(x) ∧ ηx>A,x−1,...,x−A

s2,...,sA,s (x)
)

(6)

Notation. For any x-equal-description η := η
x=a,x−1,...,x−(a−1)
s1,...,sa−1 , let η. denote the x-equal-

description η
x=a−1,x−1,...,x−(a−2)
s2,...,sa−1 involved in equivalence 5. For any x-sup-description η :=

ηx>A,x−1,...,x−A
s1,...,sA and any s ∈ Σ, let ηx−As denote the x-sup-description ηx>A,x−1,...,x−A

s2,...,sA,s involved
in equivalence 6.1160

Replace any clause (a) x < y ∧ S(x+ 1, y)→ R(x, y) by the conjunction of clauses

x < y ∧ Sη,θ(x+ 1, y) ∧W x
s1(x, y)→ Rη.,θ← (x, y)

for all s1 ∈ Σ, every x-equal-description η that contains Qs1(x− 1), and each θ ∈ Θ;

x < y ∧ Sη,θ(x+ 1, y) ∧W x
s1(x, y)→ Rη

x−A
s ,θ
← (x, y)

for all s1, s ∈ Σ, every x-sup-description η that contains Qs1(x − 1) and each θ ∈ Θ. This
replacement is justified by the above-mentioned properties of x-descriptions and y-descriptions,
equivalences 5 and 6 and the meaning of W x

s1 , i.e., W x
s1(x, y) ⇐⇒ Qs1(x).

Transforming clauses x < y ∧ ¬S(x, y − 1) → R(x, y) and x < y ∧ S(x, y − 1) → R(x, y):
These clauses are transformed by the same method as for clauses (a). So, we let the reader1165

complete the details.

Transforming clauses x � y ∧ S(x, y) ∧ T (x, y)→ R(x, y), where � ∈ {<,=}:
Replace each clause (c) x � y ∧ S(x, y) ∧ T (x, y) → R(x, y), where � ∈ {<,=}, by the set of
clauses x � y ∧ Sη,θ← (x, y) ∧ T η,θ← (x, y)→ Rη,θ← (x, y), for (η, θ) ∈ H ×Θ.

Processing the contradiction clause: The initial contradiction clause is equivalent to1170

x = 1 ∧ y = n ∧ (x = 1 ∧ y = n → R⊥(x, y)) → ⊥. So, here again, it should be replaced
by the clause x = 1∧ y = n∧ (R⊥)x=1,y=n

← (x, y)→ ⊥, which is the contradiction clause required
if the predicate (R⊥)x=1,y=n

← is renamed R⊥.

Recapitulation. After Step 6, all the initialization clauses are of the form
x = y ∧Qs(x)→ R(x, y), i.e. are the required input clauses.1175

Step 7: Elimination of atoms R(x, y) as hypotheses. This step is not modified.

This completes the proof of the equality incl-ESO-IND = normal-incl-ESO-IND, i.e., Lemma 5.
�

11We only shift the data from x+ 1 to x using the equivalences: x+ 1 = a ⇐⇒ x = a− 1; Qs((x+ 1)− i) ⇐⇒
Qs(x− (i− 1)); x+ 1 > A ⇐⇒ x > A− 1.



Logical Definitions Versus Programs of Real-Time CA 34

6. Equivalence between our logics and real-time cellular automata

In this section, we examine how to convert the formulas of our logics to real-time CA, and vice versa.1180

Basically, the transition function (resp. the input mode, the output mode) of the automata will
be the counterpart of the computation clauses (resp. the input clauses, the contradiction clauses)
of the formulas. Further, the correspondence between the set of computation predicates of the
formulas and the set of states of the automata will be based on the following encoding. Starting
from a formula whose set of computation predicates is R, the states set S of the corresponding1185

automaton will be the power set of R; the idea behind is that the state of the cell c at time t
records the subset {Ri ∈ R | Ri(c, t) is true}. By the way, any subset not containing the predicate
R⊥ will be an accepting state. Conversely, starting from any automaton, its set of states S will be
expressed by the set of computation predicates R = {Rq | q ∈ S}, with the intuitive meaning that
Rq(c, t) is true iff the cell c is in state q at time t.1190

6.1. Logical characterization of RealTimeCA

We are now ready to prove Theorem 1 that states the languages accepted in real-time by two-
way CA’s with input fed in a parallel way and output read on the first cell are exactly the languages
defined by the predecessor logic. We recall it here for convenience:

Theorem 1. RealTimeCA = pred-ESO-HORN = pred-ESO-IND.1195

The proof will use the following inclusion scheme:

pred-ESO-IND = normal-pred-ESO-IND ⊆ RealTimeOIA = RealTimeCA ⊆ pred-ESO-HORN.

The equality pred-ESO-IND = normal-pred-ESO-IND has been proved in Section 5 and the other
equality RealTimeOIA = RealTimeCA is well-known in automata theory (see [4, 20] and the sur-
vey [39], pp. 136-137). The two remaining inclusions are proved in the next two lemmas.1200

Lemma 6. RealTimeCA ⊆ pred-ESO-HORN.

Proof. We will show that for any automaton A = (S, Saccept, {−1, 0, 1}, f) ∈ RealTimeCA we can
build a formula Φ ∈ pred-ESO-HORN such that: w ∈ L(A) ⇐⇒ 〈w〉 satisfies the formula Φ. We turn
A into an equivalent OCA A′ = (S, Saccept, {−2,−1, 0}, f) running within the same computation
time n where n is the length of the input word (see Figure 7). This transformation can be seen on1205

the space-time diagrams as the variable change: (c, t) 7→ (c + t − 1, t), where c is the index of the
cell and t the time step of the computation.

w1 w2 w3 w4 w5

A

w1 w2 w3 w4 w5

A′

Figure 7: Neighborhood’s change: from {−1, 0, 1} to {−2,−1, 0}

Input: With w = w1 . . . wn as the input word, the parallel input mode of the automata is expressed
by the conjunction

ψinput =
∧
s∈Σ

(min(t) ∧Qs(c)→ Rs(c, t)) for Σ the input alphabet

This conjunction tells that the cell c is in state wc ∈ Σ at the start of the computation.
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Computation: Every transition rule f(q2, q1, q0) = q with q2 6= ] is expressed by the computation
clause:

c > t ∧ ¬min(t) ∧Rq2(c− 2, t− 1) ∧Rq1(c− 1, t− 1) ∧Rq0(c, t− 1)→ Rq(c, t).

The specific case where q2 is the permanent state ] (f(], q1, q0) = q) is expressed by the clause:

c = t ∧ ¬min(t) ∧Rq1(c− 1, t− 1) ∧Rq0(c, t− 1)→ Rq(c, t).

Let ψcompute be the conjunction of the above two sets of clauses.

With ψ′ := ψinput∧ψcompute, we have the following equivalence: The computation atom Rq(c, t)1210

is true in the minimal model (〈w〉,R) of ∀c∀tψ′(c, t) iff the cell c is in state q at time t.

Output: The output get on the last cell is expressed by the contradiction clauses:

ψoutput :=
∧

q∈S \ Saccept

(max(c) ∧ max(t) ∧Rq(c, t)→ ⊥).

The formula ψ expressing the computation of A′ is the conjunction ψ := ψ′ ∧ ψoutput. For each
word w = w1 . . . wn ∈ Σ+ we have the following equivalences:

With w as input, A enters an accepting state on cell 1 at time n
⇐⇒

With w as input, A′ enters an accepting state on cell n at time n
⇐⇒

The conjunction
∧
q∈S \ Saccept

¬Rq(n, n) is true in the minimal model (〈w〉,R) of

∀c∀tψ′(c, t)
⇐⇒

〈w〉 satisfies the formula ∃R∀c∀tψ(c, t).

This proves L(A) ∈ pred-ESO-HORN.1215

Lemma 7. normal-pred-ESO-IND ⊆ RealTimeOIA

Proof. We convert a formula Φ ∈ normal-pred-ESO-IND into a one-way iterative arrayA = (S, Saccept, {−1, 0}, f, finput) ∈
RealTimeOIA.

Let Φ ∈ normal-pred-ESO-IND be a formula of the form Φ = ∃R∀x∀yψ(x, y) where R =
{R1, . . . , Rm}, and ψ is a conjunction of Horn clauses of the following three forms:1220

1. input clause of either form:
min(x) ∧ min(y) ∧Qs(y)→ R(x, y), or min(x) ∧ ¬min(y) ∧Qs(y)→ R(x, y),

2. the contradiction clause
max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥,

3. computation clause of one of the following forms for some nonempty sets H,H ′ ⊆ [1,m] and1225

i ∈ [1,m]:

• ¬min(x) ∧
∧
h∈H εhRh(x− 1, y) ∧ ¬min(y) ∧

∧
h∈H′ εhRh(x, y − 1)→ Ri(x, y),

• ¬min(x) ∧
∧
h∈H εhRh(x− 1, y)→ Ri(x, y),

• ¬min(y) ∧
∧
h∈H εhRh(x, y − 1)→ Ri(x, y),

where each εh either is ¬ or is nothing, written εh ∈ {−,+}1230

We denote ψ′ the formula ψ without the contradiction clause.

The set of states S used by A is the power set of R = {R1, . . . , Rm} augmented by the quiescent
state λ and the permanent state ]: S = P(R) ∪ {λ, ]}.
The input transition function finput only applies to the first cell and the transition function f applies
to all the other cells. Below are the definitions of those transition functions where i ∈ [1,m], s ∈ Σ,1235

and q, l, r ∈ S \{], λ}:
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The input transition function finput : Σ× S→ S: Ri ∈ finput(s, λ) iff there is in ψ an input clause
min(x)∧ min(y)∧Qs(y)→ Ri(x, y); moreover, Ri ∈ finput(s, q) iff there is in ψ an input clause
min(x)∧¬min(y)∧Qs(y)→ Ri(x, y) or a computation clause ¬min(y)∧

∧
h∈H εhRh(x, y−1)→

Ri(x, y) such that, for all h ∈ H, Rh /∈ q if εh = − and Rh ∈ q if εh = +;1240

The transition function f : S× S → S applies to cells c ∈ [2, n]: Ri ∈ f(l, r) iff there is in ψ a
computation clause

∧
h∈H εhRh(x−1, y)∧¬min(x)∧

∧
h∈H′ εhRh(x, y−1)∧¬min(y)→ Ri(x, y)

such that, for all h ∈ H, Rh /∈ l if εh = − and Rh ∈ l if εh = +, and, for all h ∈ H ′, Rh /∈ r
if εh = − and Rh ∈ r if εh = +; moreover, Ri ∈ f(l, λ) iff there is in ψ a computation clause
¬min(x)∧

∧
h∈H εhRh(x−1, y)→ Ri(x, y) such that, for all h ∈ H, Rh /∈ l if εh = − and Rh ∈ l1245

if εh = +.
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w4

w5

w1

w2

w3

w4

w5

Grid circuit

GRID1

RealTimeOIA

Figure 8: Geometrical interpretation of the transition from GRID1 to RealTimeOIA

By construction of A, we have the following equivalences, for all w ∈ Σn:

• ∀(a, b) ∈ [1, n]2,∀i ∈ [1,m], the atom Ri(a, b) is true in the minimal model (〈w〉,R) of
∀x∀y ψ′(x, y) ⇐⇒ the cell c = a is in a state q with Ri ∈ q at time t = a+ b− 1;

• 〈w〉 satisfies Φ ⇐⇒ A accepts w in real-time.1250

6.2. Logical characterization of RealTimeIA

In this section, we will show Theorem 2 that states the languages accepted in real-time by IA are
exactly the languages defined by the predecessor logic with diagonal input-output. For convenience,
we restate it here:1255

Theorem 2. RealTimeIA = pred-dio-ESO-HORN = pred-dio-ESO-IND.

The proof is close to the one of Theorem 1. It is obtained by the following inclusion scheme:

pred-dio-ESO-IND = normal-pred-dio-ESO-IND ⊆ RealTimeIA ⊆ pred-dio-ESO-HORN.

The equality pred-dio-ESO-IND = normal-pred-dio-ESO-IND has been proved in Section 5. The
two remaining inclusions are proved in the next two lemmas.1260

Lemma 8. RealTimeIA ⊆ pred-dio-ESO-HORN.

Proof. Let A = (S, Saccept, {−1, 0, 1}, finput, f) be an automaton in RealTimeIA. We turn A into
a new automaton A′ = (S, Saccept, {−2,−1, 0}, finput, f). This transformation can be seen on the
space-time diagrams as the variable change: (c, t) 7→ (c+ t−1, t). The input is still fed sequentially
but in the following way: the ith bit of the input is given to the cell i at time i as shown in Figure 9.1265

Since the input presentation is the only change between RealTimeIA and RealTimeCA, we obtain in
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the same way the conjunction of computation clauses ψcompute and the conjunction of contradiction
clauses ψoutput.

w1

w2

w3

w4

w5

A
w1

w2

w3

w4

w5

A′

Figure 9: Neighborhood’s change: from {−1, 0, 1} to {−2,−1, 0}

Input: With w = w1 . . . wn as the input word, the diagonal input mode of A′ is expressed by the
conjunction:

ψinput :=
∧
s∈Σ

(t = c ∧Qs(c)→ Rs(c, t)) for Σ the input alphabet

This conjunction tells that the cell c is in the state wc ∈ Σ at time c.

Let ψ′ be the conjunction ψinput∧ψcompute. The formula ψ of pred-dio-ESO-HORN expressing the1270

computation of A′ is ψ := ψ′ ∧ ψoutput. For each word w = w1 . . . wn ∈ Σ+, we have the following
equivalences:

With w as input, A enters an accepting state on cell 1 at time n
⇐⇒

With w as input, A′ enters an accepting state on cell n at time n
⇐⇒

The conjunction
∧
q∈S \ Saccept

¬Rq(n, n) is true in the minimal model (〈w〉,R) of

∀c∀tψ′(c, t)
⇐⇒

〈w〉 satisfies the formula ∃R∀c∀tψ(c, t).

This proves L(A) ∈ pred-dio-ESO-HORN.1275

Lemma 9. normal-pred-dio-ESO-IND ⊆ RealTimeIA.

Proof. Since the proof is similar to that of Lemma 7, we will here just give an hint on how to
associate to each site (x, y) ∈ [1, n]2 of GRID2 with x ≤ y, a site (c, t) of the space-time diagram of
an iterative array A running in real-time (see Figure 10). The sites (x, y) ∈ [1, n]2 with x ≥ y are1280

similarly handled.
First, we apply to the set of sites (x, y) of GRID2 the variable change c′ = y − x+ 1; t′ = x+ y − 1.
This variable change turns respectively the dependencies (x− 1, y)→ (x, y) and (x, y− 1)→ (x, y)
into (c′ + 1, t′ − 1) → (c′, t′) and (c′ − 1, t′ − 1) → (c′, t′) expressing the two-way communication
of an iterative array A′. The sites (c′, t′) of the space-time diagram of A′ takes their values in1285

[1, n]× [1, 2n− 1] and the ith bit of the input is fed on the site (1, 2i− 1) (see Figure 10).
Second, in order to obtain the space-time diagram of an IA A running in real-time, each site
(c, t) = (dc′/2e , dt′/2e) of this diagram will record the set of sites {(c′−1, t′−1), (c′, t′), (c′+1, t′−1)}
of the space-time diagram of A′, with c′ and t′ odd and greater than 1 (see Figure 10).



Logical Definitions Versus Programs of Real-Time CA 38
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7→ (c′ = y − x+ 1, t′ = x+ y − 1)
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⌈
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⌉
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⌉
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Figure 10: Variable change and grouping

6.3. Logical characterization of Trellis and linear conjunctive grammars1290

Introduced by Okhotin [28], conjunctive grammars are an extension of context-free grammars. This
class of formal grammars is obtained by allowing the use of a conjunction operator (denoted &)
in the right side of the context-free rules, meaning an intersection between derived languages. It
has been shown in [28] that the class of languages obtained by the linear restriction of conjunctive
grammars (denoted LinConj) is equal to Trellis. Each rule of a linear conjunctive grammar
G = (Σ, N, P, S) in normal form is a rule of the form

A→ sB1& . . .&sB`&C1t& . . .&Cpt, or A→ s,

with `+ p ≥ 1, A,Bi, Cj ∈ N , and s, t ∈ Σ.
As a context-free language, a conjunctive language has an algebraic representation as the least

solution of a system of language equations with concatenation, union and moreover intersection.
For example, the rule

A→ sB1 & . . . & sB` &C1t& . . . &Cpt

gives the language equation:

L(A) = sL(B1) ∩ · · · ∩ sL(B`) ∩ L(C1)t ∩ · · · ∩ L(Cp)t

where L(A) is the set of words having the property A.

In this subsection, we prove (or reprove) in a simple way the equality

LinConj = incl-ESO-HORN = Trellis

First, notice that our inclusion logic naturally characterizes the class of complements of linear
conjunctive languages12:

Theorem 4. For any L ∈ Σ+, we have: L ∈ incl-ESO-HORN ⇐⇒ (Σ+ \ L) ∈ LinConj.1295

Proof. The key point is that normal forms of linear conjunctive grammars are essentially the same
as those of incl-ESO-HORN. To each rule of a linear conjunctive grammar G = (Σ, N, P, S) in normal
form A → s (resp. A → sB1 & . . . & sB` &C1t& . . . &Cpt) associate the clause x = y ∧Qs(x) →
A(x, y) (resp. x < y ∧ Qs(x) ∧

∧`
i=1Bi(x + 1, y) ∧∧p

i=1 Ci(x, y − 1) ∧ Qt(y) → A(x, y)), where the computation predicates A,Bi, Ci are associated1300

to the nonterminal symbols with the same names. Let ψG be the conjunction of the clauses so
obtained with the contradiction clause min(x) ∧ max(y) ∧ S(x, y) → ⊥. Define ΦG := ∃N∀x∀y ψG ,

12Then, it will be sufficient to prove the equality incl-ESO-HORN = Trellis (Theorem 3) since the class of languages
Trellis is obviously closed under complement.
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where N now denotes the set of computation predicates associated to the nonterminal symbols of
N . Clearly, ΦG belongs to incl-ESO-HORN and the following equivalence holds for each w ∈ Σ+:
w 6∈ L(G) ⇐⇒ 〈w〉 |= ΦG .1305

Conversely, to each formula Φ = ∃R∀x∀yψ(x, y) in normal-incl-ESO-HORN, associate the linear
conjunctive grammar GΦ = (Σ, N, P, S) defined as follows: N := R and S := R⊥; the set of rules
P is the following: to each input clause x = y ∧ Qs(x) → R(x, y) of Φ associate the rule R → s,
and to each computation clause
x < y ∧

∧`
i=1 Si(x + 1, y) ∧

∧p
i=1 Ti(x, y − 1) → R(x, y) of Φ and each s, t ∈ Σ, associate the rule1310

R → sS1 & . . . & sS` &T1t& . . . &Tpt. Clearly, the following equivalence holds for each w ∈ Σ+:
〈w〉 |= Φ ⇐⇒ w /∈ L(GΦ)

Second, notice that the normalized inclusion logic naturally expresses the computation of trellis
automata.

Theorem 3. Trellis = incl-ESO-HORN = incl-ESO-IND.1315

Theorem 3 is proved using the following inclusion scheme:

incl-ESO-IND = normal-incl-ESO-IND ⊆ Trellis ⊆ incl-ESO-HORN.

The equality incl-ESO-IND = normal-incl-ESO-IND has been proved in Section 5. The two remain-
ing inclusions are proved in the next two lemmas.

Lemma 10. Trellis ⊆ incl-ESO-HORN.1320

Proof. Let A = (S, Saccept, {−1, 0}, f) be a trellis automaton that accepts some language L ⊆ Σ+ in
real-time and let w = w1 . . . wn be a word on Σ. The final state q of A acting on the word wx . . . wy
is completely determined by the final state ql of A acting on the word wx . . . wy−1 and the final
state qr of A acting on the word wx+1 . . . wy. Therefore, we introduce the set of binary predicates
R = {Rq | q ∈ S} with intuitive meaning: Rq(x, y) is true ⇐⇒ the final state of A acting on1325

the subword wx . . . wy is q. The functional dependence ((x, y − 1), (x+ 1, y)) 7→ (x, y) will then be
exactly expressed by our computation clauses.

The following clauses describe the computation of A.

Input clauses:

ψinput :=
∧
s∈Σ

(x = y ∧Qs(x)→ Rs(x, y)).

Computation clauses:

ψcompute :=
∧

(ql,qr)∈S2
(x < y ∧Rql(x, y − 1) ∧Rqr (x+ 1, y)→ Rq(x, y)) where q = f(ql, qr).

Contradiction clauses:

ψoutput :=
∧

q∈S \ Saccept

(min(x) ∧ max(y) ∧Rq(x, y)→ ⊥).

Let ψ′ := ψinput ∧ ψcompute and ψ := ψ′ ∧ ψoutput. For each word w = w1 . . . wn ∈ Σ+ we have the
following equivalences:1330

A accepts w in time n
⇐⇒

The conjunction
∧
q∈S \ Saccept

¬Rq(1, n) is true in the minimal model (〈w〉,R) of

∀x∀yψ′(x, y)
⇐⇒

〈w〉 satisfies the formula ∃R∀x∀yψ(x, y).

This proves L(A) ∈ incl-ESO-HORN.

Lemma 11. normal-incl-ESO-IND ⊆ Trellis.
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Proof. Let Φ be a formula of normal-incl-ESO-IND. We establish a natural bijection between the
sites (x, y) of the domain of the formula and the sites (c, t) of the space-time diagram of a OCA1335

running in real-time: see Figure 11. The transition function of this automaton is then deduced
from the computation clauses of Φ as in the proofs of Lemma 7 in Section 6.1 and of Lemma 9 in
Section 6.2.

w1
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w3

w4

w5

incl-ESO-IND (GRID3)

w1 w2 w3 w4 w5

RealTimeOCA

w1 w2 w3 w4 w5

Trellis

Figure 11: Bijection between incl-ESO-IND, Trellis and RealTimeOCA

7. Programming some reference problems in our logics

In this section, we will exhibit natural inductive definitions within our logics for some famous1340

problems of the literature. By the results of the previous sections, such a logical definition can be
automatically translated into a program of a real-time cellular automaton of the appropriate type:
CA, IA or trellis automaton.

7.1. Defining in predecessor Horn logic the product of integers

We now show that school multiplication is naturally described in logic pred-ESO-HORN. Since our
logics only define decision problems, the problem should be formalized as
Product := {(a, b, p) ∈ (N>0)3 | a × b = p}, where each integer is represented in binary nota-
tion. More precisely, let p = a × b be a product of positive integers and let p = pn . . . p1 =
2n−1pn+ . . .+2p2 +p1, with pn = 1, length(p) = n, be the binary writing of the product; similarly,
represent the operands of the product on n bits as a = an . . . a1 and b = bn . . . b1, adding leading
zeros if necessary. Let us represent an input (a, b, p) ∈ (N>0)3, length(p) = n, length(a) ≤ n,
and length(b) ≤ n, by the word t = t1 . . . tn on the alphabet {0, 1}3, where tx = (ax, bx, px), for
x ∈ [1, n]. This word is naturally translated into the input structure of domain [1, n]

〈a, b, p〉 := ([1, n];A0, A1, B0, B1, P0, P1, min, max, pred)

where the input predicates Ai, Bi, Pi, for i ∈ {0, 1}, are defined as Ai(x) ⇐⇒ ax = i, Bi(x) ⇐⇒1345

bx = i, and Pi(x) ⇐⇒ px = i, for x ∈ [1, n].

The school multiplication. Let us define the successive partial sums, for 1 ≤ x ≤ n:

c(x) := Σxz=1a× bz2z−1

so that p = c(n). We have the induction c(1) = a × b1 and c(x) = c(x − 1) + a × bx × 2x−1, for
1 < x ≤ n.

If, for x ≥ 1, we define e(x) := a × 2x−1 and d(x) := bx × e(x), then one can write c(x) =
c(x− 1) + d(x).1350

Computation predicates. We use the six binary predicates Ci, Di, Ei, for i ∈ {0, 1}, defined on [1, n]
by the equivalence: Ci(x, y) (resp. Di(x, y), Ei(x, y)) ⇐⇒ the bit y of c(x) (resp. d(x), e(x)) is i.

Clauses defining predicates Ei by expressing e(x) = a× 2x−1.

• clauses expressing e(1) = a: x = 1 ∧Ai(y)→ Ei(x, y), for i ∈ {0, 1};

• clauses expressing e(x) = 2× e(x− 1), for x > 1:1355

– x > 1 ∧ y = 1→ E0(x, y);

– x > 1 ∧ y > 1 ∧ Ei(x− 1, y − 1)→ Ei(x, y), for i ∈ {0, 1}.
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Clauses defining predicates Di by expressing d(x) = bx × e(x).

• B0(x)→ D0(x, y); B1(x) ∧ Ei(x, y)→ Di(x, y), for i ∈ {0, 1}

It remains to implement the induction: c(1) = d(1) and c(x) = c(x − 1) + d(x), for x > 1. We1360

use for that the classical addition algorithm.

Addition algorithm Add. Let us define the sum w = wn . . . w1 = u+ v of two integers u = un . . . u1

and v = vn . . . v1, written with n bits, for length(u+ v) ≤ n. Let r1, . . . , rn denote the sequence of
carries of this addition, with ri ∈ {0, 1}. We have the equalities

Add: u1 + v1 = r1w1, and uy + vy + ry−1 = rywy, for y > 1, with rn = 0 (since w < 2n).1365

Clauses defining predicates Ci and the carry predicates Ri.

• the clauses x = 1 ∧Di(x, y)→ Ci(x, y), for i ∈ {0, 1}, express c(1) = d(1);

• the following clauses express c(x) = c(x − 1) + d(x), for 1 < x ≤ n, by implementing the
addition algorithm Add and using the new computation predicates R0, R1 for carries, with
h, i, j ∈ {0, 1}:1370

1. x > 1 ∧ y = 1 ∧ Ch(x− 1, y) ∧Di(x, y)→ (Rk(x, y) ∧ C`(x, y)), where h+ i = k`;

2. x > 1 ∧ y > 1 ∧ Ch(x − 1, y) ∧ Di(x, y) ∧ Rj(x, y − 1) → (Rk(x, y) ∧ C`(x, y)), where
h+ i+ j = k`;

3. y = n ∧R1(x, y)→ ⊥ (meaning: c(x) < 2n).

Remark: For a better reading, we have written the conclusion of clauses (1) and (2) as a1375

conjunction of two atoms. Such a clause can be trivially rewritten as the conjunction of two
Horn clauses.

Clauses that check c(n) = p.

• x = n ∧ Ci(x, y) ∧ ¬Pi(y)→ ⊥, for i ∈ {0, 1} (meaning: Ci(n, y)→ Pi(y)).

Let ΦProduct denote the formula ∃C0, C1, D0, D1, E0, E1, R0, R1 ∀x, y ψ, where ψ denotes the1380

conjunction of the previous clauses. By construction, we have ΦProduct ∈ pred-ESO-HORN. So, the
following proposition is proved:

Proposition 1. For all (a, b, p) ∈ (N>0)3, we have the equivalence: (a, b, p) ∈ Product iff 〈a, b, p〉 |=
ΦProduct. This implies Product ∈ pred-ESO-HORN and therefore
Product ∈ RealTimeCA [2, 27].1385

7.2. Expressing in logic the set of primes by Fischer’s algorithm

Fischer’s algorithm [12] generates in real-time on a cellular automaton the set of prime numbers
denoted Prime by the sieve of Eratosthenes: that means there is some state qPrime of the automaton
such that at each instant t, the state of the first cell of the automaton is qPrime iff t ∈ Prime. We
now want to reformulate Fischer’s algorithm in logic. Let us identify each positive integer n and1390

its unary notation 1n; so, Prime is the language of words 1p of length p ∈ Prime. We will define
Prime in pred-ESO-IND, or, here in an equivalent way, in pred-dio-ESO-IND.

Let us classify the clauses defining Prime and the predicates they use in two parts:

• the clauses defining Prime by the sieve of Eratosthenes and by using two pre-definite predicates
Square and Rail: those clauses construct two new predicates called suggestively Multiple1395

and Rebound;

• the more technical clauses defining the predicates Square and Rail and three auxiliary pred-
icates denoted HalfSlope, Vertical and Horizontal.
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Defining Prime by using the pre-definite predicates Square and Rail. Let Square and Rail denote
the binary predicates on domain [1, n] defined as follows (see Figure 12):1400

• Square(x, y) ⇐⇒ ∃k ≥ 2, x = k2 ∧ y = Σk−1
i=1 i;

• Rail(x, y) ⇐⇒ ∃k ≥ 1, x ≥ k2 ∧ x = y + Σki=1i.

Idea: The predicate Rail is composed of parallel “rails”; the k-th rail, denoted railk, has equation
x = y + Σki=1i, for x ≥ k2. The first point of railk is the site (x, y) such that Square(x, y) with
x = k2. The “corridor” between two consecutive rails, railk−1 and railk, for k ≥ 2, has horizontal1405

(and vertical) width k. This allows to define the set of multiples ≥ k2 of the integer k by zig-zag
(vertical-horizontal) between railk−1 and railk.

The predicates Multiple (the vertical “zig”) and Rebound (the horizontal “zag”) are defined by
the following clauses:

• Square(x, y)→ Multiple(x, y) (initialization of vertical zig with x = k2);1410

• Multiple(x, y − 1) ∧ ¬Rail(x− 1, y − 1)→ Multiple(x, y) (vertical zig);

• Multiple(x, y − 1) ∧ Rail(x− 1, y − 1)→ Rebound(x, y) (zig meets a rail);

• Rebound(x− 1, y) ∧ ¬Rail(x− 1, y − 1)→ Rebound(x, y) (horizontal zag);

• Rebound(x− 1, y) ∧ Rail(x− 1, y − 1)→ Multiple(x, y) (zag meets a rail).

The following equivalences can be established by induction:1415

• Multiple(x, y) ⇐⇒ ∃k ≥ 2,∃k′ ≥ 0, x = k(k + k′) ∧ kk′ + Σk−1
i=1 i ≤ y < kk′ + Σki=1i;

• Rebound(x, y) ⇐⇒ ∃k ≥ 2,∃k′ ≥ 0, y = kk′ + Σki=1i ∧ k(k + k′) ≤ x < k(k + k′ + 1).

An integer x ≥ 2 is prime iff it is not of the form x = kk′ for any k′ ≥ k ≥ 2, i.e., iff x is not a
multiple ≥ k2 of k for any k ≥ 2. So, the following clause, which is equivalent to ∀y ¬Multiple(n, y),
expresses that n is a prime integer:1420

• x = n ∧ Multiple(x, y)→ ⊥.

It remains to define the predicates Square, Rail.

Defining the predicates Square, Rail, HalfSlope, Vertical and Horizontal. Let HalfSlope,
Vertical and Horizontal denote the following predicates (see Figure 12):

• HalfSlope(x, y) ⇐⇒ ∃k, k′, 0 ≤ k′ < k ∧ x = k2 + 1 + 2k′ ∧ y = k′ + Σk−1
i=1 i;1425

• Vertical(x, y) ⇐⇒ ∃k, k′, 0 < k′ < k ∧ x = k2 ∧ y = k′ + Σk−1
i=1 i;

• Horizontal(x, y) ⇐⇒ ∃k ≥ 2, k2 ≤ x ≤ k2 + 2k ∧ y = Σki=1i.

The predicates Square and Rail are defined inductively and simultaneously with the auxiliary
predicates HalfSlope, Vertical and Horizontal by the following clauses:

• Initialization clauses: x = 2 ∧ y = 1→ Rail(x, y); x = 4 ∧ y = 1→ Square(x, y);1430

• Computing the rails: Square(x, y)→ Rail(x, y); Rail(x− 1, y − 1)→ Rail(x, y);

• Defining the successive Square points by defining and using the predicates HalfSlope, Vertical
and Horizontal:

– Defining HalfSlope: Square(x− 1, y)→ HalfSlope(x, y);
HalfSlope(x− 2, y − 1) ∧ ¬Horizontal(x− 1, y)→ HalfSlope(x, y);1435

– Defining Vertical: Square(x, y − 1)→ Vertical(x, y);
Vertical(x, y − 1) ∧ ¬Rail(x− 1, y − 1)→ Vertical(x, y);

– Defining Horizontal: Vertical(x, y − 1) ∧ Rail(x − 1, y − 1) → Horizontal(x, y);
Horizontal(x− 1, y) ∧ ¬HalfSlope(x− 2, y − 1)→ Horizontal(x, y);
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– Defining the next Square point:1440

Horizontal(x− 1, y) ∧ HalfSlope(x− 2, y − 1)→ Square(x, y).
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Figure 12: A computation example of ΦPrime on GRID2

Let ψ denote the conjunction of the previous clauses and let σPrime denote its set of computation
predicates : σPrime := {Multiple, Rebound, Square, Rail, HalfSlope,
Vertical, Horizontal}. Let ΦPrime denote the formula ∃σPrime ∀x, y ψ. By construction, we have
ΦPrime ∈ pred-dio-ESO-IND. So, the following proposition is proved:1445

Proposition 2. For any integer p ≥ 2, we have the equivalence: p ∈ Prime iff
〈p〉 |= ΦPrime. This implies Prime ∈ pred-dio-ESO-IND.

7.3. Dyck languages, inclusion inductive logic and linear conjunctive grammars

For an integer k ≥ 1, let Dyckk denote the set of well-parenthesed non-empty expressions (Dyck
words) on the alphabet with k types of parentheses Σk = { (i | 1 ≤ i ≤ k} ∪ { )i | 1 ≤ i ≤ k}.1450

Definition 9. A factor (resp. prefix, suffix) of a Dyck word is called a Dyck factor (resp. Dyck
prefix, Dyck suffix).

Principle of the decision algorithm on GRID3:. Recall that the input word w is placed on the diagonal
x = y of the grid n×n, where n is the length of w = w1 . . . wn. Each opening parenthesis (i ascends
vertically, i.e., for y increasing, if it does not encounter a closing one; a closing parenthesis )i goes1455

horizontally to the left, i.e., for x decreasing, if it does not encounter an opening one. The input
word is accepted if none of the following events occurs:

1. an opening parenthesis (i meets a closing parenthesis )j of a different type j 6= i;

2. an opening parenthesis (i reaches the upper side y = n without meeting a closing parenthesis;

3. a closing parenthesis )i reaches the left side x = 1 without meeting an opening parenthesis.1460

A formula of incl-ESO-IND that defines Dyckk
It is the formula ΦDyckk

:= (∃R(i , R)i)1≤i≤k∃Rmin
⊥ ∃Rmax

⊥ ∃R⊥ ∀x∀y ψ. Here, ψ is the conjunction
of the clauses given below that involve the computation predicates R(i , R)i , for 1 ≤ i ≤ k, Rmin

⊥ ,
Rmax
⊥ and R⊥, with the following intended meaning:

• R(i(x, y) ⇐⇒ wx . . . wy is a Dyck factor starting with an opening parenthesis wx = (i which1465

is not matched in the word wx . . . wy;

• R)i(x, y) ⇐⇒ wx . . . wy is a Dyck factor ending with a closing parenthesis wy =)i which is
not matched in the word wx . . . wy;
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• Rmin
⊥ (x, y) ⇐⇒ wx . . . wy is a Dyck factor but not a Dyck prefix, therefore if x = 1 then w is

not a Dyck word;1470

• Rmax
⊥ (x, y) ⇐⇒ wx . . . wy is a Dyck factor but not a Dyck suffix, therefore if y = n then w is

not a Dyck word;

• R⊥(x, y) ⇐⇒ wx . . . wy is not a Dyck factor.

Inductive definitions of predicates

Defining predicates R(i and R)i . We have R(i(x, y), i.e., wx . . . wy is a Dyck factor starting with an1475

opening parenthesis wx = (i which is not matched in the factor wx . . . wy iff condition (1) or (2)
occurs:

(1) x = y and wx = (i;

(2) x < y and we have R(i(x, y − 1) and wx+1 . . . wy is a Dyck factor where wy is either a closing
parenthesis which is matched in the factor wx+1 . . . wy or an opening parenthesis.1480

By this equivalence, R(i is defined by the conjunction of the two following clauses:

• x = y ∧Q(i(x)→ R(i(x, y);

• x < y ∧R(i(x, y − 1) ∧ ¬R⊥(x+ 1, y) ∧
k∧
j=1

¬R)j (x+ 1, y)→ R(i(x, y).

For similar reasons, the conjunction of the two following clauses defines R)i :

• x = y ∧Q)i(x)→ R)i(x, y);1485

• x < y ∧ ¬R⊥(x, y − 1) ∧
k∧
j=1

¬R(j (x, y − 1) ∧R)i(x+ 1, y)→ R)i(x, y).

Defining predicate R⊥. We have R⊥(x, y), i.e., wx . . . wy is not a Dyck factor iff condition (1), (2)
or (3) occurs:

(1) x < y and there are i, j, i 6= j, such that:

• we have R(i(x, y−1), i.e., wx . . . wy−1 is a Dyck factor starting with the parenthesis wx = (i1490

which is not matched in wx . . . wy−1;

• we have R)j (x+1, y), i.e., wx+1 . . . wy is a Dyck factor ending with the parenthesis wy =)j
which is not matched in wx+1 . . . wy;

(2) x < y and wx . . . wy−1 is not a Dyck factor;

(3) x < y and wx+1 . . . wy is not a Dyck factor.1495

By this equivalence, R⊥ is defined by the conjunction of the following clauses:

• x < y ∧R(i(x, y − 1) ∧R)j (x+ 1, y)→ R⊥(x, y), for 1 ≤ i, j ≤ k and i 6= j;

• x < y ∧R⊥(x, y − 1)→ R⊥(x, y);

• x < y ∧R⊥(x+ 1, y)→ R⊥(x, y).

Defining predicates Rmax
⊥ and Rmin

⊥ . We have Rmax
⊥ (x, y), i.e., wx . . . wy is a Dyck factor but not a1500

Dyck suffix iff condition (1) or (2) occurs:

(1) we have R(i(x, y), for some i, i.e., wx . . . wy is a Dyck factor starting with an opening parenthesis
wx = (i which is not matched in the factor wx . . . wy;

(2) x < y and wx . . . wy−1 is a Dyck factor and wx+1 . . . wy is a Dyck factor but not a Dyck suffix.

By this equivalence, Rmax
⊥ is defined by the conjunction of the following clauses:1505

• R(i(x, y)→ Rmax
⊥ (x, y), for 1 ≤ i ≤ k;
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• x < y ∧ ¬R⊥(x, y − 1) ∧Rmax
⊥ (x+ 1, y)→ Rmax

⊥ (x, y).

For similar reasons, the conjunction of the two following clauses defines Rmin
⊥ :

• R)i(x, y)→ Rmin
⊥ (x, y), for 1 ≤ i ≤ k;

• x < y ∧Rmin
⊥ (x, y − 1) ∧ ¬R⊥(x+ 1, y)→ Rmin

⊥ (x, y).1510

Contradiction clauses. A word w is a Dyck word if the three following conditions hold: all closing
parenthesis of w have a match, all opening parenthesis of w have a match and w only contains Dyck
factors. It is expressed by the following clauses:

1’) x = 1 ∧ y = n ∧Rmin
⊥ (x, y)→ ⊥;

2’) x = 1 ∧ y = n ∧Rmax
⊥ (x, y)→ ⊥;1515

3’) x = 1 ∧ y = n ∧R⊥(x, y)→ ⊥.

By construction, the formula ΦDyckk
∈ incl-ESO-IND defines the language Dyckk. Therefore, we

have the following proposition:

Proposition 3. We have the equivalence w ∈ Dyckk ⇐⇒ 〈w〉 |= ΦDyckk
, for any word w ∈ (Σk)+

of length n ≥ 2. This implies Dyckk ∈ incl-ESO-IND.1520

The formula ΦDyckk
defining the language Dyckk can be used to partition the set of words on

the alphabet Σk = { (i | 1 ≤ i ≤ k} ∪ { )i | 1 ≤ i ≤ k}. This partition is made according to the
set of predicates that are the only ones verified by a word. Figure 13 depicts the successive steps
resulting in this partition.

not a Dyck factor

Dyck factor

suffix and prefix

suffix and not prefix

prefix and not suffix

not prefix and not suffix

starts with an unmatched opening parenthesis (i

starts with a closing parenthesis or a matched opening parenthesis

ends with an unmatched closing parenthesis )i

ends with an opening parenthesis or a matched closing parenthesis

{Rmin
⊥ , R)i

}

{Rmin
⊥ }
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⊥ , R(i

}

{Rmax
⊥ }

{}

{Rmin
⊥ , Rmax

⊥ }

{R⊥}

Figure 13: Partition obtained from the formula ΦDyckk

The 2k + 5 sets of predicates partitioning the set of words on the alphabet Σk = { (i | 1 ≤ i ≤1525

k} ∪ { )i | 1 ≤ i ≤ k} also correspond to the 2k + 5 states of the grid circuit mimicked by ΦDyckk
.

Figure 14 shows two computation examples on the grid circuit obtained from ΦDyck2
.

Remark: For those who are familiar with Boolean grammars, we can directly deduce from the almost
normalized formula ΦDyckk

of incl-ESO-IND a linear Boolean grammar describing the language1530

Dyckk. This grammar uses 2k+4 nonterminal symbols corresponding to the 2k+3 binary predicates
used in ψ and the axiomD. The correspondence between binary predicates and nonterminal symbols
is the following:

• R(i ⇐⇒ Oi for 1 ≤ i ≤ k;

• R)i ⇐⇒ Ci for 1 ≤ i ≤ k;1535

• Rmax
⊥ ⇐⇒ Fmax;
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Figure 14: Computation examples of ΦDyck2
on GRID3
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• Rmin
⊥ ⇐⇒ Fmin;

• R⊥ ⇐⇒ F .

Here below are the rules of the linear Boolean grammar where x and y stand for any character of
Σk:1540

D → ¬Fmax &¬Fmin &¬F ;

Oi → Oiy&¬xC1 &¬xC2 & . . . &¬xCk &¬xF | (i
Ci → xCi &¬O1y&¬O2y& . . . &¬Oky&¬Fy | )i

}
for 1 ≤ i ≤ k;

Fmax → O1 | O2 | · · · | Ok | xFmax &¬Fy;
Fmin → C1 | C2 | · · · | Ck | Fminy&¬xF ;
F → xF | Fy | Oiy&xCj for 1 ≤ i, j ≤ k and i 6= j.

A linear conjunctive grammar for Dyckk. To each language of the partition described in Figure 13,
we associate a nonterminal symbol generating this language.1545

• D generates the set of Dyck words: {};

• R generates the set of Dyck factors which are neither prefix nor suffix: {Rmin
⊥ , Rmax

⊥ };

• Oi generates the set of Dyck factors starting with an unmatched opening parenthesis (i: {R(i};

• Ci generates the set of Dyck factors ending with an unmatched closing parenthesis )i: {R)i};

• P generates the set of not suffix Dyck factors starting with a closing parenthesis or a matched1550

opening parenthesis: {Rmax
⊥ };

• S generates the set of not prefix Dyck factors ending with an opening parenthesis or a matched
closing parenthesis: {Rmin

⊥ };

• F generates the set of not Dyck factors: {R⊥}.

Here below are the rules of the linear conjunctive grammar (nonterminals O and C are added for1555

sake of clarity, and x and y stand for any character of Σk):
D → O1y&xC1 | · · · | Oky&xCk | Py&xS;

Oi → Oiy&xD | Oiy&xR | Oiy&xO | Oiy&xP | Oiy&xS | (i
Ci → Dy&xCi | Ry&xCi | Cy&xCi | Py&xCi | Sy&xCi | )i

}
for 1 ≤ i ≤ k;

O → O1 | · · · | Ok;
C → C1 | · · · | Ck;
P → Py&xR | Py&xO | Py&xP | Dy&xR | Dy&xO | Dy&xP ;
S → Ry&xS | Cy&xS | Sy&xS | Ry&xD | Cy&xD | Sy&xD;
R→ Ry&xR | Ry&xO | Ry&xP | Cy&xR | Sy&xR | Cy&xO | Sy&xC | Cy&xP | Sy&xP ;
F → xF | Fy | Oiy&xCj for 1 ≤ i, j ≤ k and i 6= j.

8. The language of Čulik and the Firing Squad Synchronization Problem1560

This long section is dedicated to our most elaborate expression (programming) of a specific
problem in one of our logics, here incl-ESO-IND. In [6], Čulik exhibited a trellis automaton that
recognizes the language

Culik = {aibkak−i | 0 < i < k}

He noticed that on a word akbkak, the sites corresponding to the words aibkak−i with 0 < i < k
are the sites resulting of a synchronization (depicted by in Figure 15a). The synchronization is
a problem specific to parallel devices. On CA, it consists of all cells reaching at the same time
a new state never reached. Figure 15a shows the Čulik’s trellis automaton. The idea is to use a
firing squad with two generals set on the sites corresponding to the factors ab3 and b3a. So, unless1565

explicitly stated otherwise, k will be greater than or equal to 3 (the case k ≤ 2 will be the subject
of special treatment). Figure 15b shows the GRID3 version 3k × 3k of the automaton.
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(b) The GRID3 version

Figure 15: Both trellis and GRID3 versions of Čulik’s automaton recognizing the language
{aibkak−i | 0 < i < k and k ≥ 3}

The main idea of the recognition is a recursive process starting from the factor abka. We call
the potential of a factor aibkaj the difference k− i− j between its number of b and its number of a.
In this way, the synchronized factors are the factors of potential 0. The goal is to characterize the1570

factors with potential 1: the ones adjacent to the factors of potential 0. This is done by recursively
adding to the left or to the right of a factor, a block of a’s of size half its potential until it reaches
1. Any factor corresponding to a step of this recursive process is called a marked factor.

Of course, the recurrence uses a discrete division method. The floor operation is used when
adding a block of a’s to the left and the ceiling operation is used when adding a block of a’s to the1575

right. Thus we obtain the following recurrence scheme:

• The factor abka is a marked factor ;

• if aibkaj is a marked factor with i, j ≥ 0 and k− (i+ j) ≥ 2 then both alaibnaj and aibnajar

with l =
⌊
k−(i+j)

2

⌋
and r =

⌈
k−(i+j)

2

⌉
are marked factors.

An example of the tree corresponding to this recurrence scheme is depicted in Figure 16a: the1580

left (resp. right) son of a marked factor is the one obtained by the floor (resp. ceiling) operation.
The potential tree is a synthetic view of the marked factors tree which only takes into account the
potential of the factors. On this tree the height of a node is given by its potential. The distance
between a node of potential p and its left (resp. right) son is

⌊
p
2

⌋
(resp.

⌈
p
2

⌉
) since the left (resp.

right) son of a node with potential p has a potential
⌈
p
2

⌉
(resp.

⌊
p
2

⌋
) as depicted on Figure 16b.1585

Figure 16c shows the embedding of the potential tree on GRID3 .
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(c) Embedding of the tree on GRID3

Figure 16: Example of the recurrence with k = 11

For convenience, we will call by the same name, the potential tree, denoted T , the “marked
factors” tree, the corresponding potential tree, and its embedding in the grid.

Fact. The marked factors of the form aibkak−i−1, for 1 ≤ i ≤ k− 2, correspond to the k− 2 leaves
of the potential tree: the nodes of T with potential 1.1590

8.1. Construction of the potential tree

In this section we will detail the process leading to the construction of the potential tree T in
GRID3. The tree is obtained by a recursive construction of its branches. The leftmost and rightmost
branches of the tree are built first. Then, from a node (starting node) we build the leftmost branch
starting from its right son and the rightmost branch starting from its left son. We will denote r0,1595

r1, r2. . . the potentials of the successive nodes of a leftmost branch and l0, l1, l2. . . the potentials
of the successive nodes of a rightmost branch. Recall that by definition of the potential tree, we
have: ri+1 =

⌈
ri
2

⌉
and li+1 =

⌊
li
2

⌋
.

We present the construction of the two branches first in the case of even starting node (i.e., of even
potential), secondly in the case of odd starting node that requires some adjustments to handle the1600

asymmetry between the two branches. Then, we carry out the construction of the leftmost and
rightmost branches of the potential tree. Finally, we show how to characterize the leaves of the
potential tree, i.e., the marked nodes of potential 1.

A. Construction of the leftmost and rightmost branches for an even node

Construction of the leftmost branch of the right son. We now describe the construction of the1605

leftmost branch originating from the right son of a node of even potential 2p. It involves the
starting node (the node with potential 2p) and its right son (see Figure 17a). It makes use of a
family of lines initialized from the starting node that cross the leftmost branch originated from the
right son at the desired spots. The construction on the grid is shown Figure 17b. By convenience
we use the following coordinate system (X,Y ): the starting node is on the site (p, p) and the right1610

son is on the site (p, 0). In this way, the sites we want to characterize are of the form (ri, 0).
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Figure 17: Construction of the leftmost branch starting from the right son of an even node

In order to characterize the site (ri, 0), the i-th line starts from (p, p) and moves in this way:
one vertical move (0,−1) followed by alternations between 2i − 1 diagonal moves (−1,−1) and a
vertical move (0,−1).
Let (Xi, 0) be the intersection between this i-th line and the leftmost branch. Let us verify that
Xi = ri. Denoting α the number of times the phase composed by 2i − 1 diagonal moves and a ver-
tical move is done, and β < 2i the number of diagonal moves left. We have the following equality:
(Xi, 0) = (p, p) + (0,−1) + α(−2i + 1,−2i + 1) + α(0,−1) + β(−1,−1)
From this equality we deduce that α is the quotient of the euclidean division of p− 1 by 2i and β
the remainder: α = (p− 1)//2i and β = (p− 1)%2i. This gives us the following expression for Xi:

Xi = p− 2iα+ α− β = 1 + 2iα+ β − 2iα+ α− β = 1 + α
= 1 + (p− 1)//2i

First, using the identity
⌈
a
b

⌉
= 1+b (a−1)

b c we have Xi =
⌈
p
2i

⌉
. Second, recall that the potentials

r0, r1,. . . of the nodes of the leftmost branch follow the recurrence: r0 = p and ri+1 =
⌈
ri
2

⌉
. Since⌈⌈

a
b

⌉
/c
⌉

=
⌈
a
bc

⌉
, we get ri =

⌈
p
2i

⌉
= Xi.

1615

Now that we have proved the correctness of the construction of the leftmost branch using a
family of lines, we will detail the local process building them. The construction of a family of lines
of slopes 2i is standard [26]. It uses two types of signals: the clock signals and the filter signals.
Figure 18 depicts the construction of these signals, where the family of lines are drawn by the filter
signals.1620

The clock signals are emitted from the right side of the square on every site (p, p − y) with y
even and greater than 0, and runs leftward. They are symbolized by on Figure 18. The filter
signals alternate two phases: cross and delete. They are symbolized by (cross phase) and
(delete phase) on Figure 18. One diagonal signal starts on the site (p, p − 1) and goes diagonally1625

along (−1,−1). Each time a clock signal intersects with this diagonal signal, a new filter signal in
cross phase is initialized. The diagonal signal is also used to characterize the leaf of the branch.

The clock signals and the filter signals interact with each other in order to build the desired
slopes for filter signals. By default a filter signal goes diagonally and deviates from its trajectory1630

by a unitary vertical move each time it meets a clock signal. Moreover, at each intersection, the
filter signal swaps from delete to cross or conversely from cross to delete, and the clock signal goes
through the intersection when the filter signal is in cross phase or stops when the filter signal is in
delete phase.
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Figure 18: Construction of the leftmost branch originated from the right son of a starting node of potential 2p = 40

Construction of the rightmost branch of the left son. As shown on Figure 19, the construction of1635

the rightmost branch of the left son of a node of even potential 2p is similar to the leftmost branch
case. It involves the starting node (the node with potential 2p) and its left son. We use the same
coordinate system (X,Y ) as previously: the starting node is on the site (p, p) and the left son is on
the site (0, p). The sites we want to characterize are therefore of the form (0, li) with l0 = p and
li+1 =

⌊
li
2

⌋
. Since

⌊⌊
a
b

⌋
/c
⌋

=
⌊
a
bc

⌋
, we get li =

⌊
p
2i

⌋
for all i.1640
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Figure 19: Construction of the rightmost branch when the starting node is even

In order to characterize the site (0, li), the i-th line starts from (p, p) and alternates between
2i − 1 diagonal moves (−1,−1) and one horizontal move (−1, 0). Let (0, Yi) be the intersection
between the i-th line and the rightmost branch. Let us verify that Yi = li. Let α be the number
of runs (composed by 2i − 1 diagonal moves and one horizontal move) made, and β < 2i be the
number of diagonal moves left. We have the following equality:

(0, Yi) = (p, p) + α(−2i + 1,−2i + 1) + α(0,−1) + β(−1,−1)

From this equality we deduce that α is the quotient and β the remainder of the euclidean division
of p by 2i: α = p//2i and β = p%2i. Thus:

Yi = p− 2iα+ α− β = 2iα+ β − 2iα+ α− β = α
= p//2i = li

The construction is basically the same as in the previous case: the lines are built using clock
signals and filter signals. Figure 20 depicts the construction. The clock signals are emitted from
the bottom side of the square on each site (p − y, p) where y is odd, and runs upward. The filter
signals still have two phases cross and delete. They interact with the clock signals in the same way
as before but the intersection results now in an horizontal move for the filter signal. One diagonal1645

signal emitted from the site (p, p) and moving along the vector(−1,−1) is used to initialize the filter
signals.
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Figure 20: Construction of the rightmost branch originated from the left son of a starting node of potential 2p = 40

B. Construction of the leftmost and rightmost branches for an odd node

When the potential of the starting node is odd (equal to 2p+1), the space delimited by its right
and left son is no more a square but a rectangle with width equal to p and height equal to p+ 1 as1650

shown on Figure 21.

2p+ 1 Starting node

p Right son
p+ 1Left son

Leaves

(a) On the tree

(p, p+ 1)
Starting node

(p, 0)
Right son

(0, p+ 1)

Left son

origin

(b) On the grid

Figure 21: Construction of the two branches when the starting node is odd

Construction of the leftmost branch of the right son. With r0, r1,. . . the potentials of the successive
nodes of the leftmost branch starting from the right son of a node of odd potential 2p+ 1: r0 = p
and ri+1 =

⌈
ri
2

⌉
. In order to characterize the sites (ri, 0) of the rectangle, we simulate the square

case by doing a bigger vertical move (0,−2) before starting alternations between the 2i−1 diagonal1655

moves (−1,−1) and the vertical move (0,−1) (see Figure 22).

r1r2r3r4
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X

origin
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(20, 0)105321

Figure 22: Construction of the leftmost branch as the top side of a rectangle

Construction of the rightmost branch of the left son. With l0, l1,. . . the potentials of the successive
nodes of the rightmost branch starting from the left son of a node of odd potential 2p+1: l0 = p+1
and li+1 =

⌊
li
2

⌋
.
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In order to characterize the site (0, li) of the rectangle, we relate to the square case by simulating a1660

starting node on the site (p+ 1, p+ 1). Starting from the site (p, p+ 1), the line characterizing the
site (0, li) moves this way: one vertical move (0,−1) followed by 2i − 2 diagonal moves (−1,−1)
and then alternations between an horizontal move (−1, 0) and 2i−1 diagonal moves (−1,−1). The
Figure 23 depicts this construction in the rectangle.
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Figure 23: Construction of the rightmost branch as the left side of a rectangle

C. Initialization of the recurrence: construction of the leftmost and rightmost branches of the tree.1665

The construction of the leftmost (resp. the rightmost) branch of the tree starts from the site
corresponding to the factor abbb (resp. bbba). In this way, the distance between this starting site
and the site corresponding to the factor abka (the root of the tree) is k− 2 which is the potential of
this factor (see Figure 24). Therefore we can use the same family of lines that in the even potential
case with the left (resp. right) general as the starting node and the root abka as its right (resp.1670

left) son.

k − 2

k − 2

k − 2 k − 2

abka

ab3

b3aak−1bka

abkak−1

y

x

Figure 24: Construction of the rightmost and leftmost branches of the tree

D. The end of the recurrence: characterization of the leaves

In order to end the recursive building process of the potential tree, we need to locally characterize
its leaves. With the usual coordinate system on the grid, this characterization is given by the
following lemma.1675

Lemma 12 (leaf characterization). Suppose the potential tree T has at least 2 nodes. Then, a node
(x, y) of T is a leaf iff either one of the following conditions holds:

(1) The potential of the node (x, y) is odd and the site (x+ 1, y) is a node of T ;

(2) The site (x, y − 1) is a node of T ;

(3) The potential of the node (x, y) is odd and the site (x, y − 2) is a node of T .1680
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Proof. Let p denote the potential of the node (x, y). Then, the potentials of the sites (x + 1, y),
(x, y − 1) and (x, y − 2) are p+ 1, p+ 1, and p+ 2, respectively.

If the node (x, y) is a leaf then its potential p is 1. In case of (x, y) is a left leaf, its parent node
is of potential q that verifies d q2e = 1. Then q = 2 and the parent node is (x + 1, y). In case of
(x, y) is a right leaf, the parent node is of potential q that verifies b q2c = 1. Then q ∈ {2, 3} and its1685

parent node is either (x, y − 1) or (x, y − 2).
Conversly, if condition (1) holds, then the potential p+ 1 of the node (x, y − 1) is even. So the

potential of its left son (x, y) satisfies p = p+1
2 . This implies p = 1 and (x, y) is a leaf. If condition

(2) holds, then the potential of its right descendant (x, y) satisfies p = bp+1
2 c. This implies p = 1

and (x, y) is a leaf. If condition (3) holds, then the potential p + 2 of the node (x, y − 2) is odd.1690

So the potential of its right descendant (x, y) satisfies p = bp+2
2i c = p+1

2i for some integer i. This
implies i = 1, p = 1 and (x, y) is a leaf.

8.2. An inclusion inductive formula defining the language Culik

The previous section describes the characterization of all factors belonging to the language
{aibkak−i | 0 < i < k and k ≥ 3} inside the grid 3k×3k with the word akbkak as the input word. In1695

this section we detail the clauses expressing that a word w ∈ {a, b}+ belongs or not to this language.
For this purpose, we consider the GRID3 n×n with the input word w = w1 . . . wn ∈ {a, b}+ written
on the diagonal y = x.

For a lighter presentation of the formulas, we will simplify the presentation of inclusion clauses by
adopting the following conventions: R(x+a, y−b) is written in place of x+a ≤ y−b∧R(x+a, y−b).1700

In the same spirit, we write x = 1 ∧ y = n instead of x ≤ y ∧ x = 1 ∧ y = n.

Structure of the logical definition of Culik within the language a+b+ba+. In order to define Culik

inside the language a+b+ba+, we will use 20 binary predicates:

• 8 initial global predicates: parity predicates Even and Odd; border predicates (between a
and bbb or between bbb and a) LeftBorder (resp. RightBorder) only true on the last1705

(resp. the first) a of the first (resp. second) sequence of a of the input word belonging to
a+b+a+; generals LeftGeneral and RightGeneral and external branches StartLeftBranch

and StartRightBranch (this predicates only have a meaning if the number of b is greater or
equal to 3 i.e. for an input word belonging to a+b+bba+);

• 4 recursive global predicates: nodes Node, leaves Leaf and branches LeftBranch and RightBranch.1710

• 8 local predicates labeled by either Up or Low: diagonal predicates UpDiag and LowDiag,
clock predicates UpClock and LowClock, filter predicates UpCross, UpDelete, LowCross and
LowDelete.

Convention: We add the two general sites ab3 (left general) and b3a (right general) as nodes of the
tree T . The tree is no more an usual rooted tree, i.e. with only one root. We have now three initial1715

nodes: ab3, b3a and abka with k ≥ 3. For convenience in the logical construction, we admit that
the “tree” has two root ab3 and b3a and that the node abka is both the right son of the node ab3

and the left son of the node b3a.

Clauses defining the initialization and the end of the recurrence

The parity predicates: Even and Odd. During the inductive construction of the potential tree, we1720

need to know for each node the parity of its potential. The potential of a factor being the difference
between its number of b and a, the parity of its potential is the same as the parity of its length.
In this way, the parity of the site (x, y) is the parity of y − x + 1 and in particular the parity of
diagonal sites is odd.
The following clauses define inductively the parity of each site (x, y) with x ≤ y from the diagonal:1725

• x = y → Odd(x, y); x < y ∧ Odd(x, y − 1)→ Even(x, y);
x < y ∧ Even(x, y − 1)→ Odd(x, y).
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The border predicates and the two generals: LeftBorder, RightBorder, LeftGeneral and RightGeneral.
The left (resp. right) border is defined on the diagonal x = y as the last (resp. first) a in the first
(resp. second) sequence of a of a word belonging to a+b+bba+. By means of the left (resp. right)1730

borders we characterize the left (resp. right) general site corresponding to the factor ab3 (resp.
b3a).

• x = y ∧Qa(x) ∧Qb(x+ 1) ∧Qb(x+ 2) ∧Qb(x+ 3)→ LeftBorder(x, y);

• x = y ∧Qb(x− 3) ∧Qb(x− 2) ∧Qb(x− 1) ∧Qa(x)→ RightBorder(x, y);

• LeftBorder(x, y − 3)→ LeftGeneral(x, y); RightBorder(x+ 3, y)→ RightGeneral(x, y).1735

The two external branches: StartLeftBranch and StartRightBranch. The ray defining the ex-
ternal right (resp. left) branch is emitted vertically (resp. horizontally) from the left (resp. right)
general.

• LeftGeneral(x, y)→ StartRightBranch(x, y);
StartRightBranch(x, y − 1)→ StartRightBranch(x, y);1740

• RightGeneral(x, y)→ StartLeftBranch(x, y);
StartLeftBranch(x+ 1, y)→ StartLeftBranch(x, y).

The first three nodes: Node. The left general and the right general are nodes of the tree:

• LeftGeneral(x, y)→ Node(x, y); RightGeneral(x, y)→ Node(x, y)

The intersection between the two external branches marks also one node of the tree:1745

• StartLeftBranch(x, y) ∧ StartRightBranch(x, y)→ Node(x, y)

Remark: The two generals are not empty singletons sets only if the sites ab3 and b3a exist. Therefore,
the three initial nodes are created if and only if ab3 and b3a are factors of the input word.

The branches predicates: RightBranch and LeftBranch. From each node of the tree start an
horizontal leftward ray symbolizing its left branch and a vertical upward ray symbolizing its right1750

branch.

• Node(x, y)→ LeftBranch(x, y); LeftBranch(x+ 1, y)→ LeftBranch(x, y);

• Node(x, y)→ RightBranch(x, y); RightBranch(x, y − 1)→ RightBranch(x, y).

The leaf predicate: Leaf. According to Lemma 12, a node (x, y) is a leaf of T iff either one of the
following conditions holds:1755

The potential of the node (x, y) is odd and the site (x+ 1, y) is a node of T :

• Node(x, y) ∧ Odd(x, y) ∧ Node(x+ 1, y)→ Leaf(x, y);

The site (x, y − 1) is a node of T :

• Node(x, y) ∧ Node(x, y − 1)→ Leaf(x, y);

The potential of the node (x, y) is odd and the site (x, y − 2) is a node of T :1760

• Node(x, y) ∧ Odd(x, y) ∧ Node(x, y − 2)→ Leaf(x, y).

Remark: When w ∈ a+b3a+ the first (or second) clause above defines the only leaf of the tree.

Clauses defining the nodes of the potential tree

A. Even case, the nodes of the left branches (upper triangles).

The upper diagonal predicate: UpDiag. When the site (x, y) is an even node, an upper diagonal is1765

initialized on the site (x, y + 1).

• Node(x, y − 1) ∧ Even(x, y − 1)→ UpDiag(x, y)

Once initialized, the diagonal follows a trajectory along the vector (−1, 1) until it crosses a left
branch, ensuring that no node is created outside the working space of each starting node.

• UpDiag(x+ 1, y − 1) ∧ ¬LeftBranch(x+ 1, y − 1)→ UpDiag(x, y).1770
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The upper clock: UpClock. The first tick of the upper clock begins two sites above an even starting
node. In other terms, a site (x, y) will be the start of the first tick of the upper clock if and only if
the site (x, y − 2) is an even node:

• Node(x, y − 2) ∧ Even(x, y − 2)→ UpClock(x, y)

Once the first tick of the clock emitted, a new tick is initialized every two sites of the right branch1775

of the starting node until its right son is reached:

• RightBranch(x, y) ∧ UpClock(x, y − 2) ∧ ¬Node(x, y − 1) ∧ ¬Node(x, y − 2)→ UpClock(x, y)

An upper clock signal runs leftward until it crosses a filter signal in delete phase or the upper
diagonal:

• UpClock(x+ 1, y) ∧ ¬UpDelete(x+ 1, y) ∧ ¬UpDiag(x+ 1, y)→ UpClock(x, y)1780

The upper filters: UpCross and UpDelete. The two phases cross and delete of an upper filter
signal are symbolized by the predicates UpCross and UpDelete. An upper filter signal is initialized
in cross phase on the site just above every intersection between an upper clock and the upper
diagonal, except when the intersection takes place on the left branch:

• UpDiag(x, y − 1) ∧ UpClock(x, y − 1) ∧ ¬LeftBranch(x, y − 1)→ UpCross(x, y)1785

By default, the filter signals move diagonally along the vector (−1, 1) without changing phase until
they cross an upper clock signal or the left branch:

• UpCross(x+ 1, y− 1)∧¬UpClock(x+ 1, y− 1)∧¬LeftBranch(x+ 1, y− 1)→ UpCross(x, y);
UpDelete(x+1, y−1)∧¬UpClock(x+1, y−1)∧¬LeftBranch(x+1, y−1)→ UpDelete(x, y)

The filter signals change phase when they cross an upper clock signal, except when the intersection1790

takes place on the left branch:

• UpCross(x, y − 1) ∧ UpClock(x, y − 1) ∧ ¬LeftBranch(x, y − 1)→ UpDelete(x, y);
UpDelete(x, y − 1) ∧ UpClock(x, y − 1) ∧ ¬LeftBranch(x, y − 1)→ UpCross(x, y)

The nodes of left branches in the upper triangles: Node. A new node is created on each intersection
between the left branch and, the upper diagonal or a filter signal in either phase:1795

• UpDiag(x, y) ∧ LeftBranch(x, y)→ Node(x, y);

• UpCross(x, y) ∧ LeftBranch(x, y)→ Node(x, y);

• UpDelete(x, y) ∧ LeftBranch(x, y)→ Node(x, y).

Remark: If ab3 and b3a are not factors of the input word, all the predicates above are empty (except
Odd and Even) and no nodes (and therefore no leaves) are created.1800

B. Even case, the nodes of the right branches (lower triangles).

The lower diagonal: LowDiag. When the site (x, y) is an even node, a lower diagonal is initialized
on the site (x− 1, y + 1):

• Node(x+ 1, y − 1) ∧ Even(x+ 1, y − 1)→ LowDiag(x, y)

Like the upper diagonal the lower diagonal follows a trajectory along the vector (−1, 1), this diagonal1805

stops when it crosses a right branch:

• LowDiag(x+ 1, y − 1) ∧ ¬RightBranch(x+ 1, y − 1)→ LowDiag(x, y)

The lower clock: LowClock. When the starting node is even, the first tick of the lower clock is
always initialized on the site directly on the left of this starting node:

• Node(x+ 1, y) ∧ Even(x+ 1, y)→ LowClock(x, y)1810

As for the upper clock, a new tick of the lower clock is initialized every two sites of the left branch
of the starting node until its left son is reached:

• LeftBranch(x, y)∧ LowClock(x+ 2, y)∧¬Node(x+ 1, y)∧¬Node(x+ 2, y)→ LowClock(x, y).

A lower clock signal runs upward until it crosses a filter signal in delete phase or the lower diagonal:

• LowClock(x, y − 1) ∧ ¬LowDiag(x, y − 1) ∧ ¬LowDelete(x, y − 1)→ LowClock(x, y)1815
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The lower filters: LowCross and LowDelete. The construction of the lower filter signals is similar
to the upper one. A filter signal in cross phase is initialized on the site just to the left of an
intersection between the lower clock signal and the lower diagonal only if this intersection is not on
the right branch:

• LowDiag(x+ 1, y) ∧ LowClock(x+ 1, y) ∧ ¬RightBranch(x+ 1, y)→ LowCross(x, y).1820

Then it moves diagonally and alternates between the cross and delete phases:

• LowCross(x+1, y−1)∧¬LowClock(x+1, y−1)∧¬RightBranch(x+1, y−1)→ LowCross(x, y);
LowDelete(x+1, y−1)∧¬LowClock(x+1, y−1)∧¬RightBranch(x+1, y−1)→ LowDelete(x, y);

• LowCross(x+ 1, y) ∧ LowClock(x+ 1, y) ∧ ¬RightBranch(x+ 1, y)→ LowDelete(x, y);
LowDelete(x+ 1, y) ∧ LowClock(x+ 1, y) ∧ ¬RightBranch(x+ 1, y)→ LowCross(x, y).1825

The nodes of right branches in the lower triangles: Node. Contrary to the left branch case, the
intersection between the lower diagonal and the right branch does not create a new node. Therefore
there are only two clauses defining the creation of a node at each intersection between a filter signal
and the right branch.

• LowCross(x, y) ∧ RightBranch(x, y)→ Node(x, y);1830

• LowDelete(x, y) ∧ RightBranch(x, y)→ Node(x, y).

C. Odd case, the nodes of both left and right branches (upper and lower triangles) . In this section
we detail the construction of nodes on both right and left branches when the starting node is odd.
Since we do not want leaves to create new nodes, we will use the conjunction Node(δ) ∧ Odd(δ) ∧
¬Leaf(δ) to refer to odd nodes which are not leaves.1835

Initialization of diagonals: UpDiag and LowDiag. The diagonal behavior of both upper and lower
diagonals stays the same when the starting node is odd. The only change is their initialization:
both diagonals are initialized a site higher than in the even starting node case:

• Node(x, y − 2) ∧ Odd(x, y − 2) ∧ ¬Leaf(x, y − 2)→ UpDiag(x, y)

• Node(x+ 1, y − 2) ∧ Odd(x+ 1, y − 2) ∧ ¬Leaf(x+ 1, y − 2)→ LowDiag(x, y)1840

Initialization of clocks: UpClock, LowClock and LowCross. The general behavior of upper clocks
and lower clocks does not change when the starting node is odd. The initialization change of the
upper clock is the same as the upper diagonal, the first tick of the upper clock begins one site higher
than in the even starting node case.

• Node(x, y − 3) ∧ Odd(x, y − 3) ∧ ¬Leaf(x, y − 3)→ UpClock(x, y)1845

The initialization change of the lower clock is a bit different, in order to simulate a first clock tick
on the starting node itself, the first clock tick of the lower diagonal begins two sites to the left of
the starting node and a lower filter signal in cross phase is initialized on the site just to the up left
of the starting node.

• Node(x+ 2, y) ∧ Odd(x+ 2, y) ∧ ¬Leaf(x+ 2, y)→ LowClock(x, y)1850

• Node(x+ 1, y − 1) ∧ Odd(x+ 1, y − 1) ∧ ¬Leaf(x+ 1, y − 1)→ LowCross(x, y)

To recap, after this long sequence, we have all the clauses defining the potential tree and its
leaves. Next, from the leaves, we will characterize the language Culik.
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Clause defining the language Culik within the language a+b+ba+

Lemma 13. Let w be a word of a+b+ba+. Then, w ∈ Culik ⇐⇒ 〈w〉 |= n ≤ 4 ∨ Leaf(2, n) ∨1855

Leaf(1, n− 1)

Proof. If w is of size n ≤ 4, then w = abba is both the only word of a+b+ba+ and the only word
of Culik’s language.

If w is of size n > 4, then

• either w is of the form aib2aj , for i + j > 2, and therefore w is not a word of Culik and1860

does not generate any nodes or leaves because ab3 and b3a are not factors of w,

• or w is of the form aibkaj , for k ≥ 3 and i, j ≥ 1, and we have the equivalence: w ∈
Culik ⇐⇒ 〈w〉 |= Leaf(2, n) ∨ Leaf(1, n− 1).

It remains to prove that a+b+ba+ belongs to incl-ESO-IND (actually, to incl-ESO-HORN).1865

Clauses defining the language a+b+ba+. Essentially, the clauses mimic the finite automaton A
recognizing the regular expression a+b+ba+

0 1 2 3 4

5

a

b

a

b

a

b

b

a

a

b

a, b

Σ = {a, b} the input alphabet

S = {0, 1, 2, 3, 4, 5} the states set

0 the start state

F = {4} the accept states set

δ : S×Σ→ S the transition
function given by its diagram

Figure 25: The automaton A = (Σ, S, 0, F, δ) that accepts a+b+ba+

Predicates that transport the input through the grid: Ts for s ∈ Σ.

• x = y ∧Qs(x)→ Ts(x, y); Ts(x+ 1, y)→ Ts(x, y), for s ∈ {a, b}.

Predicates that simulate the automaton A = (Σ, S, 0, F, δ): Rq for q ∈ S.1870

• x = 1 ∧ x = y ∧Qs(x)→ Rδ(0,s)(x, y), for s ∈ Σ.

• Rq(x, y − 1) ∧ Ts(x+ 1, y)→ Rδ(q,s)(x, y), for (q, s) ∈ S×Σ

• x = 1 ∧ y = n ∧Rq(x, y)→ ⊥, for q ∈ S \F .

The conjunction of these clauses ensures that the input word belongs to a+b+ba+.

Clause defining the language Culik1875

Let ψ denote the conjunction of the previous clauses and σCulik denote its set of computation
predicates {Even, Odd, LeftBorder, RightBorder, LeftGeneral, RightGeneral, StartLeftBranch,
StartRightBranch, Node, Leaf, LeftBranch, RightBranch, UpDiag, LowDiag, UpClock, LowClock,
UpCross, UpDelete, LowCross, LowDelete, Ta, Tb, R0, R1, R2, R3, R4, R5}. Let ΦCulik denote the for-
mula ∃σCulik ∀x, y ψ. By construction, ΦCulik belongs to incl-ESO-IND. From Lemma 13 and the1880

previous characterization of a+b+ba+, we deduce the following proposition:

Proposition 4. For any word w ∈ {a, b}+, we have the equivalence: w ∈ Culik iff 〈w〉 |= ΦCulik.
This implies Culik ∈ incl-ESO-IND and Culik ∈ Trellis [6].



Logical Definitions Versus Programs of Real-Time CA 59

9. Conclusion

We believe that this paper contributes to the knowledge of cellular automata, their complexity1885

classes and the design of their programs in two ways:

Descriptive complexity: We establish the first logical characterizations of the classical real-time
complexity classes of cellular automata.

Programming: We give a methodology for programming problems on cellular automata from the
inductive logical definitions of those problems.1890

Regarding this last point, we recall that it is difficult to design programs for parallel computers.
We lack general tools to design them. Our programming methodology seems to be the first general
method for a parallel and local computation model such as the cellular automaton.

Descriptive versus computational complexity of cellular automata

It was known that the three complexity classes studied in this paper, RealTimeCA, RealTimeIA1895

and Trellis, are the only distinct and natural complexity classes for minimal time, so-called
real-time, of one-dimensional cellular automata. In various articles from the 1960s to 2000s, it
has been established that each of those classes is robust, in particular with respect to the chosen
neighborhood [31], and has several equivalent characterizations in other frameworks: e.g, Trellis
is the class of linear conjunctive languages [28] and also the class of linear Boolean languages [29].1900

In this paper, we have presented a unified view of the three real-time classes as part of descriptive
complexity. More precisely, we have introduced three logics, pred-ESO-HORN, pred-dio-ESO-HORN and
incl-ESO-HORN, which are essentially Horn logics with two first-order variables, applied to a square
grid structure, i.e., a structure using the successor and predecessor functions and the minimum
and maximum predicates, as its only built-in objects. We have defined the syntax of each of our1905

logics as large (flexible) as possible so that it can express problems in the most natural way. At the
same time, a normal form of each logic has been defined so that each normalized formula “mimics”
a grid automaton. For each logic, we have given a general algorithm which transforms a formula
into its equivalent normal form. Finally, we have proved that those three “grid” logics (or grid
automata) whose only difference is the placement of the input word on the square grid, on a side1910

which contains the output vertex, or on the diagonal that contains or does not contain the output
vertex, exactly characterize RealTimeCA, RealTimeIA and Trellis, respectively. In this paper, the
successive steps of the normalization algorithms of the logics and the equivalences of these logics
with the real-time complexity classes are fully described and proved while they are sometimes more
sketchy in [18].1915

Logic as a programming language of cellular automata

We believe that the main contribution of this long paper compared to its conference version [18]
is the following:

• We describe a general methodology for programming problems on cellular automata from the
inductive logical definitions of these problems;1920

• The method is applied to a number of specific problems.

For this purpose, we have extended the Horn logics introduced in [18] as (now called) inductive logics
by allowing limited use of negation on hypothesis computation atoms (it is comparable to Stratified
Datalog which extends Datalog). Note two essential points: our inductive logics characterize exactly
the same real-time complexity classes as the Horn logics; they still have normal forms that mimic1925

grid automata. Regarding our method, the reader may ask the question: What is the real interest
of logic to program cellular automata?

The interest of our programming method is evidenced in this paper by the application that
we make of it for a representative choice of classical problems (seven examples) that we explicitly
express in our logics (Sections 3, 7 and 8) and translate in normal form to illustrate the normalization1930

method for a specific problem (Subsection 3.2). Let us now argue for our logic programming method.
First, in a general setting, logic programming has proven to be a useful paradigm to program

several tasks, for example, compiling or database queries, as evidenced in the languages Prolog and
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Datalog. It allows to define concepts (represented by predicates) inductively, as we have shown
here, e.g., for the problems Palindrome, Unbordered and Product.1935

Second, note that the programming method most used in the literature to program cellular
automata is the geometric method of signals and collisions [2, 12, 5, 33, 10, 26, 6, 8, 9]. We think
that our logical description of signals (by predicates) and of their collisions and transformations
(by implication clauses often using negation) is both more intuitive (more readable) and more
precise (more formal) than their direct encoding by states of the final automaton that literature1940

only sketches in general. Logic both is flexible – it is a high-level programming language – and
allows for formal proofs as we have shown in the seven examples that we have studied in detail.
This is especially important for the most elaborate problems: the multi-parenthesis language Dyckk
recognition (Subsection 7.3) and overall the Culik language recognition (Section 8), which involves
synchronization by the “divide and conquer” method.1945

Note that logic is a more synthetic language to describe a problem than the cellular automaton
that decides it. Indeed, it is shown in Section 6 that one state of the automaton is translated
into one predicate of the corresponding formula, so that each transition rule of the automaton is
expressed by one Horn clause; conversely, a logical formula is converted to an automaton whose set
of states is the power set of the set of predicates of the formula, so that the size of the automaton1950

is exponential in the size of the initial formula.
In summary, logic is a nice intermediate language: it links the geometry of signals to cellular

automata, while preserving complexity.

Solved questions versus open problems

It seems that the main questions concerning the mutual relationships between the three real-time1955

complexity classes RealTimeCA, RealTimeIA and Trellis of one-dimensional cellular automata have
been solved and their descriptive complexity is determined by this paper. The main open problem
that remains is the old and difficult question of whether the inclusion RealTimeCA ⊆ DLIN1

CA is strict,
where DLIN1

CA is the class of languages recognized by one-dimensional cellular automata in linear
time.1960

What about the computational complexity and descriptive complexity of cellular automata of
dimension 2 or more? Regarding linear time, let us recall the equality DLINdCA = monot-ESO-
HORNd(∀d+1, arityd+1), for each dimension d ≥ 1. This result proved in [3] establishes the descrip-
tive complexity of the class DLINdCA of d-dimensional picture languages recognized in linear time on
d-dimensional cellular automata and confirms the robustness of this class: for example, the defini-1965

tion of the class DLINdCA does not depend on the neighborhood chosen for the d-dimensional cellular
automata provided it is complete [17], i.e., allows to reach by iteration all the points of Zd.

How do the results of this paper extend to the real-time complexity classes of cellular automata
of dimension 2 or more? Considering that the normalized versions of our logics, identified to square
grid circuits, offer a new view of the real-time complexity classes of dimension 1, it is natural to ask1970

the following questions: What are the complexity classes that correspond to cubic grid circuits?
How robust are those classes?

They seem difficult questions in case the input is a 2-dimensional picture. Indeed, a number
of papers [35, 37, 15, 16] have shown that real-time complexity of 2-dimensional languages is very
sensitive to the neighborhood chosen. This contrasts with the robustness of linear time complexity1975

in any dimension and of real-time complexity classes for dimension 1.
Therefore, a more promising line of research would be to study, starting from the results of [38],

the descriptive complexity of the classes of languages (sets of words) decided in real-time on a
cubic grid (or, more generally, on a grid of dimension d ≥ 3) in comparison to real-time on multi-
dimensional cellular automata.1980
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