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Descriptive complexity provides intrinsic, that is, machine-independent, characterizations of the major complexity classes. On the other hand, logic can be useful for designing programs in a natural declarative way. This is particularly important for parallel computation models such as cellular automata, because designing parallel programs is considered a difficult task.

This paper establishes three logical characterizations of the three classical complexity classes modeling minimal time, called real-time, of one-dimensional cellular automata according to their canonical variants: unidirectional or bidirectional communication, input word given in a parallel or sequential way.

Our three logics are natural restrictions of existential second-order Horn logic with built-in successor and predecessor functions. These logics correspond exactly to the three ways of deciding a language on a square grid circuit of side n according to one of the three canonical locations of an input word of length n: along a side of the grid, on the diagonal that contains the output cell, or on the diagonal opposite to the output cell.

The key ingredient of our results is a normalization method that transforms a formula from one of our three logics into an equivalent normalized formula that faithfully mimics a grid circuit.

Then, we extend our logics by allowing a limited use of negation on hypotheses like in Stratified Datalog. By revisiting in detail a number of representative classical problems -recognition of the set of primes by Fisher's algorithm, Dyck language recognition, Firing Squad Synchronization problem, etc. -we show that this extension makes easier programming and we prove that it does not change the complexity of our logics in real-time.

Finally, starting from our experience in expressing those representative problems in logic, we argue that our logics are high-level programming languages: they allow to express in a natural, precise and synthetic way the algorithms of literature, based on signals, and to translate them automatically into cellular automata of the same complexity.

Introduction Descriptive complexity and programming

There are two criteria for a complexity class: it contains a number of "natural" problems that are complete in the class; it has machine-independent "natural" characterizations, usually in logic, i.e., in so-called descriptive complexity. The most famous example is Fagin's Theorem [START_REF] Fagin | Generalized first-order spectra and polynomial-time recognizable sets[END_REF][START_REF] Libkin | Elements of Finite Model Theory[END_REF], which characterizes NP as the class of problems definable in existential second-order logic (ESO). Similarly, Immerman-Vardi's Theorem [START_REF] Libkin | Elements of Finite Model Theory[END_REF][START_REF] Immerman | Descriptive complexity[END_REF] and Grädel's Theorem [START_REF] Grädel | Capturing complexity classes by fragments of second-order logic[END_REF][START_REF] Grädel | Finite Model Theory and Its Applications[END_REF] characterize the class P by first-order logic plus least fixed-point, and second-order logic restricted to Horn formulas, respectively.

Another interest of descriptive complexity is that it allows to automatically derive from a logical description of a problem a program that solves it. This is particularly interesting for the design of parallel programs that is considered a difficult task [START_REF] Leighton | Introduction to Parallel Architectures: Arrays, Trees, Hypercubes[END_REF][START_REF] Peleg | Distributed Computing : A Locality-Sensitive Approach[END_REF]. A number of algorithmic problems (product of integers, product of matrices, sorting, etc.) are computable in linear time on cellular automata (CA), a local and massively parallel model. For each such problem, the literature presents an "ad hoc" parallel and local algorithmic strategy and gives the program of the final CA in an informal way [START_REF] Patrick | Generation of primes by one-dimensional real-time iterative array[END_REF][START_REF] Delorme | Signals on cellular automata[END_REF]. However, the considered problems can be defined inductively in a natural way.

Logical Definitions Versus Programs of Real-Time CA

For instance, the product of two integers in binary notation is simply defined by the usual school method and one may hope to directly derive a parallel program from such an inductive process.

Descriptive complexity and linear time on cellular automata

The present paper is a considerably extended version of the conference paper [START_REF] Grandjean | Descriptive complexity for minimal time of cellular automata[END_REF] which is in some sense the sequel of the paper [START_REF] Bacquey | Definability by Horn Formulas and Linear Time on Cellular Automata[END_REF] (see also [START_REF] Grandjean | A logical approach to locality in pictures languages[END_REF]). First, [START_REF] Bacquey | Definability by Horn Formulas and Linear Time on Cellular Automata[END_REF] observes that the inductive processes defining the considered problems (product of integers, product of matrices, sorting, etc.) are "local" and are naturally formalized by Horn formulas, that is by conjunctions of first-order Horn clauses. Therefore, the computation is nothing else than the classical resolution method on Horn clauses, as in Prolog and Datalog [START_REF] Libkin | Elements of Finite Model Theory[END_REF][START_REF] Grädel | Finite Model Theory and Its Applications[END_REF][START_REF] Abiteboul | Foundations of Databases[END_REF]. Moreover, on every concrete problem defined by a Horn formula with d + 1 first-order variables, this inductive computation by Horn rules can be geometrically modeled as the displacement of a d-dimensional hyperplane along some fixed line in a space of dimension d + 1. To capture these inductive behaviors, [START_REF] Bacquey | Definability by Horn Formulas and Linear Time on Cellular Automata[END_REF] defines a logic denoted monot-ESO-HORN d (∀ d+1 , arity d+1 ) obtained from the logic ESO-HORN tailored by Grädel [START_REF] Grädel | Finite Model Theory and Its Applications[END_REF] to characterize P, by restricting both the number of first-order variables and the arity of second-order predicate symbols. Besides, it includes an additional restriction -the "monotonicity condition" -that reflects the geometrical consideration above-mentioned. [START_REF] Bacquey | Definability by Horn Formulas and Linear Time on Cellular Automata[END_REF] proves that this logic exactly characterizes the linear time complexity class of cellular automata: more precisely, for each integer d ≥ 1, a set L of d-dimensional pictures can be decided in linear time on a d-dimensional CA -written L ∈ DLIN d

CA

-if and only if it can be expressed in monot-ESO-HORN d (∀ d+1 , arity d+1 ). For short:

DLIN d CA = monot-ESO-HORN d (∀ d+1 , arity d+1 ). To summarize, expressing a concrete problem in this logic -which seems an easy task in practice and is also a necessary and sufficient condition according to the above equality -guarantees that this problem can be solved in linear time on a CA; moreover, the Horn formula that defines the problem can be automatically translated into a program of CA that computes it in linear time.

Logics for minimal time of cellular automata?

At this point, two natural questions arise:

1. Besides linear time, a robust and very expressive complexity class, what are the other significant and robust complexity classes of CA?

2. Can we exhibit characterizations of those complexity classes in some naturally (syntactically) defined logics so that any definition of a problem in such a logic can be automatically translated into a program of the complexity considered?

Besides linear time, the main complexity notion well-studied for a long time in the literature of CA is real-time, i.e., minimal time [START_REF] Cole | Real-time computation by n-dimensional iterative arrays of finite-state machine[END_REF][START_REF] Smith | Real-time language recognition by one-dimensional cellular automata[END_REF][START_REF] Dyer | One-way bounded cellular automata[END_REF]. A cellular automaton is said to run in realtime if it stops, i.e., gives the answer yes or no, at the minimal time sufficient for the output cell (the cell that gives the answer) to have received each letter of the input. Real-time complexity appears as a sensitive/fragile notion and one generally thinks it is so for CA of dimension 2 or more [START_REF] Terrier | Two-dimensional cellular automata recognizer[END_REF][START_REF] Grandjean | Differences between 2d neighborhoods according to real time computation[END_REF]. However, maybe surprisingly, one knows that real-time complexity is a robust notion for one-dimensional CA in the following sense: according to the many natural variants of the definition of a one-dimensional CA, which essentially rest on the choice of the neighborhood of the CA and the parallel or sequential presentation of its input word, exactly three real-time classes of one-dimensional CA 2 have been proved to be distinct [START_REF] Cole | Real-time computation by n-dimensional iterative arrays of finite-state machine[END_REF][START_REF] Choffrut | On real-time cellular automata and trellis automata[END_REF][START_REF] Ibarra | On one-way cellular arrays[END_REF][START_REF] Poupet | Cellular automata: Real-time equivalence between one-dimensional neighborhoods[END_REF][START_REF] Terrier | Language not recognizable in real time by one-way cellular automata[END_REF][START_REF] Terrier | Language recognition by cellular automata[END_REF][START_REF] Terrier | Some computational limits of trellis automata[END_REF] The final and decisive step to establish this classification is a nice dichotomy of [START_REF] Poupet | Cellular automata: Real-time equivalence between one-dimensional neighborhoods[END_REF] on admissible neighborhoods 3 of CA, which can be rephrased as follows: for each neighborhood N admissible with respect to the first cell as output cell, the real-time complexity class of one-dimensional CA with parallel input mode and neighborhood N ,

• either is equal to the real-time class for the neighborhood {-1, 0, 1}, i.e., RealTime CA (class 1 above),

• or is equal to the real-time class for the neighborhood {-1, 0}, i.e., Trellis (class 3 above).

Further, it is surprising to notice that • the mutual relations between those three real-time classes are wholly elucidated : classes

Trellis and RealTime IA are mutually incomparable for inclusion whereas we have the strict inclusion Trellis ∪ RealTime IA RealTime CA [START_REF] Cole | Real-time computation by n-dimensional iterative arrays of finite-state machine[END_REF][START_REF] Culik | Systolic trellis automata[END_REF][START_REF] Terrier | Language not recognizable in real time by one-way cellular automata[END_REF],

• it is unknown whether the trivial inclusion RealTime CA ⊆ DLIN 1 CA is strict; worse, whether the inclusion RealTime CA ⊆ LinSpace is strict is an open problem! Logics and grid circuits for real-time classes Each of the three real-time classes 1-3 is robust, i.e, is not modified for many variants of CA (change of neighborhoods, etc.) and has two or three quite different equivalent definitions. For example, RealTime CA is equal to the linear time class of one-way CA with parallel input mode [START_REF] Choffrut | On real-time cellular automata and trellis automata[END_REF][START_REF] Terrier | Language recognition by cellular automata[END_REF]. Similarly, [START_REF] Okhotin | On the equivalence of linear conjunctive grammars and trellis automata[END_REF] has proved the surprising result that Trellis is the class of languages generated by linear conjunctive grammars (see also [START_REF] Okhotin | Conjunctive and boolean grammars: The true general case of the contextfree grammars[END_REF]) and [START_REF] Terrier | Characterization of real time iterative array by alternating device[END_REF] has established that a language L is in RealTime IA if and only if its reverse language L R is recognized in real-time by a one-way alternating automaton with one counter.

Logics have two nice and complementary properties: they are flexible, hence expressive; they have normal forms, so can be tailored for efficient programming. The main idea that led us to conceive the different logics for real-time classes can be summarized by the following simple question: what are the different ways to decide a language on a square grid circuit?

For any integer n ≥ 1 and any input word w = w 1 . . . w n of length n, let C n be the grid circuit n × n where the state q ∈ S (for finite S) of any site (i, j), 1 ≤ i, j ≤ n, is determined by the states of its "predecessors" (i -1, j), if it exists (i > 1), and (i, j -1), if it exists (j > 1), and by the letter w h of the input word if this letter is placed on the site (i, j). The input word w is accepted by the grid circuit C n if the state of the output cell (n, n) is accepting. Up to symmetries, there are three canonical ways to arrange an input word w = w 1 . . . w n on the grid C n , see Figure 1: 1. GRID 1 : place the input on any side (or, equivalently, on both sides 4 ) that does (do) not contain the output cell;

2. GRID 2 : place the input on the diagonal that contains the output cell;

3. GRID 3 : place the input on the diagonal opposite to the output cell.

Remark 1. To be complete, one should say that there is a fourth arrangement: place the input word on a side containing the output cell. In this case, the grid circuit behaves like a finite automaton (CA of dimension zero).

Remark 2. In order to get a natural logic corresponding to GRID 3 (called inclusion logic) it will be convenient to rotate Figure 1 by an anticlockwise rotation of 90 • : see Figure 11 below.

A simple (reversible) deformation transforms a grid circuit of GRID i , i = 1, 2, 3, into a timespace diagram of a CA of the real-time class i considered (recall: 1: RealTime CA ; 2: RealTime IA ; 3: Trellis), and conversely. More precisely, to characterize the three real-time classes, we will define three sub-logics of the Horn logic that characterizes linear time of one-dimensional CA (DLIN 1 CA = monot-ESO-HORN 1 (∀ 2 , arity 2 )), called respectively pred-ESO-HORN, pred-dio-ESO-HORN and incl-ESO-HORN (defined in the next section), and we will prove the following equalities: To establish the double nature of our three logics and deduce the previous equalities 1-3, we present each logic in two forms:

• we try to define it as large as possible, showing the extent of its expressiveness;

• we prove for it the most restricted normal form.

In each case, a formula in normal form can be translated literally into a grid program, which is essentially a CA of the considered real-time complexity class.

More flexible logics for programming real-time cellular automata

The best argument in favor of our logics is that they allow many properties to be expressed naturally and therefore to be easily programmed on a grid, or equivalent, on a cellular automaton in real time. However, the obligation to formalize everything with Horn clauses seems too strict for a natural expression of some reference languages of the literature, for example, the Dyck language (the set of well-parenthesed expressions, see [START_REF] Okhotin | On the equivalence of linear conjunctive grammars and trellis automata[END_REF], pp 81-83, or [START_REF] Dyer | One-way bounded cellular automata[END_REF]), or the set of prime integers [START_REF] Patrick | Generation of primes by one-dimensional real-time iterative array[END_REF][START_REF] Delorme | Algorithmic tools on cellular automata[END_REF][START_REF] Mazoyer | Computations on cellular automata[END_REF], or the Čulik language (the set of words of the form a i b i+j a j ) [START_REF] Ibarra | On one-way cellular arrays[END_REF][START_REF] Culik | Variations of the firing squad problem and applications[END_REF][START_REF] Terrier | Language recognition by cellular automata[END_REF]. Fortunately, we will show in this paper that all these examples are naturally expressed in slightly extended versions of our logics. They now allow a limited use of negation on hypothesis computation atoms. This is comparable to the Datalog extension called Stratified Datalog, see e.g. [START_REF] Abiteboul | Foundations of Databases[END_REF].

An essential point should be emphasized: even if they allow more flexible expression, our extended logics, called inductive logics (they are no longer Horn logics), are equivalent to the original logics pred-ESO-HORN, pred-dio-ESO-HORN and incl-ESO-HORN, respectively, because we establish that they still characterize the same complexity classes, RealTime CA , RealTime IA and Trellis, respectively. Overall, the main new contribution of this paper compared to its conference version [START_REF] Grandjean | Descriptive complexity for minimal time of cellular automata[END_REF] is the study of a number of reference problems of the literature that we express in our logics in a natural way. This is made possible thanks to the extensions of our Horn logics we call inductive logics.

Structure of the paper: In preliminaries, we recall the classical definitions of one-dimensional cellular automata and of their real-time classes; moreover, after defining our three Horn logics, we succinctly present our main results and, as examples, we give natural expressions of some classical problems in our Horn logics ; in Subsection 3.2, a simplified version of the translation process from a logical formula to some cellular automaton is detailed for one of those examples. Section 4 formally describes the first step of this translation process, i.e., the normalization of our Horn logics, in the general case. In Section 5, we define extensions of our Horn logics with negation -so-called inductive logics -and similarly describe their normalization process. Using those normal forms, we show in Section 6 that our logics exactly characterize the three real-time complexity classes of cellular automata and also -for inclusion logic -the class of linear conjunctive languages of Okhotin [START_REF] Okhotin | On the equivalence of linear conjunctive grammars and trellis automata[END_REF]. In Sections 7 and 8, some famous problems of the literature are programmed in our logics. Finally, Section 9 gives a conclusion with open problems and suggests some lines of research.

Preliminaries

Cellular automata and real-time complexity

A one-dimensional cellular automaton (CA) is a linear array of identical finite state automata (called cells). Each cell takes its values from a finite set of states S and interact with its adjacent neighbors at discrete time steps. At initial time t = 1, each cell receives a state from S. Then the computation is carried out locally: the new state of a cell is the result of a transition function f that depends on the states of its neighborhood at the previous time step. This transition function applies synchronously to all cells at each time step. Formally said: Definition 1. A cellular automaton (CA) is a triple (S, N , f) where:

• S is a finite set of states

• N = {n 1 , . . . , n |N | } ⊂ Z is the neighborhood • f : S |N | → S is the transition function.
Denoting by c, t the state of the cell c at time t, the state is updated in this way: One main difference between these two CA is that the information flow goes in both directions for A since its neighborhood is {-1, 0, 1}, whereas the information flow is restricted from left to right for T since its neighborhood is {-1, 0}. Below we will refer to automata with bidirectional communication (whose canonic neighborhood is {-1, 0, 1}) as two-way CA and to those with unidirectional communication (whose canonic neighborhood is {-1, 0}) as one-way CA.

c, t + 1 = f( c + n 1 , t , . . . , c + n |N | , t ) Example 1. Consider the cellular automaton A = ({0, 1}, {-1, 0, 1}, f) where f : {0, 1} 3 → {0, 1} is defined by f(x, y, z) = max(x, z) × (1 -y) + min(1 -x, 1 -z) × y.
In what follows, we will consider CA as a language recognizer which operates on input word w and answers either "accept" or "reject". For that, it should be made clear how the input w is given to the CA and how the result of the computation is obtained.

First, we state some conditions on the set of states S.

• The input word letters belong to the set of states: Σ ⊂ S.

• A subset of accepting states S acc ⊂ S is identified.

• Two special states are also distinguished: one permanent state and one quiescent state λ.

A cell in the permanent state remains in this state forever. A cell in the quiescent state λ remains in this state as long as its neighborhood is quiescent.

Regarding on how to present the input to the array, two modes are usually considered: the parallel mode and the sequential mode. In parallel mode, the whole input is supplied at initial time: the i-th symbol of the input w = w 1 . . . w n is given to the cell i at time 1: i, 1 = w i . In sequential mode, for an input of length n, all cells of index in [1, n] are initially in the quiescent state λ and the n input symbols are read one after other by a distinguished cell, the cell 1: w t is given to the cell 1 at time t. This requires a specific transition function

f input : Σ × S |N | → S that applies to the distinguished cell 1: 1, 1 = f input (w 1 , λ, . . . , λ), 1, t = f input (w t , 1 + n 1 , t -1 , . . . , 1 + n |N | , t -1 ), for t > 1.
Furthermore, in both modes, the computation is bounded by the length of the input: initialized to the permanent state , the cells of index outside [1, n] remain inactive. In the literature, a CA that reads the input word sequentially is known as iterative array (IA).

With outputs being "accept" or "reject", one specific cell, called output cell, is enough to indicate the answer of the computation. For the neighborhood {-1, 0, 1} that permits two-way communication, the output cell is usually chosen to be the cell 1. For the neighborhood {-1, 0} that induces one-way communication, the output cell is the cell n, the single one able to get all information of the input. Now a word w is said to be accepted if there is a time t such that the output cell reaches a state in S acc .

In the sequel, we will focus exclusively on minimal computation time. In minimal time, called real-time, the computation on an input w is completed as soon as the output cell has received each letter of the input. Then a language is said to be recognized in real-time if each of its words is accepted in minimal time. It gives us four classes of real-time CA languages, according to:

• the input mode is parallel or sequential;

• the communication is two-way with the neighborhood {-1, 0, 1} or one-way with the neighborhood {-1, 0}.

Definition 2 (Real-time complexity classes). Figure 2 illustrates these classes.

1. L belongs to RealTime CA , the class of languages recognized in real-time by two-way cellular automata with parallel input mode, if L consists of all the words for which the output cell 1 is in an accepting state at time n.

L belongs to

RealTime OIA , the class of languages recognized in real-time by one-way iterative arrays with sequential input mode, if L consists of all the words for which the output cell n is in an accepting state at time 2n -1.

L belongs to

RealTime IA , the class of languages recognized in real-time by two-way iterative arrays with sequential input mode, if L consists of all the words for which the output cell 1 is in an accepting state at time n.

L belongs to

RealTime OCA , the class of languages recognized in real-time by one-way cellular automata with parallel input mode, if L consists of all the words for which the output cell n is in an accepting state at time n.

It turns out that RealTime CA and RealTime OIA characterize the same class of languages (see [START_REF] Choffrut | On real-time cellular automata and trellis automata[END_REF][START_REF] Ibarra | On one-way cellular arrays[END_REF]). Further, as illustrated in Figure 2 

Our logics

The "local" nature of our logics requires that the underlying structure encoding an input word w = w 1 . . . w n on its index interval [1, n] only uses the successor and predecessor functions and the monadic predicates min and max as its only arithmetic functions/predicates: Definition 3 (structure encoding a word). Each nonempty word w = w 1 . . . w n ∈ Σ n on a fixed finite alphabet Σ is represented by the first-order structure

w := ([1, n]; (Q s ) s∈Σ , min, max, suc, pred)
of domain [1, n], monadic predicates Q s , s ∈ Σ, min and max, such that Q s (i) ⇐⇒ w i = s, min(i) ⇐⇒ i = 1, and max(i) ⇐⇒ i = n, and unary functions suc and pred such that suc(i) = i + 1 for i < n and suc(n) = n, pred(i) = i -1 for i > 1 and pred(1) = 1. Let S Σ denote the signature {(Q s ) s∈Σ , min, max, suc, pred} of structure w . The monadic predicates Q s , s ∈ Σ, min, and max of S Σ are called input predicates.

Notation. Let x + k and x -k abbreviate the terms suc k (x) and pred k (x), for a fixed integer k ≥ 0.

Let us now define two of our logics: Definition 4 (predecessor logics). A predecessor Horn formula (resp. predecessor Horn formula with diagonal input-output) is a formula of the form Φ = ∃R∀x∀yψ(x, y) where R is a set of binary predicates called computation predicates and ψ is a conjunction of Horn clauses on the variables x, y, of signature S Σ ∪ R (resp. S Σ ∪ R ∪ {=}), of the form δ 1 ∧ . . . ∧ δ r → δ 0 where the conclusion δ 0 is either a computation atom R(x, y) with R ∈ R, or ⊥ ( False) and each hypothesis δ i is 1. either an input literal (resp. input conjunction) of one of the forms: Let pred-ESO-HORN (resp. pred-dio-ESO-HORN) denote the class of predecessor Horn formulas (resp. predecessor Horn formulas with diagonal input-output) and, by abuse of notation, the class of languages they define.

• Q s (x -a), Q s (y -a) (resp. Q s (x -a) ∧ x = y),
The formulas of the "predecessor" logics defined above use the predecessor function but not the successor function: both logics inductively define problems in increasing both coordinates x and y. The inductive principle of our last logic is seemingly different: it lies on inclusions of intervals [x, y].

Definition 5 (inclusion logic

). An inclusion Horn formula is a formula of the form Φ = ∃R∀x∀yψ(x, y) where R is a set of binary predicates called computation predicates and ψ is a conjunction of Horn clauses of signature S Σ ∪ R ∪ {=, ≤, <}, of the form x ≤ y ∧ δ 1 ∧ . . . ∧ δ r → δ 0 where the conclusion δ 0 is either a computation atom R(x, y) with R ∈ R, or the atom ⊥ ( False), and each hypothesis Notation. We will freely use the intuitive abbreviations x > a, x = a, for a constant integer a ≥ 1, and x ≤ n -a, x < n -a, x = n -a, for a constant integer a ≥ 0, and similarly for y. For example, x > 3 is written in place of ¬min(x -2) and y ≤ n -2 is written in place of ¬max(y + 1). Remark 3. Without loss of generality, we can suppose that each clause having a hypothesis atom of the form S(x -a, y -b) or S(y -b, x -a), for a, b ≥ 0, has also the hypotheses x > a (if a > 0) and y > b (if b > 0). The same for each hypothesis atom of the form Q s (x -a) or Q s (y -b), for a, b > 0. Similarly, we assume that each clause with a hypothesis of the form Q s (x + a) (resp. Q s (y + a)), with a > 0, also contains the hypothesis x ≤ n -a (resp. y ≤ n -a). Similarly, for each atom S(x + a, y -b), for a, b ≥ 0.

Remark 4. The presentation of the input is more restrictive in Definition 4 of predecessor logics than in that of inclusion logic (Definition 5) because we have forbidden the use of the successor function for uniformity/aesthetics. However, allowing the largest set of input literals (¬)U (x + a), (¬)U (y + a), for U ∈ {(Q s ) s∈Σ , min, max} and a ∈ Z, does not modify the expressive power of predecessor logics: Steps 5 and 6 of the normalization of inclusion logic in Section 4 can be easily adapted to predecessor logics. Remark 5. As usual, it is convenient to adopt the semantics of the minimal model of Horn formulas. That means that if we have w |= Φ for a formula Φ = ∃R∀x∀yψ(x, y) in any of our logics, then there is a model ( w , R) |= ∀x∀yψ(x, y) for which each R ∈ R is minimal. We will say that the formula ∀x∀yψ(x, y) defines the (minimal) predicates R ∈ R on w .

Our main results

Much of the paper will be devoted to show that our three logics characterize the three real-time complexity classes of CA. Precisely, we will prove the following statements.

The languages accepted in real-time by two-way CA's with input fed in a parallel way and output read on the first cell are exactly the languages defined by the predecessor logic:

Theorem 1. RealTime CA = pred-ESO-HORN.
The languages accepted in real-time by IA are exactly the languages defined by the predecessor logic with diagonal input-output:

Theorem 2. RealTime IA = pred-dio-ESO-HORN.
The languages accepted by Trellis are exactly the languages defined by the inclusion logic:

Theorem 3. Trellis = incl-ESO-HORN.
In order to facilitate the programming (= expression) of the problems, we will also extend our Horn logics by a limited use of negation on hypothesis computation atoms (like in Stratified Datalog) while preserving their computational complexity, i.e., extending Theorems 1, 2 and 3 to those extended logics.

First examples: express problems; translate formulas into automata

In this section, we give an illustration of our logics and their transformation techniques about three classical problems.

Three examples of problems expressed in our three Horn logics

Our logics make it possible to express problems in a natural way.

Example 2. The language Palindrome = {w ∈ Σ + | w = w R }.

The language Palindrome is defined by the formula ∃notPal∀x∀yψ of incl-ESO-HORN where ψ is the conjunction of the following clauses in which the inductively defined predicate notPal(x, y) means that the factor w x . . . w y is not a palindrome:

• x < y ∧ Q s (x) ∧ Q t (y) → notPal(x, y), for s, t ∈ Σ, s = t; • x < y ∧ notPal(x + 1, y -1) → notPal(x, y); • x ≤ y ∧ min(x) ∧ max(y) ∧ notPal(x, y) → ⊥.
As a consequence of Theorem 3, Palindrome belongs to Trellis (see [START_REF] Dyer | One-way bounded cellular automata[END_REF], ex. 4, pp 267-268).

Example 3. The language Unbordered is the set of words w ∈ Σ + with no proper prefix of length at least 2 equal to a suffix. Equivalently,

Unbordered := Σ + \ {uvu | u, v ∈ Σ * ∧ |u| ≥ 2}.
The language Unbordered, which is the complement of the language L studied in [START_REF] Terrier | Language not recognizable in real time by one-way cellular automata[END_REF], can be defined by the formula Φ Unbordered := ∃Border∀x∀yψ of pred-ESO-HORN, where ψ is the conjunction of the following clauses involving the binary predicate Border whose intuitive meaning is given by the equivalence Border(x, y) ⇐⇒ 2 ≤ x < y ∧ w 1 . . . w x = w y-x+1 . . . w y , as expressed by clauses 1 and 2:

1. ¬min(x) ∧ min(x -1) ∧ ¬min(y -1) ∧ Q s (x -1) ∧ Q s (y -1) ∧ Q t (x) ∧ Q t (y) → Border(x, y),
for all s, t ∈ Σ (meaning: 2 = x < y ∧ w 1 w 2 = w y-1 w y → Border(2, y));

2. ¬min(x) ∧ ¬min(y) ∧ Border(x -1, y -1) ∧ Q s (x) ∧ Q s (y) → Border(x, y), for s ∈ Σ (meaning: 2 ≤ x -1 < y -1 ∧ w 1 . . . w x-1 = w y-x+1 . . . w y-1 ∧ w x = w y → (3 ≤ x < y ∧ w 1 . . . w x = w y-x+1 . . . w y ));
3. max(y) ∧ Border(x, y) → ⊥ (meaning: ∀x ¬Border(x, n)).

Justification: We have the equivalence:

∃x Border(x, n) ⇐⇒ ∃x(2 ≤ x < n ∧ w 1 . . . w x = w n-x+1 . . . w n ) ⇐⇒ w / ∈ Unbordered.
A geometric view of the "algorithm" is given in Figure 3 where the usual x and y axes are implicit. 

⊥ Q s (x) ∧ Q s (y)
Border(x, y) ⊥ the "false" So, as a consequence of Theorem 1, Unbordered belongs to RealTime CA . In fact, we know much more: [START_REF] Terrier | Language not recognizable in real time by one-way cellular automata[END_REF] has proved Unbordered ∈ RealTime CA \(Trellis ∪ RealTime IA ).

The next example uses geometric constructions defined inductively in logic. The language Disj (well known in Communication Complexity [START_REF] Kushilevitz | Communication complexity[END_REF] and studied in [START_REF] Terrier | Some computational limits of trellis automata[END_REF]) can be defined by the formula Φ Disj := ∃{D, I x , I y , H, T }∀x∀yψ of pred-dio-ESO-HORN where D, I x , I y , H, T are binary predicates such that

• D(x, y) (intuitively) means y = 2x, • I x (x, y) means Q 1 (x) ∧ y ≥ x, • I y (x, y) means Q 1 (y) ∧ x ≥ y,
• H(x, y) means y is even, y ≤ 2x and Q 1 (y/2),

• T (x, y) means x is even, x/2 < y ≤ x and Q 1 (y -x/2), and ψ is the following conjunction of clauses:

• for (inductively) defining D: x = 1 ∧ y = 2 → D(x, y), and x > 1 ∧ y > 2 ∧ D(x -1, y -2) → D(x, y);
• for defining I x : x = y ∧ Q 1 (x) → I x (x, y), and y > 1 ∧ I x (x, y -1) → I x (x, y), and similarly for I y ;

• for defining H: 1) y = 2x ∧ I x (x, y) → H(x, y), and 2) x > 1 ∧ H(x -1, y) → H(x, y);

• for defining T : 3) x = y ∧ H(x, y) → T (x, y), and 4) x > 2 ∧ y > 1 ∧ T (x -2, y -1) → T (x, y).

Justification: The definitions of D, I x and I y are obvious. Let us explain why the definitions of H and T are correct. The hypotheses of clause 1 mean D(x, y) ∧ Q 1 (x) ∧ y ≥ x which implies y even, y ≤ 2x, and Q 1 (y/2); the hypotheses of clause 3 mean x = y, y even, y ≤ 2x, and Q 1 (y/2), which imply together x even, x/2 < y ≤ x, y -x/2 = y/2, and then

Q 1 (y -x/2); clause 4 is justified by the trivial implication (x -2)/2 < y -1 ≤ x -2 → x/2 < y ≤ x and the identity (y -1) -(x -2)/2 = y -x/2.
Here are the last two clauses of ψ. First, in order to reject all words of odd length n, we use the clause y = n-1∧D(x, y) → ⊥. Second, for words of even length n, the comparison between w y and w y-n/2 with y > n/2 is handled by the clause x = n ∧ I y (x, y) ∧ T (x, y) → ⊥, which expresses the falsity of the conjunction I y (n, y) ∧ T (n, y), equivalent to w y = 1 ∧ w y-n/2 = 1 by the previous clauses; hence, this clause means w / ∈ Disj. See Figure 4 where the contradiction is expressed by the "signal line" in bold I x → H → T → I y , which connects two points of the diagonal of ordinates y -n/2 and y with w y-n/2 = w y = 1.

⊥ x = y x = y ∧ Q 1 (x) I x (x, y) I y (x, y) H(x, y) T (x, y) y = 2x
⊥ the "false" So, Theorem 2 implies Disj ∈ RealTime IA . The language Disj is also known not to belong to Trellis as it is proved in [START_REF] Terrier | Some computational limits of trellis automata[END_REF].

Normalizing and translating a formula into a cellular automaton: an introduction example

In this subsection, we give an illustration, on an example, of the translation processes which will be presented rigorously and in their general form in the following sections. We take as example the formula Φ Unbordered ∈ pred-ESO-HORN constructed in Subsection 3.1 (to describe the language Unbordered). Our first goal is to turn the formula into a normalized formula mimicking a grid circuit. Intuitively, a normalized formula meets the following contraints:

• it should only have one clause with conclusion ⊥ and this clause should have the hypothesis (x, y) = (n, n) to mimic the output of the grid circuit at vertex (n, n);

• in order to mimic an input on the grid circuit, all clauses using information about the input word should have the hypothesis x = 1;

• the only computation atoms in the hypotheses of computation clauses should be of the form R(x -1, y) or R(x, y -1).

Our second goal will be to deduce from this normalized formula a cellular automaton recognizing the language Unbordered.

Normalizing the formula defining Unbordered: Let us detail the normalization process, i.e., the successive steps turning Φ Unbordered into a formula in normal form (= mimicking a grid circuit). First, let us define what this means. Definition 6 (normal form). A formula Φ := ∃R∀x∀yψ of pred-ESO-HORN is in normal form if each clause of ψ is of one of the following forms:

• an input clause of the form, for s ∈ Σ and R ∈ R: min(x) ∧ min(y) ∧ Q s (y) → R(x, y), or min(x) ∧ ¬min(y) ∧ Q s (y) → R(x, y);

• the contradiction clause, for a fixed R ⊥ ∈ R: max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥;

• a computation clause of the form δ 1 ∧ . . . ∧ δ r → R(x, y), for R ∈ R, where each hypothesis δ i is a conjunction of the form S(x -1, y) ∧ ¬min(x) or S(x, y -1) ∧ ¬min(y), for S ∈ R. Remark 6. It will also be convenient to allow input clauses of the form min(x) ∧ min(y) → R(x, y) (resp. min(x)∧¬min(y) → R(x, y)). Indeed, such a clause is obviously equivalent to the conjunction of input clauses s∈Σ (min(x) ∧ min(y) ∧ Q s (y) → R(x, y)) (resp. s∈Σ (min(x) ∧ ¬min(y) ∧ Q s (y) → R(x, y))).

The main difficulty encountered in the normalization process will be to maintain or restore the constraint that no computation atom of the form R(x, y) occurs as a hypothesis of a computation clause. This will be performed in an "ad hoc" way on our example. However, in Step 10 of Subsection 4.1, we will describe and justify a general procedure to eliminate the computation atoms R(x, y) in the hypotheses of Horn clauses. 0: Before normalization. Recall that Φ Unbordered is the formula ∃Border∀x∀yψ where ψ is the conjunction of the following clauses:

0.a: ¬min(x) ∧ min(x -1) ∧ ¬min(y -1) ∧ Q s (x -1) ∧ Q s (y -1) ∧ Q t (x) ∧ Q t (y) → Border(x, y),
for all s, t ∈ Σ; ).

0.b: ¬min(x) ∧ ¬min(y) ∧ Border(x -1, y -1) ∧ Q s (x) ∧ Q s (y) → Border(x,
2: Processing the input. For each s ∈ Σ, we introduce two new binary predicates W x s and W y s (with intuitive meaning W x s (x, y) ⇐⇒ Q s (x) and W y s (x, y) ⇐⇒ Q s (y)) to replace the unary predicates Q s when x or y is greater than 1. W x s and W y s are defined by the following clauses: 2.a:

min(y) ∧ Q s (x) → W x s (x, y); 2.b: ¬min(y) ∧ W x s (x, y -1) → W x s (x, y); 2.c: min(x) ∧ Q s (y) → W y s (x, y); 2.d: ¬min(x) ∧ W y s (x -1, y) → W y s (x, y).
This justifies replacing, for any s ∈ Σ, atoms Q s (x -1) and Q s (y -1) by W x s (x -1, y) and W y s (x, y -1), respectively, and replacing atoms Q s (x) and Q s (y) by W x s (x, y -1) and W y s (x -1, y), respectively. So, clauses (0.a) and (0.b) become respectively:

2.e: ¬min(x) ∧ min(x -1) ∧ ¬min(y -1) ∧ W x s (x -1, y) ∧ W y s (x, y -1) ∧ W x t (x, y -1) ∧ W y t (x -1, y) → Border(x, y), for s, t ∈ Σ; 2.f: ¬min(x) ∧ ¬min(y) ∧ Border(x -1, y -1) ∧ W x s (x, y -1) ∧ W y s (x -1, y) → Border(x, y), for s ∈ Σ.

Remark 8. Our substitutions respect the constraint that hypotheses of the form R(x, y) are forbidden in the computation clauses of a normalized formula (Definition 6).

3: Restriction of computation atoms to the forms R(x-1, y) and R(x, y-1). A new binary predicate Border x-1 is introduced with the intuitive meaning Border x-1 (x, y) ⇐⇒ (x > 1∧Border(x-1, y)). This predicate is defined by the following clause: 3.a: ¬min(x) ∧ Border(x -1, y) → Border x-1 (x, y).

In this way, the clause (2.f) ¬min(x)∧¬min(y)∧Border(x-1, y -1)∧W x s (x, y -1)∧W y s (x-1, y) → Border(x, y), for s ∈ Σ, is replaced by the following clause:

3.b: ¬min(x) ∧ ¬min(y) ∧ Border x-1 (x, y -1) ∧ W x s (x, y -1) ∧ W y s (x -1, y) → Border(x, y), for s ∈ Σ.
4: Processing of min and max. In order to get rid of the atoms min(x -1) and ¬min(y -1) in clause (2.e) ¬min(x)∧min(x-1)∧¬min(y -1)∧W x s (x-1, y)∧W y s (x, y -1)∧W x t (x, y -1)∧W y t (x-1, y) → Border(x, y), for s, t ∈ Σ, we introduce two binary predicates R min(x) and R ¬min(y) (with intuitive meaning R min(x) (x, y) ⇐⇒ min(x) and R ¬min(y) (x, y) ⇐⇒ ¬min(y)) defined by the following clauses:

4.a: min(x) ∧ min(y) → R min(x) (x, y); 4.b: ¬min(y) ∧ R min(x) (x, y -1) → R min(x) (x, y); 4.c: min(x) ∧ ¬min(y) → R ¬min(y) (x, y); 4.d: ¬min(x) ∧ R ¬min(y) (x -1, y) → R ¬min(y) (x, y).
After substitution, clause (2.e) becomes, for s, t ∈ Σ:

4.e: ¬min(x) ∧ R min(x) (x -1, y) ∧ ¬min(y) ∧ R ¬min(y) (x, y -1) ∧ W x s (x -1, y) ∧ W y s (x, y -1) ∧ W x t (x, y -1) ∧ W y t (x -1, y) → Border(x, y).
Remark 9. We have added the hypothesis atom ¬min(y) in clause (4.e) in order that this clause fulfills the conditions of a computation clause, as given in Definition 6.

5: Defining equality and inequalities. In the next part of the normalization process, we will fold the square domain [1, n] 2 along the diagonal x = y on the over-diagonal triangle where x ≤ y. Therefore, we need predicates representing the equality x = y (R = ) and the inequalities x < y (R < ) and x ≤ y (R ≤ ). R = is defined jointly with the predicate R pred , of intuitive meaning R pred (x, y) ⇐⇒ x = y -1, by the following clauses:

5.a: min(x) ∧ min(y) → R = (x, y);

5.b: ¬min(y) ∧ R = (x, y -1) → R pred (x, y); 5.c: ¬min(x) ∧ R pred (x -1, y) → R = (x, y).
The predicates R < and R ≤ are defined by the next clauses: 6: Folding the domain. We want to restrict the access to the input to the axis x = 1 with the only input clauses (i.e., the only clauses involving the input predicates

5.d: ¬min(y) ∧ R = (x, y -1) → R < (x, y); 5.e: ¬min(y) ∧ R < (x, y -1) → R < (x, y); 5.f: min(x) ∧ min(y) → R ≤ (x, y); 5.g: min(x) ∧ ¬min(y) → R ≤ (x, y); 5.h: ¬min(x) ∧ R < (x -1, y) → R ≤ (x, y). w y0 = t w x0 = s P 0 = (x 0 , y 0 ) W y t W y s W x s y x
Q s ) min(x) ∧ Q s (y) → W y s (x, y).
In other words, we want to get rid of the clauses min(y) ∧ Q s (x) → W x s (x, y). For this purpose, we fold the square domain [1, n] 2 along the diagonal x = y on the over-diagonal triangle

T n = {(x, y) ∈ [1, n] 2 | 1 ≤ x ≤ y ≤ n}
by the transformation that maps any point (y, x) such that x ≤ y to the point (x, y). Observe that the computation predicates Border and Border x-1 are included in T n (see Figure 5) so that the only computation predicates really acting on (x, y) sites such that x > y are the (in)equality predicates R = , R pred , R < , R ≤ , and the "transport" predicates W x s and W y s of the input, which are the "folding" of each other. The "folded" versions on T n of the clauses defining W x s and W y s are, for all s ∈ Σ, the following clauses defining W y s :

• min(x) ∧ Q s (y) → W y s (x, y), that will be replaced by the equivalent conjunction of the next clauses (6.a) and (6.b), which are of the allowed forms of input clauses of Definition 6: 6.a: min(x) ∧ min(y) ∧ Q s (y) → W y s (x, y), 6.b: min(x) ∧ ¬min(y) ∧ Q s (y) → W y s (x, y), and

• 6.c:¬min(x) ∧ W y s (x -1, y) ∧ R < (x -1, y) → W y s (x, y) (where R < (x -1, y) means x ≤ y),
and the following clauses defining W x s : • x = y ∧ W y s (x, y) → W x s (x, y) ("rebound" of the horizontal signal W y s on the diagonal as the vertical signal W x s ), which can be equivalently rewritten as the conjunction of the following two clauses:

6.d: min(x) ∧ min(y) ∧ Q s (y) → W x s (x, y), 6.e: ¬min(x) ∧ R pred (x -1, y) ∧ W y s (x -1, y) → W x s (x, y) (where R pred (x -1, y) means x = y), and 
• x < y ∧ ¬min(y) ∧ W x s (x, y -1) → W x s (x, y
), which can be rewritten as 6.f: ¬min(y) ∧ R ≤ (x, y -1) ∧ W x s (x, y -1) → W x s (x, y). Figure 5 depicts the new behaviour of W x s and W y s . Note that after the folding, the computation predicates W x s and W y s are included in the upper-diagonal triangle T n .

A normalized formula describing the language Unbordered. We recapitulate the final list of clauses obtained after steps 1-6:

• the clauses of steps 4 and 5 defining the "arithmetic" computation predicates R min(x) , R ¬min(y) , R = , R pred , R < and R ≤ ;

• the clauses defining the "input" computation predicates W x s and W y s , for s ∈ Σ: 6.a:

min(x) ∧ min(y) ∧ Q s (y) → W y s (x, y); 6.b: min(x) ∧ ¬min(y) ∧ Q s (y) → W y s (x, y); 6.c: ¬min(x) ∧ W y s (x -1, y) ∧ R < (x -1, y) → W y s (x, y); 6.d: min(x) ∧ min(y) ∧ Q s (y) → W x s (x, y); 6.e: ¬min(x) ∧ R pred (x -1, y) ∧ W y s (x -1, y) → W x s (x, y); 6.f: ¬min(y) ∧ R ≤ (x, y -1) ∧ W x s (x, y -1) → W x s (x, y);
• the clauses defining the "main" computation predicates Border, Border x-1 and R max(y) ⊥

, i.e, describing the main computation and its output:

4.e: ¬min(x) ∧ R min(x) (x -1, y) ∧ ¬min(y) ∧ R ¬min(y) (x, y -1) ∧ W x s (x -1, y) ∧ W y s (x, y -1) ∧ W x t (x, y -1) ∧ W y t (x -1, y) → Border(x, y) for s, t ∈ Σ; 3.a: ¬min(x) ∧ Border(x -1, y) → Border x-1 (x, y); 3.b: ¬min(y) ∧ ¬min(x) ∧ Border x-1 (x, y -1) ∧ W x s (x, y -1) ∧ W y s (x -1, y) → Border(x, y), for s ∈ Σ; 1.a: ¬min(x) ∧ Border(x -1, y) → R max(y) ⊥ (x, y); 1.b: ¬min(x) ∧ R max(y) ⊥ (x -1, y) → R max(y) ⊥ (x, y); 1.c: max(x) ∧ max(y) ∧ R max(y) ⊥ (x, y) → ⊥.
We observe that each of those clauses fulfills the conditions of Definition 6:

• clauses (4.a), (4.c), (5.a), (5.f), (5,g), (6,a), (6,b) and (6,d) are input clauses;

• the clause (1.c) max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥ where R ⊥ := R max(y) ⊥ is the contradiction clause;
• the other clauses are computation clauses.

Let ψ be the conjunction of those clauses and let R be the set of computation predicates, which are R min(x) , R ¬min(y) , R = , R pred , R < , R ≤ , W y s , W y s , for s ∈ Σ, Border, Border x-1 and R max(y) ⊥

. The formula obtained ∃R∀x∀yψ is the equivalent normal form of the formula Φ Unbordered in pred-ESO-HORN.

The reader may object that although we have tried to present the final list of (normalized) clauses in the least artificial way possible, it is much longer and less readable than the original (short) list of clauses (0,a), (0,b) and (0,c). It means that while the expression of a problem in pred-ESO-HORN (a high-level language) is natural and synthetic, the only interest of its normal form lies in its ability to be translated into an automaton in a straightforward way, as formally established in the next sections.

A real real-timetime CA recognizing Unbordered:

Now that the formula Φ Unbordered has been normalized, we can easily deduce from it a grid circuit recognizing the language Unbordered. A computation example on this grid circuit and its transformation into a computation of a real-time CA is shown in Figure 6. After this introduction example of the normalization of a specific formula (with its final transformation into an automaton), let us describe and justify in the next Sections 4 and 5 how to normalize our logics in the general case.

Normalizing our Horn logics

The most difficult and main parts of the proofs of our descriptive complexity results, i.e., equalities 1-3 of Subsection 2.3, are the following normalization lemmas.

Lemma 1 (normalization of predecessor logics). Each formula

Φ ∈ pred-ESO-HORN (resp. Φ ∈ pred-dio-ESO-HORN) is equivalent to a formula Φ ∈ pred-ESO-HORN (resp. Φ ∈ pred-dio-ESO-HORN)
where each clause is of one of the following forms:

• input clause of the form, for s ∈ Σ and R ∈ R:

min(x) ∧ min(y) ∧ Q s (y) → R(x, y), or min(x) ∧ ¬min(y) ∧ Q s (y) → R(x, y) (resp. x = y ∧ min(x) ∧ Q s (x) → R(x, y), or x = y ∧ ¬min(x) ∧ Q s (x) → R(x, y)); • the contradiction clause, for a fixed R ⊥ ∈ R: max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥; • computation clause of the form δ 1 ∧ . . . ∧ δ r → R(x, y), for R ∈ R, where each hypothesis δ i is a conjunction of the form S(x -1, y) ∧ ¬min(x) or S(x, y -1) ∧ ¬min(y), for S ∈ R.
Let normal-pred-ESO-HORN (resp. normal-pred-dio-ESO-HORN) denote the class of formulas (languages) so defined.

Lemma 2 (normalization of inclusion logic). Each formula Φ ∈ incl-ESO-HORN is equivalent to a formula Φ ∈ incl-ESO-HORN where each clause is of one of the following forms:

• input clause of the form x = y ∧ Q s (x) → R(x, y), for s ∈ Σ and R ∈ R; • the contradiction clause, for a fixed R ⊥ ∈ R, min(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥; • computation clause of the form 7 x < y ∧ δ 1 ∧ . . . ∧ δ r → R(x, y)
, where R ∈ R and where each hypothesis δ i is a computation atom of either form S(x + 1, y) or S(x, y -1), for S ∈ R.

Let normal-incl-ESO-HORN denote the class of formulas (languages) so defined.

The normalization processes of our three logics are quite similar to each other; further, some steps are exactly the same. Therefore, we choose to present here below the successive normalization steps for one logic: pred-ESO-HORN. Afterwards, we will succinctly describe how those steps should be adapted for the two other logics.

Normalizing predecessor Horn logic

Let a formula Φ ∈ pred-ESO-HORN. For simplicity of notation, we first assume that the only computation atoms of Φ are of the form R(x-a, y -b), a, b ≥ 0 (no atom of the form R(y -b, x-a)).

We will show at the end of the proof how to manage the general case. Φ will be transformed into an equivalent normalized form Φ by a sequence of 10 steps:

1. Processing the contradiction clauses;

2. Processing the input;

3. Restriction of computation atoms to R(x -1, y), R(x, y -1), and R(x, y);

4. Elimination of atoms x > a, x = a, y > a, y = a;

5. Processing of min and max;

6. Defining equality and inequalities;

7. Folding the domain;

8. Deleting max in the initialization clauses;

9. From initialization clauses to input clauses;

10. Elimination of atoms R(x, y) as hypotheses.

In each of those 10 steps, we will introduce new (binary) computation predicates, to be added to the set R of existentially quantified predicates, and new clauses to define them.

1. Processing the contradiction clauses. Without loss of generality, one can assume there is only the contradiction clause max(x)∧max(y)∧R ⊥ (x, y) → ⊥. Indeed, each contradiction clause 1 ∧. . .∧ k → ⊥ can be equivalently replaced by the conjunction of computation clauses 1 ∧ . . .

∧ k → R ⊥ (x, y)
with the clause R ⊥ (x, y) → ⊥ where R ⊥ is a new computation predicate (intuitively, always false). However, in place of the previous clause, we "delay" the contradiction, by propagating predicate R ⊥ till point (n, n), thanks to the conjunction of the "transport" clauses R ⊥ (x -1, y) ∧ ¬min(x) → R ⊥ (x, y) and R ⊥ (x, y -1) ∧ ¬min(y) → R ⊥ (x, y) and of the unique contradiction clause max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥ required by the normal form.

2. Processing the input. The idea is to make available the letters of the input word only on the sides x = 1 and y = 1 of the square {(x, y) ∈ [1, n] 2 }, this by carrying out their transport thanks to new "transport" predicates W x s and W y s , for s ∈ Σ, inductively defined by the following clauses:

initialization clauses: Q s (x) ∧ min(y) → W x s (x, y) and Q s (y) ∧ min(x) → W y s (x, y); transport clauses: W x s (x, y -1) ∧ ¬min(y) → W x s (x, y) and W y s (x -1, y) ∧ ¬min(x) → W y s (x, y).
By transitivity, these clauses imply clauses Q s (x) → W x s (x, y) and Q s (y) → W y s (x, y). In other words, the minimal model of the conjunction of those clauses that expands structure w satisfies equivalences ∀x∀y (W x s (x, y) ⇐⇒ Q s (x)) and ∀x∀y (W y s (x, y) ⇐⇒ Q s (y)). This justifies the replacement of the input atoms of form Q s (x-a) and Q s (y -b) by the respective atoms W x s (x-a, y) and W y s (x, y -b) in all the clauses, except in the initialization clauses.

3. Restriction of computation atoms to R(x -1, y), R(x, y -1), R(x, y). The idea is to introduce new "shift" predicates R x-a , R y-b and R x-a,y-b , for fixed integers a, b > 0 and R ∈ R. We define the predicate R x-a,y-b that intuitively satisfies the equivalence R x-a,y-b (x, y) ⇐⇒ R(x-a, y-b). 8Let us explain the method by an example. Assume we have initially the Horn clause

x > 3 ∧ y > 2 ∧ R(x -2, y -1) ∧ S(x -3, y -2) → T (x, y).
This clause is replaced by the clause

x > 3 ∧ y > 2 ∧ R x-2 (x, y -1) ∧ S x-2,y-2 (x -1, y) → T (x, y), for which the predicates R x-1 and R x-2 are defined by the clauses x > 1∧R(x-1, y) → R x-1 (x, y) and x > 2∧R x-1 (x-1, y) → R x-2 (x, y) which imply x > 2∧R(x- 2, y) → R x-2 (x,
y) and then x > 2∧y > 1∧R(x-2, y-1) → R x-2 (x, y-1), and the predicates S x-1 , S x-2 , S x-2,y-1 and S x-2,y-2 defined by the respective clauses:

x > 1 ∧ S(x -1, y) → S x-1 (x, y), x > 2 ∧ S x-1 (x -1, y) → S x-2 (x, y), x > 2 ∧ y > 1 ∧ S x-2 (x, y -1) → S x-2,
y-1 (x, y), and x > 2 ∧ y > 2 ∧ S x-2,y-1 (x, y -1) → S x-2,y-2 (x, y), which imply together the clause x > 2 ∧ y > 2∧S(x-2, y -2) → S x-2,y-2 (x, y) and then also x > 3∧y > 2∧S(x-3, y -2) → S x-2,y-2 (x-1, y).

Remark 10. Atoms on min and x are of the forms min(x -a) or ¬min(x -a), for a ≥ 0, or, equivalently, x ≤ a + 1 or x > a + 1. Besides, for each integer a ≥ 1, the atom max(x -a) is false. Therefore, one may consider that the only literals on x involving min or max are of the form min(x), ¬min(x), max(x), ¬max(x), x ≤ a, x > a, for an integer a > 1, and similarly, for y.

4. Elimination of atoms x > a, x ≤ a, y > a, y ≤ a. By recurrence on integer a ≥ 1, let us define the binary predicates R x>a (and, similarly, R x≤a , R y>a , R y≤a ) whose intuitive meaning is x > a (resp. x ≤ a, y > a, y ≤ a). The predicate R x>1 is defined by the clause ¬min(x) → R x>1 (x, y). For a > 1, let us define R x>a from R x>a-1 by the clause R x>a-1 (x -1, y) ∧ ¬min(x) → R x>a (x, y). By recurrence on integer a ≥ 1, these clauses imply x > a → R x>a (x, y). This justifies the replacement of the atoms x > a and x ≤ a, for a > 1, by R x>a (x, y) and R x≤a (x, y), respectively, and similarly for y in place of x.

After Step 4, the only literals involving min or max are (¬)min(x), (¬)max(x), (¬)min(y), (¬)max(y).

Processing of min and max.

To each literal η(x) of the form min(x), ¬min(x), max(x) or ¬max(x), associate the new binary predicate R η(x) defined by the conjunction of the initialization clause η(x) ∧ min(y) → R η(x) (x, y) and of the transport clause R η(x) (x, y -1) ∧ ¬min(y) → R η(x) (x, y). Do similarly for the literals η(y) ∈ {(¬)min(y), (¬)max(y)}. This justifies the replacement of each such literal η(x) (resp. η(y)) by the "equivalent" atom R η(x) (x, y) (resp. R η(y) (x, y)) in all the clauses, except in the above initialization clauses and in the contradiction clause or in case η(x) (resp. η(y)) is ¬min(x) (resp. ¬min(y)) and is joined to a hypothesis of the form R(x -1, y) (resp. R(x, y -1)).

Recapitulation. After

Step 5 each clause is of one of the following forms:

1. an initialization clause of one of the two forms:

• min(x) ∧ η(y) → R(x, y), with η(y) ∈ {(Q s (y)) s∈Σ , (¬)min(y), (¬)max(y)}; • min(y) ∧ η(x) → R(x, y), with η(x) ∈ {(Q s (x)) s∈Σ , (¬)min(x), (¬)max(x)}; 2. "the" contradiction clause max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥;
3. a computation clause of the form δ 1 (x, y) ∧ . . . ∧ δ r (x, y) → R(x, y), where each hypothesis δ i is of one of the three forms R(x, y), R(x -1, y) ∧ ¬min(x), R(x, y -1) ∧ ¬min(y). In fact, without loss of generality, we can assume that each computation clause is of one of the following forms:

(a) S(x -1, y) ∧ ¬min(x) → R(x, y); (b) S(x, y -1) ∧ ¬min(y) → R(x, y); (c) S(x, y) ∧ T (x, y) → R(x, y).
Justification of the assumption: "Decompose" each computation clause into clauses of forms (a,b,c) by introducing new intermediate predicates. For example, the computation clause

R 1 (x -1, y) ∧ ¬min(x) ∧ R 2 (x, y -1) ∧ ¬min(y) ∧ R 3 (x, y) → R 4 (x, y) is "equivalent" to the conjunction of the following clauses using new predicates R 5 , R 6 , R 7 : R 1 (x -1, y) ∧ ¬min(x) → R 5 (x, y); R 2 (x, y - 1) ∧ ¬min(y) → R 6 (x, y); R 5 (x, y) ∧ R 6 (x, y) → R 7 (x, y); R 7 (x, y) ∧ R 3 (x, y) → R 4 (x, y).
We now plan to fold the square domain

{(x, y) ∈ [1, n] 2 } along the diagonal x = y on the overdiagonal triangle T n = {(x, y) ∈ [1, n] 2 | x ≤ y}.
This requires to first define equality and inequalities.

6. Defining equality and inequalities. Let us jointly define the predicates R = and R pred of intuitive meaning R = (x, y) ⇐⇒ x = y and R pred (x, y) ⇐⇒ x -1 = y by the following clauses: min(x) ∧ min(y) → R = (x, y); ¬min(x) ∧ R = (x -1, y) → R pred (x, y); ¬min(y) ∧ R pred (x, y -1) → R = (x, y). Then define the predicate R < such that R < (x, y) ⇐⇒ x < y with the two clauses ¬min(y) ∧ R = (x, y -1) → R < (x, y) and ¬min(y) ∧ R < (x, y -1) → R < (x, y). Define similarly the predicate R ≤ such that R ≤ (x, y) ⇐⇒ x ≤ y with the two clauses min(x) ∧ min(y) → R ≤ (x, y) and ¬min(x) ∧ R < (x -1, y) → R ≤ (x, y).

For easy reading, we will freely write x = y, x < y and x ≤ y in place of the atoms R = (x, y), R < (x, y) and R ≤ (x, y), respectively. 

T n = {(x, y) ∈ [1, n] 2 |
x ≤ y} so that each point (y, x) such that x ≤ y is sent to its symmetrical point (x, y) ∈ T n . For that purpose, let us associate to each predicate R ∈ R a new (inverse) predicate R inv whose intuitive meaning is the following: for each x ≤ y, we have R inv (x, y) ⇐⇒ R(y, x). So, each clause C will be replaced by two clauses: the first one is the restriction of C to the triangle T n ; the second one is the folding on T n of the restriction of C to the subdiagonal triangle using predicates R inv . Finally, we will express that each R ∈ R coincides with its inverse R inv on the fold x = y.

Folding the initialization clauses: Each initialization clause of the form min(x) ∧ η(y) → R(x, y) (with η(y) ∈ {Q s (y)|s ∈ Σ} ∪ {(¬)min(y), (¬)max(y)}) applies to the line x = 1 which is included in the triangle T n and consequently it should be unchanged in the folding; in contrast, each initialization clause of the form min(y

) ∧ η(x) → R(x, y) (with η(x) ∈ {Q s (x)|s ∈ Σ} ∪ {(¬)min(x), (¬)max(x)}) is replaced by its folded version min(x) ∧ η(y) → R inv (x, y).
Folding the computation clauses: Let us describe how to fold the clauses (a) and (b) (to fold clauses (c) is easy):

• Folding clauses (a): A clause of the form S(x -1, y) ∧ ¬min(x) → R(x, y) is equivalent to the conjunction of clauses i) x ≤ y ∧ S(x -1, y) ∧ ¬min(x) → R(x, y) and ii) x > y ∧ S(x -1, y) ∧ ¬min(x) → R(x, y). Notice that clause (i) applies to the triangle T n since x ≤ y implies x -1 < y: therefore, clause (i) should be left unchanged. Clause (ii) is equivalent (by exchanging variables x and y) to the clause y > x ∧ S(y -1, x) ∧ ¬min(y) → R(y, x) whose folded (equivalent) form on T n is x < y ∧ S inv (x, y -1) ∧ ¬min(y) → R inv (x, y) since

x < y implies x ≤ y -1.

• Folding clauses (b): Similarly, a clause of the form S(x, y -1) ∧ ¬min(y) → R(x, y) is equivalent to the conjunction of clauses x < y ∧ S(x, y -1) ∧ ¬min(y) → R(x, y) and

x ≤ y ∧ S inv (x -1, y) ∧ ¬min(x) → R inv (x, y).
Folding the contradiction clause: Clearly, it is harmless to confuse the (contradiction) predicate R ⊥ and its inverse (R ⊥ ) inv ; consequently, the contradiction clause itself max(x)∧max(y)∧R ⊥ (x, y) → ⊥ is its own folded version.

The diagonal fold: Finally, for each R ∈ R, the following two clauses mean that R coincides with its inverse R inv on the diagonal:

x = y ∧ R(x, y) → R inv (x, y); x = y ∧ R inv (x, y) → R(x, y).
Recapitulation. By a careful examination of the set of clauses obtained after Steps 1-7, we can check that each of them is of one of the following forms:

1. an initialization clause of the form min(x) ∧ η(y) → R(x, y) with η(y) ∈ {Q s (y)|s ∈ Σ} ∪ {(¬)min(y), (¬)max(y)};

2. "the" contradiction clause max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥;

3. a computation clause of one of the following forms:

(a) x ≤ y ∧ S(x -1, y) ∧ ¬min(x) → R(x, y); (b) x < y ∧ S(x, y -1) ∧ ¬min(y) → R(x, y); (c) x ≤ y ∧ S(x, y) ∧ T (x, y) → R(x, y); (d) x = y ∧ S(x, y) → R(x, y).
8. Deleting max in the initialization clauses. The idea is to consider in parallel for each point (x, y)

the case where the hypothesis max(y) holds and the opposite case where the negation ¬max(y) holds. For that purpose, we duplicate each computation predicate R in two new predicates called R y ←max and R y ←¬max . Intuitively, the atom R y ←max (x, y) (resp. R y ←¬max (x, y)) expresses the implication max(y) → R(x, y) (resp. ¬max(y) → R(x, y)).

Transforming the initialization clauses: According to the desired semantics of R y ←max and R y ←¬max , each initialization clause of the form min(x) ∧ max(y) → R(x, y) (resp. min(x) ∧ ¬max(y) → R(x, y)) should be rewritten as min(x) → R y ←max (x, y) (resp. min(x) → R y ←¬max (x, y)). Similarly, each initialization clause of the form min(x) ∧ η(y) → R(x, y), for η(y) ∈ {Q s (y)|s ∈ Σ} ∪ {(¬)min(y)} should be replaced by the conjunction of the following two clauses: min(x) ∧ η(y) → R y ←max (x, y) and min(x) ∧ η(y) → R y ←¬max (x, y).

Transforming the computation clauses: We describe it for each above form (a-d).

• Each clause (a) x ≤ y ∧ S(x -1, y) ∧ ¬min(x) → R(x, y) is replaced by the "equivalent" conjunction of the following two clauses

x ≤ y ∧ S y ←max (x -1, y) ∧ ¬min(x) → R y ←max (x, y) and x ≤ y ∧ S y ←¬max (x -1, y) ∧ ¬min(x) → R y ←¬max (x, y). • Each clause (b) x < y ∧ S(x, y -1) ∧ ¬min(y) → R(x, y) is "equivalent" to x < y ∧ S y
←¬max (x, y -1) ∧ ¬min(y) → R(x, y) since the hypothesis ¬max(y -1) always holds. Consequently, clause (b) should be replaced by the "equivalent" conjunction of the following two clauses:

x < y ∧ S y ←¬max (x, y -1) ∧ ¬min(y) → R y ←max (x, y), and x < y ∧ S y ←¬max (x, y -1) ∧ ¬min(y) → R y ←¬max (x, y).

• Each clause (c) x ≤ y ∧ S(x, y) ∧ T (x, y) → R(x, y) is replaced by the "equivalent" conjunction of the following two clauses:

x ≤ y ∧ S y ←max (x, y) ∧ T y ←max (x, y) → R y ←max (x, y) and x ≤ y ∧ S y ←¬max (x, y) ∧ T y ←¬max (x, y) → R y ←¬max (x, y).
• Perform a similar substitution for each above clause (d).

Processing the contradiction clause: Obviously, the contradiction clause max(x)∧max(y)∧R ⊥ (x, y) → ⊥ is equivalent to the formula max(x) ∧ max(y) ∧ (max(y) → R ⊥ (x, y)) → ⊥ and should be rewritten as max(x) ∧ max(y) ∧ (R ⊥ ) y ←max (x, y) → ⊥, which is of the required form if the predicate (R ⊥ ) y ←max is renamed R ⊥ .

9. From initialization clauses to input clauses. The initialization clauses are now of the form min(x) → R(x, y) or min(x) ∧ η(y) → R(x, y), for η(y) ∈ {Q s (y)|s ∈ Σ} ∪ {(¬)min(y)}. By a case analysis, it is easy to transform each of these clauses into an equivalent conjunction of input clauses of the required (normalized) forms:

min(x) ∧ min(y) ∧ Q s (y) → R(x, y); min(x) ∧ ¬min(y) ∧ Q s (y) → R(x, y).
After Step 9, the formula obtained is of the claimed normal form, except that some computation clauses may have atoms R(x, y) as hypotheses. Our last step is to eliminate such hypotheses.

10. Elimination of atoms R(x, y) as hypotheses. This is the most technical step but the general ideas are rather simple. The first idea is to group together in each computation clause the hypotheses of the clause of the form R(x, y) and its conclusion. Accordingly, the formula can be rewritten in the form

Φ := ∃R∀x∀y   i C i (x, y) ∧ i∈[1,k] (α i (x, y) → θ i (x, y))  
where the C i 's are the input clauses and the contradiction clause, and each computation clause is written in the form α i (x, y) → θ i (x, y) where y) is a conjunction of formulas of the only forms R(x -1, y) ∧ ¬min(x), R(x, y -1) ∧ ¬min(y), but not R(x, y),

• α i (x,
• and θ i (x, y) is a Horn clause whose all atoms are of the form R(x, y).

The second idea is to "solve" the Horn clauses θ i (containing only atoms of the form R(x, y)) according to the input clauses and all the possible conjunctions of hypotheses α i that may be true. Notice the two following facts: the hypotheses of the input clauses are input literals and the conjuncts of the α i 's have the only forms R(x -1, y) ∧ ¬min(x) and R(x, y -1) ∧ ¬min(y). Roughly expressed, we will prove by induction on the sum values x + y ∈ [2, 2n] that the obtained formula Φ which is a conjunction of clauses (whose hypotheses no longer include any atom of the form R(x, y)) is equivalent to formula Φ.

We now give the transformation process in detail with its proof. Let us number R 1 , . . . , R m the computation predicates of R. To each subset J ⊆ [1, k] of the family of implications (α i (x, y) → θ i (x, y)) i∈ [1,k] let us associate the set

K J := {h ∈ [1, m] | i∈J θ i (x, y) → R h (x, y) is a tautology}.
Note that the notion of tautology used in the definition of K J is purely "propositional" because all the atoms involved are of the form R i (x, y), i.e., refer to the same pair of variables (x, y). Also, note that the function J → K J is monotonous: for J ⊆ J, we have

K J ⊆ K J because i∈J θ i (x, y) → R h (x, y) implies i∈J θ i (x, y) → R h (x, y).
Clearly, it is enough to prove the following claim: Claim 1. The formula Φ is equivalent to the normalized formula

Φ := ∃R∀x∀y   i C i (x, y) ∧ J⊆[1,k] h∈K J i∈J α i (x, y) → R h (x, y)   .
Notation. The formula between brackets can be rewritten

i C i (x, y) ∧ J⊆[1,k] i∈J α i (x, y) → h∈K J R h (x, y) .
Proof of the implication Φ ⇒ Φ . It is enough to prove the implication

  i∈[1,k] (α i (x, y) → θ i (x, y))   → i∈J α i (x, y) → h∈K J R h (x, y)
for all set J ⊆ [1, k] and all h ∈ K J . The implication to be proved can be equivalently written:

  i∈J α i (x, y) ∧ i∈[1,k] (α i (x, y) → θ i (x, y))   → h∈K J R h (x, y).
This implication is a straightforward consequence of the two following facts:

• The sub-formula between brackets above implies the conjunction i∈J θ i (x, y).

• As the implication i∈J θ i (x, y) → h∈K J R h (x, y) is a tautology (by definition of K J ), the implication to be proved is a tautology too.

The converse implication Φ ⇒ Φ is more difficult to prove. It uses a folklore property of propositional Horn formulas easy to prove: Lemma 3 (Horn property [START_REF] Kleine | Propositional logic -deduction and algorithms[END_REF]). Let F be a strict Horn formula of propositional calculus, that is a conjunction of clauses of the form p 1 ∧ . . . ∧ p k → p 0 where k ≥ 0 and the p i 's are propositional variables. Let F be the conjunction of propositional variables q such that the implication F → q is a tautology. F has the same minimal model9 as F .

Proof of the implication Φ ⇒ Φ. Let w be a model of Φ and let ( w , R) be the minimal model of the Horn formula

ϕ := ∀x∀y   i C i (x, y) ∧ J⊆[1,k] h∈K J i∈J α i (x, y) → R h (x, y)   .
It is enough to show that ( w , R) also satisfies the formula

ϕ := ∀x∀y   i C i (x, y) ∧ i∈[1,k] (α i (x, y) → θ i (x, y))  
As each α i is a conjunction of formulas of the form R(x -1, y) ∧ ¬min(x), or R(x, y -1) ∧ ¬min(y), all the computation atoms of the conjunctions α i are of the form R(x -1, y) (with also the conjunct ¬min(x)) or R(x, y -1) (with also the conjunct ¬min(y)) we make an induction on the domain

{(a, b) ∈ [1, n] 2 | a + b ≤ t}, for t ∈ [1, 2n].
More precisely, we are going to prove, by recurrence on the integer t ∈ [1, 2n], that the minimal model ( w , R) of ϕ satisfies the "relativized" formula ϕ t of the formula ϕ defined by

ϕ t := ∀x∀y   x + y ≤ t →   i C i (x, y) ∧ i∈[1,k] (α i (x, y) → θ i (x, y))    
As the hypothesis x + y ≤ 2n holds for all x, y in the domain [1, n], ϕ 2n is equivalent to ϕ on the structure ( w , R).

Basis case: (1) J ⊆ J a,b : then the conjunction i∈J α i (a, b) holds in ( w , R); hence, in ( w , R), the conjunction

For t = 1 the set {(a, b) ∈ [1, n] 2 | a + b ≤ t} is empty so that the "relativized" formula
h∈K J i∈J α i (a, b) → R h (a, b) is equivalent to h∈K J R h (a, b); (2) J \ J a,b = ∅: then the conjunction i∈J α i (a, b) is false in ( w , R); hence, the conjunction h∈K J ( i∈J α i (a, b) → R h (a, b)) holds in ( w , R).
From ( 1) and ( 2), we deduce that in ( w , R) the conjunction 

J⊆[1,k] h∈K J i∈J α i (a, b) → R h (a, b) is equivalent to the conjunction J⊆J a,b h∈K J R h (a, b), which can be simplified as h∈K J a,b R h (a, b) because J ⊆ J a,b implies K J ⊆ K J a
( w , R) |= i∈[1,k] (α i (a, b) → θ i (a, b))
and then ( w , R) |= ϕ t .

This concludes the inductive proof that ( w , R) |= ϕ t , for all t ∈ [1, 2n], and then w |= Φ.

This proves the implication Φ ⇒ Φ and completes the proof of Claim 1, hence the justification of

Step 10.

General case of Lemma 1. Steps 1-6 are easy to adapt in the general case where the initial formula may contain hypotheses of the form R(y -b, x -a). The new points are the following: Step 3 restricts the computation atoms to four forms: R(x, y), R(y, x), R(x -1, y) and R(x, y -1); the key point is the adaptation of Step 7 (folding the domain) so that it eliminates the atoms of the form R(y, x). Without loss of generality, assume that each computation clause is of one of the following forms:

(a) S(x -1, y) ∧ ¬min(x) → R(x, y);

(b) S(x, y -1) ∧ ¬min(y) → R(x, y); (c) S(x, y) ∧ T (x, y) → R(x, y); (d) S(y, x) → R(x, y).
Here again, this is obtained by "decomposing" each computation clause into an "equivalent" conjunction of clauses using new intermediate predicates. For instance, the computation clause R 1 (x -1, y) ∧ ¬min(x) ∧ R 2 (x, y -1) ∧ ¬min(y) ∧ R 3 (y, x) → R 4 (x, y) is "equivalent" to the conjunction of the following clauses using the new predicates R 5 , R 6 , R 7 , R 8 : R 1 (x -1, y) ∧ ¬min(x) → R 5 (x, y); R 2 (x, y -1) ∧ ¬min(y) → R 6 (x, y); R 5 (x, y) ∧ R 6 (x, y) → R 7 (x, y); R 3 (y, x) → R 8 (x, y); R 7 (x, y) ∧ R 8 (x, y) → R 4 (x, y).

The folding of clauses (a-c) is not modified. Let us describe how to fold the (new) clauses (d): S(y, x) → R(x, y). Obviously, such a clause is equivalent to the conjunction of the two clauses

(i) x ≤ y ∧ S(y, x) → R(x, y) and (ii) y ≤ x ∧ S(y, x) → R(x, y). The equivalent "folded" form of clause (i) is x ≤ y ∧S inv (x, y) → R(x, y). Clause (ii) is equivalent to the clause x ≤ y ∧ S(x, y) → R(y, x) whose equivalent "folded" form is x ≤ y ∧ S(x, y) → R inv (x, y).
Finally, Steps 8-10 are not modified. So the equality pred-ESO-HORN = normal-pred-ESO-HORN of Lemma 1 is proved.

Normalizing predecessor Horn logic with diagonal input-output

The purpose of this section is the normalization of the predecessor logic with diagonal inputoutput (second part of Lemma 1). It consists in transforming each formula Φ ∈ pred-dio-ESO-HORN into a formula where each clause is of one of the following forms:

• input clause of the form, for s ∈ Σ and R ∈ R:

x = y ∧ min(x) ∧ Q s (x) → R(x, y), or x = y ∧ ¬min(x) ∧ Q s (x) → R(x, y); • the contradiction clause, for a fixed R ⊥ ∈ R: max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥;
• computation clause of the form δ 1 ∧ . . . ∧ δ r → R(x, y), for R ∈ R, where each hypothesis δ i is a conjunction of the form S(x -1, y) ∧ ¬min(x) or S(x, y -1) ∧ ¬min(y), for S ∈ R.

To this end, we adapt the steps of the previous normalization.

Step 1 is not modified. In Step 2, the initialization clauses are now x = y ∧ Q s (x) → W x s (x, y) and x = y ∧ Q s (y) → W y s (x, y) whereas the transport clauses are not modified. Steps 3 to 5 and the recapitulation after Step 5 are not modified either, except that now each initialization clause is of one of the three forms:

1) x = y ∧ Q s (x) → R(x, y);
2) min(x) ∧ η(y) → R(x, y), with η(y) ∈ {(¬)min(y), (¬)max(y)};

3) min(y) ∧ η(x) → R(x, y), with η(x) ∈ {(¬)min(x), (¬)max(x)}.

Steps 6 and 7 (folding the domain) and the recapitulation after Step 7 are not modified either, except that now each initialization clause has one of the only forms 1 and 2 above.

Step 8 (deleting max in the initialization clauses) can be easily adapted according to those initialization clauses whose forms after Step 8 are now restricted to

1) x = y ∧ Q s (x) → R(x, y); 2) min(x) ∧ min(y) → R(x, y); 3) min(x) ∧ ¬min(y) → R(x, y).
Clause 2 can be replaced by the equivalent clause 2') x = y ∧ min(x) → R(x, y).

Step 9 (from initialization clauses to input clauses) is modified as follows. Define the predicates R min(x) , R min(y) and R ¬min(y) by the initialization clauses 4) x = y ∧ min(x) → R min(x) (x, y) and 5) x = y ∧ min(x) → R min(y) (x, y), and the computation clauses ¬min(y) ∧ R min(x) (x, y -1) → R min(x) (x, y), ¬min(y) ∧ R min(y) (x, y -1) → R ¬min(y) (x, y), and ¬min(y) ∧ R ¬min(y) (x, y -1) → R ¬min(y) (x, y). This allows to replace the initialization clause 3 by the computation clause R min(x) (x, y) ∧ R ¬min(y) (x, y) → R(x, y). After those transformations all the initialization clauses are of the form x = y ∧ Q s (x) → R(x, y) (clause 1 above) or x = y ∧ min(x) → R(x, y) (clauses 2', 4 and 5 above). By a case analysis, it is easy to transform each of these clauses into an equivalent conjunction of input clauses of the required (normalized) forms:

x = y ∧ min(x) ∧ Q s (x) → R(x, y), or x = y ∧ ¬min(x) ∧ Q s (x) → R(x, y).
Step 10 (Elimination of atoms R(x, y) as hypotheses) and the end of the proof are the same as those for pred-ESO-HORN. This achieves the proof of the equality pred-dio-ESO-HORN = normal-pred-dio-ESO-HORN and of Lemma 1.

Normalizing inclusion Horn logic

Now, we present the normalization of inclusion logic (Lemma 2), i.e., we show how to transform each formula Φ ∈ incl-ESO-HORN into a formula of normal-incl-ESO-HORN where each clause is of one of the following forms:

• input clause of the form x = y ∧ Q s (x) → R(x, y), for s ∈ Σ and R ∈ R; • the contradiction clause, for a fixed R ⊥ ∈ R, min(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥;
• computation clause of the form x < y ∧ δ 1 ∧ . . . ∧ δ r → R(x, y), where R ∈ R and where each hypothesis δ i is a computation atom of either form S(x + 1, y) or S(x, y -1), for S ∈ R.

It divides into seven steps.

Processing the contradiction clauses.

Here again, we delay the contradiction and propagate the predicate R ⊥ till the output site (1, n) by the conjunction of the computation clauses

x < y ∧ R ⊥ (x + 1, y) → R ⊥ (x, y) and x < y ∧ R ⊥ (x, y -1) → R ⊥ (x, y) with the unique contradiction clause min(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥.
2. Processing the input. We make available the letters of the input word only on the diagonal , for a ∈ Z, inductively defined and whose intuitive meaning is:

W x+a s (x, y) ⇐⇒ Q s (x + a) ∧ 1 ≤ x + a ≤ n (resp. W y+a s (x, y) ⇐⇒ Q s (y + a) ∧ 1 ≤ y + a ≤ n).
They are inductively defined by the following clauses:

Initialization clauses (on the diagonal): for s ∈ Σ and a ≥ 1, Note that after Step 2 the atoms on input predicates Q s occur always jointly with x = y and in the only three forms Q s (x), Q s (x -a) (jointly with x > a), or Q s (y + a) (jointly with y ≤ n -a), for a ≥ 1 (see the initialization clauses above).

x = y ∧ Q s (x) → W x s (x, y); x = y ∧ Q s (x) → W y s (x, y); x = y ∧ Q s (x -a) ∧ x > a → W x-a s (x, y), x = y ∧ Q s (x -a) ∧ x > a → W y-a s (x, y), x = y ∧ Q s (y + a) ∧ y ≤ n -a → W x+a s (x, y), x = y ∧ Q s (y + a) ∧ y ≤ n -a → W y+a s (x,
3. Processing the min/max literals. One may consider that the only literals on x involving min or max are of the forms x = a, x > a, for an integer a ≥ 1, or x = n -a, x < n -a, for a ≥ 0, and similarly for y. By a similar process as we have done for the Q s , we can manage to make available the information about min and max, i.e., about extrema, on the diagonal x = y only and in one of the following forms only: x = a or x > a, for some a ≥ 1, or y = n -b or y < n -b, for some b ≥ 0. We introduce for that new computation predicates defined inductively: R x=a , R x>a , for a ≥ 1, and R x=n-a , R x<n-a , for a ≥ 0, and similarly for y, with obvious intuitive meaning: for instance, R x>a (x, y) ⇐⇒ x > a. For example, define the predicate R x=a (resp. R y=a ) by the two clauses x = y ∧ x = a → R x=a (x, y) and x < y ∧ R x=a (x, y -1) → R x=a (x, y) (resp. x = y ∧ x = a → R y=a (x, y) and x < y ∧ R y=a (x + 1, y) → R y=a (x, y)). As another example, define R x<n-a by the clauses x = y ∧ y < n -a → R x<n-a (x, y) and x < y ∧ R x<n-a (x, y -1) → R x<n-a (x, y).

This allows to replace the "extremum" atoms x = a, x > a, x = n-a, x < n-a by the respective computation atoms R x=a (x, y), R x>a (x, y), R x=n-a (x, y), R x<n-a (x, y), in all the clauses, except in the initialization clauses and in the contradiction clause. And similarly for y. The important fact is that after Step 3, the predicate min (resp. max) only occurs in the form x = a or x > a (resp. in the form y = n -a or y < n -a) and always occurs jointly with x = y, i.e., is only used on the diagonal.

4. Restriction of computation atoms to R(x + 1, y), R(x, y -1), and R(x, y). This is a variant of the similar step in the normalization of predecessor logics (Step 3). We introduce new "shift" predicates R x+a , R y-b and R x+a,y-b , for fixed integers a, b > 0 and R ∈ R, with easy interpretation and definitions. In particular, the intuitive interpretation of the predicate R x+a,y-b is: R x+a,y-b (x, y) ⇐⇒ x + a ≤ y -b ∧ R(x + a, y -b). As an example, the "normalized" clause x < y ∧ S x+2,y-2 (x + 1, y) → S x+3,y-2 (x, y) defines the predicate S x+3,y-2 from the predicate S x+2,y-2 .

Recapitulation. After Step 4, one may consider that each clause is of one of the following forms (1-3):

1. an initialization clause x = y ∧ δ → R(x, y), where δ is

• either an input atom Q s (x),
• or an equality x = a, for a fixed a ≥ 1, or y = n -b, for a fixed b ≥ 0, (c) x y ∧ S(x, y) ∧ T (x, y) → R(x, y), where ∈ {<, =}; 3. "the" contradiction clause min(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥, which can be rephrased

• or a conjunction Q s (x -a) ∧ x > a, or Q s (y + b) ∧ y ≤ n -b, for a, b ≥ 1;
x = 1 ∧ y = n ∧ R ⊥ (x, y) → ⊥.
Justification for initialization clauses: By a case analysis, one easily obtains the above three forms of initialization clauses.

Justification for computation clauses: Here again, "break down" each computation clause into clauses of forms (a,b,c) above by introducing new intermediate predicates. For example, the computa- y) is "equivalent" to the conjunction of the following clauses that use the new predicates R 4 , R 5 :

tion clause x < y ∧ R 1 (x + 1, y) ∧ R 2 (x, y -1) → R 3 (x,
x < y ∧ R 1 (x + 1, y) → R 4 (x, y); x < y ∧ R 2 (x, y -1) → R 5 (x, y); x < y ∧ R 4 (x, y) ∧ R 5 (x, y) → R 3 (x, y).
Steps 5 and 6 that follow rest on a generalization of the method used in Step 8 of the normalization of predecessor logics above (eliminating max in the initialization clauses). Roughly expressed, for any computation predicate R ∈ R and any hypothesis η, we introduce a new predicate R η ← whose intuitive meaning is: R η ← (x, y) ⇐⇒ (η → R(x, y)). 

Elimination of equalities

Transforming the initialization clauses:

Each initialization clause x = y ∧ x = a → R(x, y) (resp. x = y ∧ y = n -b → R(x, y)) is transformed into the clause x = y → R x=a ← (x, y) (resp. x = y → R y=n-b ← (x, y)).
∧ S η ← (x, y) ∧ T θ ← (x, y) → R η∪θ ← (x, y). For example, x y ∧ S x=a ← (x, y) ∧ T y=n-b ← (x, y) → R x=a,y=n-b ← (x, y) and x y ∧ S y=n-b ← (x, y) ∧ T x=a,y=n-b ← (x, y) → R x=a,y=n-b ← (x, y).

Processing the contradiction clause:

The contradiction clause is equivalent to x = 1 ∧ y = n ∧ (x = 1 ∧ y = n → R ⊥ (x, y)) → ⊥. Consequently, it should be replaced by the clause x = 1 ∧ y = n ∧ (R ⊥ ) x=1,y=n ← (x, y) → ⊥, which is the contradiction clause required if the predicate (R ⊥ ) x=1,y=n ← is renamed R ⊥ .
6. Elimination of atoms Q s (x -a), Q s (y + b), for a, b > 0. This step is quite similar to Step 5. For each R ∈ R, we introduce new predicates: R x-a1,...,x-a l ,y+b1,...,y+bm ←s1,...,s l ,t1,...,tm with l, m ≥ 0, the s i , t j ∈ Σ, 0 ≤ a 1 < a 2 . . . < a l ≤ A and 0 ≤ b 1 < b 2 . . . < b m ≤ B, where A (resp. B) is the maximal a in atoms Q s (x -a) (resp. maximal b in atoms Q s (y + b)). Their intuitive meaning is as follows: R x-a1,...,x-a l ,y+b1,...,y+bm ←s1,...,s l ,t1,...,tm

(x, y) ⇐⇒ [ [ i=1,...,l (Q si (x -a i ) ∧ x > a i ) ∧ j=1,...,m (Q tj (y + b j ) ∧ y ≤ n -b j )] → R(x, y) ].
Transforming the initialization clauses:

Each initialization clause x = y ∧ Q s (x -a) ∧ x > a → R(x, y), a ≥ 1, (resp. x = y ∧ Q s (y + b) ∧ y ≤ n -b → R(x, y), b ≥ 1) is trans- formed into the clause x = y ∧ R x-a ←,s (x, y) → R(x, y) (resp. x = y ∧ R y+b ←,s (x, y) → R(x, y)).
Transforming the computation clauses: To each clause (a) x < y ∧ S(x + 1, y) → R(x, y) add the following clauses justified by the identity x + 1 -a i = x -(a i -1):

x < y ∧ S x-a1,...,x-a l ,y+b1,...,y+bm ←s1,...,s l ,t1,...,tm

(x + 1, y) → R
x-(a1-1),...,x-(a l -1),y+b1,...,y+bm ←s1,...,s l ,t1,...,tm (x, y).

Similarly, to each clause (b) x < y ∧ S(x, y -1) → R(x, y) add the clauses

x < y ∧ S x-a1,...,x-a l ,y+b1,...,y+bm ←s1,...,s l ,t1,...,tm (x, y -1) → R

x-a1,...,x-a l ,y+(b1-1),...,y+(bm-1) ←s1,...,s l ,t1,...,tm (x, y).

Moreover, add for a 1 = 0 and each s 1 ∈ Σ, the following "verification" clauses, which intuitively delete the hypothesis Q s1 (x) after verifying that it is satisfied because of the equivalence W x s1 (x, y) ⇐⇒ Q s1 (x):

x < y ∧ S x,x-a2,...,x-a l ,y+b1,...,y+bm ←s1,s2,...,s l ,t1,...,tm (x, y) ∧ W x s1 (x, y) → R x-a2,...,x-a l ,y+b1,...,y+bm ←s2,...,s l ,t1,...,tm (x, y).

Similarly, add for b 1 = 0 and each t 1 ∈ Σ, the "verification" clauses (justified by W y t1 (x, y) ⇐⇒ Q t1 (y)):

x < y ∧ S x-a1,...,x-a l ,y,y+b2,...,y+bm ←s1,...,s l ,t1,t2,...,tm (x, y) ∧ W y t1 (x, y) → R x-a1,...,x-a l ,y+b2,...,y+bm ←s1,...,s l ,t2...,tm (x, y).

For each clause (c) x y ∧ S(x, y) ∧ T (x, y) → R(x, y), where ∈ {<, =}, add similar clauses that cumulate the hypotheses provided they are compatible: for example, the clause

x y ∧ S x-1,x-3,y+2 s1,s2,t1 (x, y) ∧ T x-1,y+2,y+4 s1,t1,t2 (x, y) → R x-1,x-3,y+2,y+4 s1,s2,t1,t2 (x, y). 
Recapitulation. After Step 6, all the initialization clauses are of the form x = y ∧ Q s (x) → R(x, y) as required 10 .

Elimination of atoms R(x, y) as hypotheses. This step is absolutely similar to the corresponding

Step 10 of normalization of predecessor logics. This completes the proof of the equality incl-ESO-HORN = normal-incl-ESO-HORN, i.e., Lemma 2.

Extending our logics with negation and normalizing them

In this section, we will extend our logics by allowing a limited use of negation. The main interest of this extension is to make easier the natural expression of problems within the logics without changing the complexity classes involved. More precisely, we now allow the negations of computation atoms ¬α as hypotheses of the clauses provided α is not in the form R(x, y) nor R(y, x). We will see that such an extension does not increase the computation power (complexity) of the logics because it does not modify the nature of their inductive process.

Let us give the precise definitions of our formulas with negation called inductive formulas since they are no longer Horn formulas.

Definition 7 (predecessor logics).

A predecessor inductive formula (resp. predecessor inductive formula with diagonal input-output) is a formula of the form Φ = ∃R∀x∀yψ(x, y) where R is a set of binary predicates called computation predicates and ψ is a conjunction of clauses on the variables x, y, of signature S Σ ∪ R (resp. S Σ ∪ R ∪ {=}), of the form δ 1 ∧ . . . ∧ δ r → δ 0 where the conclusion δ 0 is either a computation atom R(x, y) with R ∈ R, or ⊥, and each hypothesis δ i is 1. either an input literal (resp. input conjunction) of one of the forms:

• Q s (x -a), Q s (y -a) (resp. Q s (x -a) ∧ x = y), for s ∈ Σ and a ≥ 0,
• (¬)U (x -a) or (¬)U (y -a), for U ∈ {min, max} and a ≥ 0, 2. or a computation literal of the form S(x, y), S(y, x), (¬)S(x -a, y -b) or (¬)S(y -b, x -a), for S ∈ R and a, b ≥ 0 such that a + b > 0.

Let pred-ESO-IND (resp. pred-dio-ESO-IND) denote the class of predecessor inductive formulas (resp. predecessor inductive formulas with diagonal input-output) and, also, the class of languages they define.

Definition 8 (inclusion logic

). An inclusion inductive formula is a formula of the form Φ = ∃R∀x∀yψ(x, y) where R is a set of binary predicates called computation predicates and ψ is a conjunction of clauses of signature S Σ ∪ R ∪ {=, ≤, <}, of the form x ≤ y ∧ δ 1 ∧ . . . ∧ δ r → δ 0 where the conclusion δ 0 is either a computation atom R(x, y) with R ∈ R, or ⊥, and each hypothesis δ i is 1. either an input literal of the form (¬)U (x+a) or (¬)U (y+a), for a ∈ Z and U ∈ {(Q s ) s∈Σ , min, max}, Let incl-ESO-IND denote the class of inclusion inductive formulas and, also, the class of languages they define. Here again, it is convenient to normalize the logics.

Normalizing logics with negation Lemma 4 (normalization of predecessor logics). Each formula

Φ ∈ pred-ESO-IND (resp. Φ ∈ pred-dio-ESO-IND) is equivalent to a formula Φ ∈ pred-ESO-IND (resp. Φ ∈ pred-dio-ESO-IND)
where each clause is of one of the following forms:

• an input clause of the form

min(x) ∧ min(y) ∧ Q s (y) → R(x, y), or min(x) ∧ ¬min(y) ∧ Q s (y) → R(x, y) (resp. x = y ∧ min(x) ∧ Q s (x) → R(x, y), or x = y ∧ ¬min(x) ∧ Q s (x) → R(x, y)), for s ∈ Σ and R ∈ R;
• the contradiction clause max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥, for a fixed R ⊥ ∈ R;

• a computation clause of the form δ 1 ∧ . . . ∧ δ r → R(x, y), for R ∈ R, where each hypothesis δ i is a conjunction of the form (¬)S(x -1, y) ∧ ¬min(x) or (¬)S(x, y -1) ∧ ¬min(y), for S ∈ R.

Let normal-pred-ESO-IND (resp. normal-pred-dio-ESO-IND) denote the class of formulas (languages) so defined.

Lemma 5 (normalization of inclusion logic). Each formula

Φ ∈ incl-ESO-IND is equivalent to a formula Φ ∈ incl-ESO-IND
where each clause is of one of the following forms:

• an input clause of the form x = y ∧ Q s (x) → R(x, y), for s ∈ Σ and R ∈ R; • the contradiction clause, for a fixed R ⊥ ∈ R, min(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥;
• a computation clause of the form x < y ∧ δ 1 ∧ . . . ∧ δ r → R(x, y), where R ∈ R and each hypothesis δ i is a computation atom of either forms (¬)S(x + 1, y) or (¬)S(x, y -1), for S ∈ R.

Let normal-incl-ESO-IND denote the class of formulas (languages) so defined.

Proof of Lemma 4: Normalizing predecessor logics with negation

The transformation still divides into the same 10 steps of the normalization of predecessor Horn logics (proof of Lemma 1). Steps 1-2, 4-6 and 9-10 are exactly the same or can be trivially adapted. Let us explain how to adapt Steps 3, 7 and 8 for formulas in pred-ESO-HORN (the case pred-dio-ESO-HORN is similar).

Step 3: Restriction of the computation literals to (¬)R(x -1, y), (¬)R(x, y -1) and R(x, y). In addition to the "shift" predicates R x-a , R y-b , and R x-a,y-b , we define "shift negative" computation predicates of the forms R ¬,x-a , R ¬,y-b , R ¬,x-a,y-b , for fixed integers a, b > 0, with intuitive meaning: R ¬,x-a (x, y) ⇐⇒ ¬R(x -a, y); R ¬,y-b (x, y) ⇐⇒ ¬R(x, y -b); R ¬,x-a,y-b (x, y) ⇐⇒ ¬R(x -a, y -b). Let us describe the transformation on an example. The computation clause

y > 2 ∧ x > 3 ∧ S(x, y -2) ∧ ¬T (x -3, y -1) → R(x, y) (1) 
is transformed into the clause without negation

y > 2 ∧ x > 3 ∧ S y-1 (x, y -1) ∧ T ¬,x-2,y-1 (x -1, y) → R(x, y). (2) 
The predicate S y-1 is defined by the implication y > 1 ∧ S(x, y -1) → S y-1 (x, y) which implies

y > 2 ∧ S(x, y -2) → S y-1 (x, y -1). ( 3 
)
The predicates T ¬,x-1 , T ¬,x-2 and T ¬,x-2,y-1 are defined successively by the implications

x > 1 ∧ ¬T (x -1, y) → T ¬,x-1 (x, y), x > 2 ∧ T ¬,x-1 (x -1, y) → T ¬,x-2 (x, y), and x > 2 ∧ y > 1 ∧ T ¬,x-2 (x, y -1) → T ¬,x-2,y-1 (x, y), which imply by transitivity x > 2 ∧ y > 1 ∧ ¬T (x -2, y -1) → T ¬,x-2,y-1 (x, y) and then x > 3 ∧ y > 1 ∧ ¬T (x -3, y -1) → T ¬,x-2,y-1 (x -1, y). ( 4 
)
Justification: Since the clauses defining the "shift" predicates S y-1 , T ¬,x-1 , T ¬,x-2 and T ¬,x-2,y-1 imply the clauses 3 and 4, and since the conjunction of the clauses 3, 4 and 2 implies clause 1 by transitivity, the conjunction of clause 2 with the clauses defining the "shift" predicates also implies clause 1 as required. Besides, one observes that after the transformation, all the clauses obtained, which in our example are clause 2 and the clauses defining the "shift" predicates, are of the forms required (¬)R(x -1, y), (¬)R(x, y -1), and R(x, y).

Moreover, note that after Step 3 the only clauses involving negation are of the forms x > 1 ∧ ¬S(x -1, y) → R(x, y) or y > 1 ∧ ¬S(x, y -1) → R(x, y).

Recapitulation. We can assume that after Steps 1-6 each clause is of one of the following forms: (c) S(x, y) ∧ T (x, y) → R(x, y).

Step 7: Folding the domain. Recall briefly this transformation by adding the slight extensions due to the negation of hypotheses. Folding the computation clauses:

• Clause (a) (¬)S(x -1, y) ∧ ¬min(x) → R(x, y) is replaced by the equivalent conjunction of the clause x ≤ y ∧ (¬)S(x -1, y) ∧ ¬min(x) → R(x, y) with the folded clause x < y ∧ (¬)S inv (x, y -1) ∧ ¬min(y) → R inv (x, y).

• Clause (b) (¬)S(x, y -1) ∧ ¬min(y) → R(x, y) is replaced by the equivalent conjunction of the clause x < y ∧ (¬)S(x, y -1) ∧ ¬min(y) → R(x, y) with the folded clause x ≤ y ∧ (¬)S inv (x -1, y) ∧ ¬min(x) → R inv (x, y).

Folding the contradiction clause: The clause max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥ is not modified.

The diagonal fold:

Add for each R ∈ R the clauses x = y ∧ R(x, y) → R inv (x, y) and x = y ∧ R inv (x, y) → R(x, y).
Recapitulation. After Steps 1-7, each clause is of one of the following forms:

1. an initialization clause of the form min(x) ∧ η(y) → R(x, y) with η(y) ∈ {Q s (y)|s ∈ Σ} ∪ {(¬)min(y), (¬)max(y)};

2. "the" contradiction clause max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥;

3. a computation clause of one of the following forms:

(a) x ≤ y ∧ (¬)S(x -1, y) ∧ ¬min(x) → R(x, y);

(b) x < y ∧ (¬)S(x, y -1) ∧ ¬min(y) → R(x, y);

(c) x ≤ y ∧ S(x, y) ∧ T (x, y) → R(x, y);

(d) x = y ∧ S(x, y) → R(x, y).
Step 8: Deleting max in the initialization clauses. It is sufficient to describe the transformation of the clauses that contain a negation (the transformation of the other clauses is not modified). First, note that any clause of the form

(a) x ≤ y ∧ ¬S(x -1, y) ∧ ¬min(x) → R(x, y)
is equivalent to the conjunction of the two following clauses:

• x ≤ y ∧ max(y) ∧ ¬S(x -1, y) ∧ ¬min(x) → (max(y) → R(x, y
)), and

• x ≤ y ∧ ¬max(y) ∧ ¬S(x -1, y) ∧ ¬min(x) → (¬max(y) → R(x, y)), which are equivalent to 1) x ≤ y ∧ ¬(max(y) → S(x -1, y)) ∧ ¬min(x) → (max(y) → R(x, y)), and 
2) x ≤ y ∧ ¬(¬max(y) → S(x -1, y)) ∧ ¬min(x) → (¬max(y) → R(x, y)), respectively.
Using the equivalence S y ←max (x, y) ⇐⇒ (max(y) → S(x, y)) and the similar equivalences for R y ←max , S y ←¬max and R y ←¬max we can transform clauses 1 and 2 into the "equivalent" clauses 1') x ≤ y ∧ ¬S y ←max (x -1, y) ∧ ¬min(x) → R y ←max (x, y), and 2') x ≤ y ∧ ¬S y ←¬max (x -1, y) ∧ ¬min(x) → R y ←¬max (x, y), respectively.

This justifies to replace clause (a) above by the conjunctions of clauses (1') and (2').

Similarly, any clause (b) x < y∧¬S(x, y-1)∧¬min(y) → R(x, y) is equivalent to x < y∧¬max(y-1) ∧ ¬S(x, y -1) ∧ ¬min(y) → R(x, y) and therefore to x < y ∧ ¬S y ←¬max (x, y -1) ∧ ¬min(y) → R(x, y). This justifies the replacement of clause (b) by the conjunction of clauses x < y ∧ ¬S y ←¬max (x, y -1) ∧ ¬min(y) → R y ←max (x, y) and x < y ∧ ¬S y ←¬max (x, y -1) ∧ ¬min(y) → R y ←¬max (x, y).

This concludes the proof of Lemma 4.

Proof of Lemma 5: Normalizing inclusion logic with negation

It is a variant of the seven steps of the normalization of inclusion Horn formulas (see the proof of Lemma 2). Steps 1-3 are not modified.

Step 4: Restriction of computation atoms to (¬)R(x + 1, y), (¬)R(x, y -1), and R(x, y). As this is a straightforward variant of the similar step (Step 3) of the normalization of inductive predecessor logics (proof of Lemma 4 above) we let the reader complete the details.

Recapitulation. After Step 4, one may consider that each clause is of one of the following forms (1-3):

1. an initialization clause x = y ∧ δ → R(x, y), where δ is

• either an input atom Q s (x),
• or an equality x = a, for a fixed a ≥ 1, or y = n -b, for a fixed b ≥ 0,

• or a conjunction Q s (x -a) ∧ x > a, or Q s (y + b) ∧ y ≤ n -b, for a, b ≥ 1;
2. a computation clause of one of the forms (a,b,c):

(a) x < y ∧ (¬)S(x + 1, y) → R(x, y); (b) x < y ∧ (¬)S(x, y -1) → R(x, y); (c) x y ∧ S(x, y) ∧ T (x, y) → R(x, y), where ∈ {<, =}; 3. "the" contradiction clause x = 1 ∧ y = n ∧ R ⊥ (x, y) → ⊥.
Steps 5 and 6 are deeply modified. They use the following notions. Let A (resp. B) be the maximum of integers a (resp. b) that occurs in equalities x = a (resp. y = n -b) and conjunctions

Q s (x -a) ∧ x > a (resp. Q s (y + b) ∧ y ≤ n -b) of the initialization clauses. We call an x-description any conjunction of the form x = a ∧ a-1 i=1 Q si (x -i), for a ∈ [1, A] and (s 1 , . . . , s a ) ∈ Σ a , or x > A ∧ A i=1 Q si (x -i), for (s 1 , . . . , s A ) ∈ Σ A . The first form is called an x-equal-description.
The second form is called an x-sup-description. Similarly, a y-description is any conjunction of the form y

= n -b ∧ b j=1 Q tj (y + j), for b ∈ [0, B -1] and (t 1 , . . . , t b ) ∈ Σ b (y-equal-description), or y ≤ n -B ∧ B j=1 Q tj (y + j), for (t 1 , . . . , t B ) ∈ Σ B (y-inf-description)
. Let H denote the set of x-descriptions and Θ the set of y-descriptions. Notice as special cases the x-description x = 1 and the y-description y = n. Here are the key conditions satisfied by x-descriptions and y-descriptions:

• x = a (resp. Q s (x -a) ∧ x > a), for a ∈ [1, A], is equivalent to the disjunction of the set H x=a (resp. H x-a s ) of x-descriptions that contain x = a (resp. Q s (x -a)) as a conjunct; • similarly, y = n -b, for b ∈ [0, B] (resp. Q t (y + b) ∧ y ≤ n -b, for b ∈ [1, B]
), is equivalent to the disjunction of the set Θ y=n-b (resp. Θ y+b t ) of y-descriptions that contain y = n -b (resp. Q t (y + b)) as a conjunct;

• the x-descriptions (resp. y-descriptions) cover all possible cases, i.e., the disjunctions η∈H η and θ∈Θ θ are tautologies.

Step 5: Processing the initialization clauses.. Replace each initialization clause of the form

x = y ∧ δ → R(x, y) where δ is x = a (resp. δ is Q s (x -a) ∧ x > a) by the equivalent conjunction of clauses x = y ∧ η ∧ θ → R(x, y) where η ∈ H x=a (resp. η ∈ H x-a s
) and θ ∈ Θ. Similarly, replace each initialization clause of the form

x = y ∧ δ → R(x, y) where δ is y = n -b (resp. δ is y ≤ n -b ∧ Q t (y + b)) by the equivalent conjunction of clauses x = y ∧ η ∧ θ → R(x, y) where η ∈ H and θ ∈ Θ y=n-b (resp. θ ∈ Θ y+b t ). Notice that each initialization clause is now of the form x = y ∧ Q s (x) → R(x, y) or x = y ∧ η ∧ θ → R(x, y) where η ∈ H and θ ∈ Θ.
Step 6: Processing the clauses with conditional hypotheses. Let us introduce the new computation predicates R η,θ ← , for each R ∈ R, each x-description η and each y-description θ, with the following intuitive meaning: R η,θ ← (x, y) ⇐⇒ (η ∧ θ → R(x, y)). We now transform all the clauses by using the predicates R η,θ ← instead of the initial computation predicates R.

Transforming the initialization clauses: Replace each clause x = y∧Q s (x) → R(x, y) by the "equivalent" conjunction of clauses (η,θ)∈H×Θ (x = y ∧ Q s (x) → R η,θ ← (x, y)), and replace each clause of the form

x = y ∧ η ∧ θ → R(x, y) which is "equivalent" to the clause x = y → R η,θ ← (x, y) by the conjunction of clauses s∈Σ (x = y ∧ Q s (x) → R η,θ ← (x, y)).
Transforming the computation clauses: Let us consider successively the clauses of forms (a), (b) (with or without negation) and (c).

Transforming clauses x < y ∧ ¬S(x + 1, y) → R(x, y):

The transformation rests on the three following obvious facts:

• ¬S(x + 1, y) is equivalent to η∈H,θ∈Θ (η(x + 1) ∧ θ(y) ∧ ¬S(x + 1, y));

• η(x + 1) ∧ θ(y) ∧ ¬S(x + 1, y) is equivalent to ¬(η(x + 1) ∧ θ(y) → S(x + 1, y)), that is ¬S η,θ ← (x + 1, y); • R(x, y) is equivalent to η∈H,θ∈Θ (η(x) ∧ θ(y) → R(x, y)), that is η∈H,θ∈Θ R η,θ
← (x, y). These facts justify the replacement of the clause x < y ∧ ¬S(x + 1, y) → R(x, y) by the "equivalent" conjunction of clauses x < y ∧ ¬S η,θ ← (x + 1, y) → R η ,θ ← (x, y), for η, η ∈ H and θ, θ ∈ Θ.

Transforming clauses x < y ∧ S(x + 1, y) → R(x, y): Let η x=a,x-1,...,x-(a-1) s1,...,sa-1

(x) (resp. η x>A,x-1,...,x-A s1,...,s A (x)) denote the x-description x = a∧ a-1 i=1 Q si (x- i), for a ∈ [1, A] and (s 1 , . . . , s a-1 ) ∈ Σ a (resp. x > A ∧ A i=1 Q si (x -i), for (s 1 , . . . , s A ) ∈ Σ A ).
The following equivalences which are easy to check11 will be useful to justify the transformation of clauses (a):

η x=a,x-1,...,x-(a-1) s1,...,sa-1 (x + 1) ⇐⇒ Q s1 (x) ∧ η x=a-1,x-1,...,x-(a-2) s2,...,sa-1 (x) (5) 
η x>A,x-1,...,x-A s1,...,s A (x + 1) ⇐⇒ s∈Σ Q s1 (x) ∧ η x>A,x-1,...,x-A s2,...,s A ,s (x) (6) 
Notation. For any x-equal-description η := η x=a,x-1,...,x-(a-1) s1,...,sa-1

, let η denote the x-equaldescription η x=a-1,x-1,...,x-(a-2) s2,...,sa-1 involved in equivalence 5. For any x-sup-description η := η x>A,x-1,...,x-A s1,...,s A and any s ∈ Σ, let η x-A s denote the x-sup-description η x>A,x-1,...,x-A s2,...,s A ,s involved in equivalence 6.

Replace any clause (a) x < y ∧ S(x + 1, y) → R(x, y) by the conjunction of clauses

x < y ∧ S η,θ (x + 1, y) ∧ W x s1 (x, y) → R η ,θ ← (x, y)
for all s 1 ∈ Σ, every x-equal-description η that contains Q s1 (x -1), and each θ ∈ Θ;

x < y ∧ S η,θ (x + 1, y) ∧ W x s1 (x, y) → R η x-A s ,θ ← (x, y)
for all s 1 , s ∈ Σ, every x-sup-description η that contains Q s1 (x -1) and each θ ∈ Θ. This replacement is justified by the above-mentioned properties of x-descriptions and y-descriptions, equivalences 5 and 6 and the meaning of W x s1 , i.e., W x s1 (x, y) ⇐⇒ Q s1 (x).

Transforming clauses x < y ∧ ¬S(x, y -1) → R(x, y) and x < y ∧ S(x, y -1) → R(x, y): These clauses are transformed by the same method as for clauses (a). So, we let the reader complete the details.

Transforming clauses x y ∧ S(x, y) ∧ T (x, y) → R(x, y), where ∈ {<, =}: Replace each clause (c) x y ∧ S(x, y) ∧ T (x, y) → R(x, y), where ∈ {<, =}, by the set of clauses x y ∧ S η,θ ← (x, y) ∧ T η,θ ← (x, y) → R η,θ ← (x, y), for (η, θ) ∈ H × Θ.
Processing the contradiction clause: The initial contradiction clause is equivalent to

x = 1 ∧ y = n ∧ (x = 1 ∧ y = n → R ⊥ (x, y)) → ⊥. So, here again, it should be replaced by the clause x = 1 ∧ y = n ∧ (R ⊥ ) x=1,y=n ← (x, y) → ⊥, which is the contradiction clause required if the predicate (R ⊥ ) x=1,y=n ← is renamed R ⊥ .
Recapitulation. After Step 6, all the initialization clauses are of the form x = y ∧ Q s (x) → R(x, y), i.e. are the required input clauses.

Step 7: Elimination of atoms R(x, y) as hypotheses. This step is not modified. This completes the proof of the equality incl-ESO-IND = normal-incl-ESO-IND, i.e., Lemma 5.

Equivalence between our logics and real-time cellular automata

In this section, we examine how to convert the formulas of our logics to real-time CA, and vice versa.

Basically, the transition function (resp. the input mode, the output mode) of the automata will be the counterpart of the computation clauses (resp. the input clauses, the contradiction clauses) of the formulas. Further, the correspondence between the set of computation predicates of the formulas and the set of states of the automata will be based on the following encoding. Starting from a formula whose set of computation predicates is R, the states set S of the corresponding automaton will be the power set of R; the idea behind is that the state of the cell c at time t records the subset {R i ∈ R | R i (c, t) is true}. By the way, any subset not containing the predicate R ⊥ will be an accepting state. Conversely, starting from any automaton, its set of states S will be expressed by the set of computation predicates R = {R q | q ∈ S}, with the intuitive meaning that R q (c, t) is true iff the cell c is in state q at time t.

Logical characterization of RealTime CA

We are now ready to prove Theorem 1 that states the languages accepted in real-time by twoway CA's with input fed in a parallel way and output read on the first cell are exactly the languages defined by the predecessor logic. We recall it here for convenience:

Theorem 1. RealTime CA = pred-ESO-HORN = pred-ESO-IND.
The proof will use the following inclusion scheme:

pred-ESO-IND = normal-pred-ESO-IND ⊆ RealTime OIA = RealTime CA ⊆ pred-ESO-HORN.
The equality pred-ESO-IND = normal-pred-ESO-IND has been proved in Section 5 and the other equality RealTime OIA = RealTime CA is well-known in automata theory (see [START_REF] Choffrut | On real-time cellular automata and trellis automata[END_REF][START_REF] Ibarra | On one-way cellular arrays[END_REF] and the survey [START_REF] Terrier | Language recognition by cellular automata[END_REF], pp. 136-137). The two remaining inclusions are proved in the next two lemmas. Lemma 6. RealTime CA ⊆ pred-ESO-HORN.

Proof. We will show that for any automaton A = (S, S accept , {-1, 0, 1}, f) ∈ RealTime CA we can build a formula Φ ∈ pred-ESO-HORN such that: w ∈ L(A) ⇐⇒ w satisfies the formula Φ. We turn A into an equivalent OCA A = (S, S accept , {-2, -1, 0}, f) running within the same computation time n where n is the length of the input word (see Figure 7). This transformation can be seen on the space-time diagrams as the variable change: (c, t) → (c + t -1, t), where c is the index of the cell and t the time step of the computation. Input: With w = w 1 . . . w n as the input word, the parallel input mode of the automata is expressed by the conjunction

ψ input = s∈Σ (min(t) ∧ Q s (c) → R s (c, t)) for Σ the input alphabet
This conjunction tells that the cell c is in state w c ∈ Σ at the start of the computation.

Computation: Every transition rule f(q 2 , q 1 , q 0 ) = q with q 2 = is expressed by the computation clause:

c > t ∧ ¬min(t) ∧ R q2 (c -2, t -1) ∧ R q1 (c -1, t -1) ∧ R q0 (c, t -1) → R q (c, t).
The specific case where q 2 is the permanent state (f( , q 1 , q 0 ) = q) is expressed by the clause:

c = t ∧ ¬min(t) ∧ R q1 (c -1, t -1) ∧ R q0 (c, t -1) → R q (c, t).
Let ψ compute be the conjunction of the above two sets of clauses.

With ψ := ψ input ∧ ψ compute , we have the following equivalence: The computation atom R q (c, t)

is true in the minimal model ( w , R) of ∀c∀tψ (c, t) iff the cell c is in state q at time t.

Output: The output get on the last cell is expressed by the contradiction clauses:

ψ output := q∈S \ Saccept (max(c) ∧ max(t) ∧ R q (c, t) → ⊥).
The formula ψ expressing the computation of A is the conjunction ψ := ψ ∧ ψ output . For each word w = w 1 . . . w n ∈ Σ + we have the following equivalences:

With w as input, A enters an accepting state on cell 1 at time n ⇐⇒ With w as input, A enters an accepting state on cell n at time n ⇐⇒ The conjunction q∈S \ Saccept ¬R q (n, n) is true in the minimal model ( w , R) of ∀c∀tψ (c, t) ⇐⇒ w satisfies the formula ∃R∀c∀tψ(c, t). This proves L(A) ∈ pred-ESO-HORN. Let Φ ∈ normal-pred-ESO-IND be a formula of the form Φ = ∃R∀x∀yψ(x, y) where R = {R 1 , . . . , R m }, and ψ is a conjunction of Horn clauses of the following three forms:

1. input clause of either form:

min(x) ∧ min(y) ∧ Q s (y) → R(x, y), or min(x) ∧ ¬min(y) ∧ Q s (y) → R(x, y), 2. the contradiction clause max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥, 3 
. computation clause of one of the following forms for some nonempty sets H, H ⊆ [1, m] and i ∈ [1, m]:

• ¬min(x) ∧ h∈H h R h (x -1, y) ∧ ¬min(y) ∧ h∈H h R h (x, y -1) → R i (x, y), • ¬min(x) ∧ h∈H h R h (x -1, y) → R i (x, y), • ¬min(y) ∧ h∈H h R h (x, y -1) → R i (x, y),
where each h either is ¬ or is nothing, written h ∈ {-, +}

We denote ψ the formula ψ without the contradiction clause.

The set of states S used by A is the power set of R = {R 1 , . . . , R m } augmented by the quiescent state λ and the permanent state : S = P(R) ∪ {λ, }. The input transition function f input only applies to the first cell and the transition function f applies to all the other cells. Below are the definitions of those transition functions where i ∈ [1, m], s ∈ Σ, and q, l, r ∈ S \{ , λ}:

The input transition function

f input : Σ × S → S: R i ∈ f input (s, λ) iff there is in ψ an input clause min(x) ∧ min(y) ∧ Q s (y) → R i (x, y); moreover, R i ∈ f input (s, q) iff there is in ψ an input clause min(x) ∧ ¬min(y) ∧ Q s (y) → R i (x, y) or a computation clause ¬min(y) ∧ h∈H h R h (x, y -1) → R i (x, y) such that, for all h ∈ H, R h / ∈ q if h = -and R h ∈ q if h = +;
The transition function f : By construction of A, we have the following equivalences, for all w ∈ Σ n :

S × S → S applies to cells c ∈ [2, n]: R i ∈ f(l, r) iff there is in ψ a computation clause h∈H h R h (x -1, y) ∧ ¬min(x) ∧ h∈H h R h (x, y -1) ∧ ¬min(y) → R i (x, y) such that, for all h ∈ H, R h / ∈ l if h = -and R h ∈ l if h = +, and, for all h ∈ H , R h / ∈ r if h = -and R h ∈ r if h = +; moreover, R i ∈ f(l, λ) iff there is in ψ a computation clause ¬min(x) ∧ h∈H h R h (x -1, y) → R i (x, y) such that, for all h ∈ H, R h / ∈ l if h = -and R h ∈ l if h = +.
• ∀(a, b) ∈ [1, n] 2 , ∀i ∈ [1, m], the atom R i (a, b) is true in the minimal model ( w , R) of ∀x∀y ψ (x, y) ⇐⇒ the cell c = a is in a state q with R i ∈ q at time t = a + b -1;
• w satisfies Φ ⇐⇒ A accepts w in real-time.

Logical characterization of RealTime IA

In this section, we will show Theorem 2 that states the languages accepted in real-time by IA are exactly the languages defined by the predecessor logic with diagonal input-output. For convenience, we restate it here: Proof. Let A = (S, S accept , {-1, 0, 1}, f input , f) be an automaton in RealTime IA . We turn A into a new automaton A = (S, S accept , {-2, -1, 0}, f input , f). This transformation can be seen on the space-time diagrams as the variable change: (c, t) → (c + t -1, t). The input is still fed sequentially but in the following way: the i th bit of the input is given to the cell i at time i as shown in Figure 9.

Theorem 2. RealTime IA = pred-dio-ESO-HORN = pred-dio-ESO-IND.
Since the input presentation is the only change between RealTime IA and RealTime CA , we obtain in the same way the conjunction of computation clauses ψ compute and the conjunction of contradiction clauses ψ output . Input: With w = w 1 . . . w n as the input word, the diagonal input mode of A is expressed by the conjunction: Proof. Since the proof is similar to that of Lemma 7, we will here just give an hint on how to associate to each site (x, y) ∈ [1, n] 2 of GRID 2 with x ≤ y, a site (c, t) of the space-time diagram of an iterative array A running in real-time (see Figure 10). The sites (x, y) ∈ [1, n] 2 with x ≥ y are similarly handled. First, we apply to the set of sites (x, y) of GRID 2 the variable change c = y -x + 1; t = x + y -1. This variable change turns respectively the dependencies (x -1, y) → (x, y) and (x, y -1) → (x, y) into (c + 1, t -1) → (c , t ) and (c -1, t -1) → (c , t ) expressing the two-way communication of an iterative array A . The sites (c , t ) of the space-time diagram of A takes their values in [1, n] × [1, 2n -1] and the i th bit of the input is fed on the site (1, 2i -1) (see Figure 10). Second, in order to obtain the space-time diagram of an IA A running in real-time, each site (c, t) = ( c /2 , t /2 ) of this diagram will record the set of sites {(c -1, t -1), (c , t ), (c +1, t -1)} of the space-time diagram of A , with c and t odd and greater than 1 (see Figure 10). As a context-free language, a conjunctive language has an algebraic representation as the least solution of a system of language equations with concatenation, union and moreover intersection. For example, the rule

ψ input := s∈Σ (t = c ∧ Q s (c) → R s (c, t 
A → sB 1 & . . . & sB & C 1 t & . . . & C p t
gives the language equation:

L(A) = sL(B 1 ) ∩ • • • ∩ sL(B ) ∩ L(C 1 )t ∩ • • • ∩ L(C p )t
where L(A) is the set of words having the property A.

In this subsection, we prove (or reprove) in a simple way the equality

LinConj = incl-ESO-HORN = Trellis
First, notice that our inclusion logic naturally characterizes the class of complements of linear conjunctive languages12 : Theorem 4. For any L ∈ Σ + , we have: L ∈ incl-ESO-HORN ⇐⇒ (Σ + \ L) ∈ LinConj.

Proof. The key point is that normal forms of linear conjunctive grammars are essentially the same as those of incl-ESO-HORN. To each rule of a linear conjunctive grammar G = (Σ, N, P, S) in normal form A → s (resp.

A → sB 1 & . . . & sB & C 1 t & . . . & C p t) associate the clause x = y ∧ Q s (x) → A(x, y) (resp. x < y ∧ Q s (x) ∧ i=1 B i (x + 1, y) ∧ p i=1 C i (x, y -1) ∧ Q t (y) → A(x, y))
, where the computation predicates A, B i , C i are associated to the nonterminal symbols with the same names. Let ψ G be the conjunction of the clauses so obtained with the contradiction clause min(x) ∧ max(y) ∧ S(x, y) → ⊥. Define Φ G := ∃N ∀x∀y ψ G , Defining Prime by using the pre-definite predicates Square and Rail. Let Square and Rail denote the binary predicates on domain [1, n] defined as follows (see Figure 12):

• Square(x, y) ⇐⇒ ∃k ≥ 2, x = k 2 ∧ y = Σ k-1 i=1 i; • Rail(x, y) ⇐⇒ ∃k ≥ 1, x ≥ k 2 ∧ x = y + Σ k i=1 i.
Idea: The predicate Rail is composed of parallel "rails"; the k-th rail, denoted rail k , has equation x = y + Σ k i=1 i, for x ≥ k 2 . The first point of rail k is the site (x, y) such that Square(x, y) with x = k 2 . The "corridor" between two consecutive rails, rail k-1 and rail k , for k ≥ 2, has horizontal (and vertical) width k. This allows to define the set of multiples ≥ k 2 of the integer k by zig-zag (vertical-horizontal) between rail k-1 and rail k .

The predicates Multiple (the vertical "zig") and Rebound (the horizontal "zag") are defined by the following clauses:

• Square(x, y) → Multiple(x, y) (initialization of vertical zig with x = k 2 );

• Multiple(x, y -1) ∧ ¬Rail(x -1, y -1) → Multiple(x, y) (vertical zig);

• Multiple(x, y -1) ∧ Rail(x -1, y -1) → Rebound(x, y) (zig meets a rail);

• Rebound(x -1, y) ∧ ¬Rail(x -1, y -1) → Rebound(x, y) (horizontal zag);

• Rebound(x -1, y) ∧ Rail(x -1, y -1) → Multiple(x, y) (zag meets a rail).

The following equivalences can be established by induction:

• Multiple(x, y) ⇐⇒ ∃k ≥ 2, ∃k ≥ 0, x = k(k + k ) ∧ kk + Σ k-1 i=1 i ≤ y < kk + Σ k i=1 i; • Rebound(x, y) ⇐⇒ ∃k ≥ 2, ∃k ≥ 0, y = kk + Σ k i=1 i ∧ k(k + k ) ≤ x < k(k + k + 1).
An integer x ≥ 2 is prime iff it is not of the form x = kk for any k ≥ k ≥ 2, i.e., iff x is not a multiple ≥ k 2 of k for any k ≥ 2. So, the following clause, which is equivalent to ∀y ¬Multiple(n, y), expresses that n is a prime integer:

• x = n ∧ Multiple(x, y) → ⊥.
It remains to define the predicates Square, Rail.

Defining the predicates Square, Rail, HalfSlope, Vertical and Horizontal. Let HalfSlope, Vertical and Horizontal denote the following predicates (see Figure 12):

• HalfSlope(x, y) ⇐⇒ ∃k, k , 0 ≤ k < k ∧ x = k 2 + 1 + 2k ∧ y = k + Σ k-1 i=1 i; • Vertical(x, y) ⇐⇒ ∃k, k , 0 < k < k ∧ x = k 2 ∧ y = k + Σ k-1 i=1 i; • Horizontal(x, y) ⇐⇒ ∃k ≥ 2, k 2 ≤ x ≤ k 2 + 2k ∧ y = Σ k i=1 i.
The predicates Square and Rail are defined inductively and simultaneously with the auxiliary predicates HalfSlope, Vertical and Horizontal by the following clauses:

• Initialization clauses: x = 2 ∧ y = 1 → Rail(x, y); x = 4 ∧ y = 1 → Square(x, y);

• Computing the rails: Square(x, y) → Rail(x, y); Rail(x -1, y -1) → Rail(x, y);

• Defining the successive Square points by defining and using the predicates HalfSlope, Vertical and Horizontal:

- 

Dyck languages, inclusion inductive logic and linear conjunctive grammars

For an integer k ≥ 1, let Dyck k denote the set of well-parenthesed non-empty expressions (Dyck words) on the alphabet with k types of parentheses

Σ k = { ( i | 1 ≤ i ≤ k} ∪ { ) i | 1 ≤ i ≤ k}.
Definition 9. A factor (resp. prefix, suffix) of a Dyck word is called a Dyck factor (resp. Dyck prefix, Dyck suffix).

Principle of the decision algorithm on GRID 3 :. Recall that the input word w is placed on the diagonal x = y of the grid n × n, where n is the length of w = w 1 . . . w n . Each opening parenthesis ( i ascends vertically, i.e., for y increasing, if it does not encounter a closing one; a closing parenthesis ) i goes horizontally to the left, i.e., for x decreasing, if it does not encounter an opening one. The input word is accepted if none of the following events occurs:

1. an opening parenthesis ( i meets a closing parenthesis ) j of a different type j = i;

2. an opening parenthesis ( i reaches the upper side y = n without meeting a closing parenthesis; 3. a closing parenthesis ) i reaches the left side x = 1 without meeting an opening parenthesis.

A formula of incl-ESO-IND that defines Dyck k

It is the formula

Φ Dyck k := (∃R (i , R )i ) 1≤i≤k ∃R min ⊥ ∃R max ⊥ ∃R ⊥ ∀x∀y ψ.
Here, ψ is the conjunction of the clauses given below that involve the computation predicates

R (i , R )i , for 1 ≤ i ≤ k, R min ⊥ , R max
⊥ and R ⊥ , with the following intended meaning:

• R (i (x, y) ⇐⇒ w x . . . w y is a Dyck factor starting with an opening parenthesis w x = ( i which is not matched in the word w x . . . w y ;

• R )i (x, y) ⇐⇒ w x . . . w y is a Dyck factor ending with a closing parenthesis w y =) i which is not matched in the word w x . . . w y ;

• R min ⊥ (x, y) ⇐⇒ w x . . . w y is a Dyck factor but not a Dyck prefix, therefore if x = 1 then w is not a Dyck word;

• R max ⊥ (x, y) ⇐⇒ w x . . . w y is a Dyck factor but not a Dyck suffix, therefore if y = n then w is not a Dyck word;

• R ⊥ (x, y) ⇐⇒ w x . . . w y is not a Dyck factor.

Inductive definitions of predicates Defining predicates R (i and R )i . We have R (i (x, y), i.e., w x . . . w y is a Dyck factor starting with an opening parenthesis w x = ( i which is not matched in the factor w x . . . w y iff condition (1) or (2) occurs:

(1) x = y and w x = ( i ;

(2) x < y and we have R (i (x, y -1) and w x+1 . . . w y is a Dyck factor where w y is either a closing parenthesis which is matched in the factor w x+1 . . . w y or an opening parenthesis.

By this equivalence, R (i is defined by the conjunction of the two following clauses:

• x = y ∧ Q (i (x) → R (i (x, y); • x < y ∧ R (i (x, y -1) ∧ ¬R ⊥ (x + 1, y) ∧ k j=1 ¬R )j (x + 1, y) → R (i (x, y).
For similar reasons, the conjunction of the two following clauses defines R )i :

• x = y ∧ Q )i (x) → R )i (x, y); • x < y ∧ ¬R ⊥ (x, y -1) ∧ k j=1 ¬R (j (x, y -1) ∧ R )i (x + 1, y) → R )i (x, y).
Defining predicate R ⊥ . We have R ⊥ (x, y), i.e., w x . . . w y is not a Dyck factor iff condition (1), ( 2) or (3) occurs:

(1) x < y and there are i, j, i = j, such that:

• we have R (i (x, y-1), i.e., w x . . . w y-1 is a Dyck factor starting with the parenthesis w x = ( i which is not matched in w x . . . w y-1 ;

• we have R )j (x + 1, y), i.e., w x+1 . . . w y is a Dyck factor ending with the parenthesis w y =) j which is not matched in w x+1 . . . w y ;

(2) x < y and w x . . . w y-1 is not a Dyck factor;

(3) x < y and w x+1 . . . w y is not a Dyck factor.

By this equivalence, R ⊥ is defined by the conjunction of the following clauses:

• x < y ∧ R (i (x, y -1) ∧ R )j (x + 1, y) → R ⊥ (x, y), for 1 ≤ i, j ≤ k and i = j; • x < y ∧ R ⊥ (x, y -1) → R ⊥ (x, y); • x < y ∧ R ⊥ (x + 1, y) → R ⊥ (x, y).
Defining predicates R max ⊥ and R min ⊥ . We have R max ⊥ (x, y), i.e., w x . . . w y is a Dyck factor but not a Dyck suffix iff condition (1) or (2) occurs:

(1) we have R (i (x, y), for some i, i.e., w x . . . w y is a Dyck factor starting with an opening parenthesis w x = ( i which is not matched in the factor w x . . . w y ;

(2) x < y and w x . . . w y-1 is a Dyck factor and w x+1 . . . w y is a Dyck factor but not a Dyck suffix.

By this equivalence, R max ⊥ is defined by the conjunction of the following clauses: y). For similar reasons, the conjunction of the two following clauses defines R min ⊥ :

• R (i (x, y) → R max ⊥ (x, y), for 1 ≤ i ≤ k; • x < y ∧ ¬R ⊥ (x, y -1) ∧ R max ⊥ (x + 1, y) → R max ⊥ (x,
• R )i (x, y) → R min ⊥ (x, y), for 1 ≤ i ≤ k; • x < y ∧ R min ⊥ (x, y -1) ∧ ¬R ⊥ (x + 1, y) → R min ⊥ (x, y).
Contradiction clauses. A word w is a Dyck word if the three following conditions hold: all closing parenthesis of w have a match, all opening parenthesis of w have a match and w only contains Dyck factors. It is expressed by the following clauses:

1') x = 1 ∧ y = n ∧ R min ⊥ (x, y) → ⊥; 2 
') x = 1 ∧ y = n ∧ R max ⊥ (x, y) → ⊥; 3 
') x = 1 ∧ y = n ∧ R ⊥ (x, y) → ⊥.
By construction, the formula Φ Dyck k ∈ incl-ESO-IND defines the language Dyck k . Therefore, we have the following proposition:

Proposition 3. We have the equivalence w ∈ Dyck k ⇐⇒ w |= Φ Dyck k , for any word w ∈ (Σ k ) + of length n ≥ 2. This implies Dyck k ∈ incl-ESO-IND.
The formula Φ Dyck k defining the language Dyck k can be used to partition the set of words on the alphabet Σ

k = { ( i | 1 ≤ i ≤ k} ∪ { ) i | 1 ≤ i ≤ k}.
This partition is made according to the set of predicates that are the only ones verified by a word. Figure 13 

{R min ⊥ , R ) i } {R min ⊥ } {R max ⊥ , R ( i } {R max ⊥ } {} {R min ⊥ , R max ⊥ } {R ⊥ }
k = { ( i | 1 ≤ i ≤ k} ∪ { ) i | 1 ≤ i ≤ k}
also correspond to the 2k + 5 states of the grid circuit mimicked by Φ Dyck k . Figure 14 shows two computation examples on the grid circuit obtained from Φ Dyck 2 .

Remark: For those who are familiar with Boolean grammars, we can directly deduce from the almost normalized formula Φ Dyck k of incl-ESO-IND a linear Boolean grammar describing the language Dyck k . This grammar uses 2k+4 nonterminal symbols corresponding to the 2k+3 binary predicates used in ψ and the axiom D. The correspondence between binary predicates and nonterminal symbols is the following:

• R (i ⇐⇒ O i for 1 ≤ i ≤ k; • R )i ⇐⇒ C i for 1 ≤ i ≤ k; • R max ⊥ ⇐⇒ F max ; • R min ⊥ ⇐⇒ F min ; • R ⊥ ⇐⇒ F .
Here below are the rules of the linear Boolean grammar where x and y stand for any character of Σ k :

D → ¬F max & ¬F min & ¬F ; O i → O i y & ¬xC 1 & ¬xC 2 & . . . & ¬xC k & ¬xF | ( i C i → xC i & ¬O 1 y & ¬O 2 y & . . . & ¬O k y & ¬F y | ) i for 1 ≤ i ≤ k; F max → O 1 | O 2 | • • • | O k | xF max & ¬F y; F min → C 1 | C 2 | • • • | C k | F min y & ¬xF ; F → xF | F y | O i y & xC j for 1 ≤ i, j ≤ k and i = j.
A linear conjunctive grammar for Dyck k . To each language of the partition described in Figure 13, we associate a nonterminal symbol generating this language.

• D generates the set of Dyck words: {}; Here below are the rules of the linear conjunctive grammar (nonterminals O and C are added for sake of clarity, and x and y stand for any character of Σ k ):

D → O 1 y & xC 1 | • • • | O k y & xC k | P y & xS; O i → O i y & xD | O i y & xR | O i y & xO | O i y & xP | O i y & xS | ( i C i → Dy & xC i | Ry & xC i | Cy & xC i | P y & xC i | Sy & xC i | ) i for 1 ≤ i ≤ k; O → O 1 | • • • | O k ; C → C 1 | • • • | C k ; P → P y & xR | P y & xO | P y & xP | Dy & xR | Dy & xO | Dy & xP ; S → Ry & xS | Cy & xS | Sy & xS | Ry & xD | Cy & xD | Sy & xD; R → Ry & xR | Ry & xO | Ry & xP | Cy & xR | Sy & xR | Cy & xO | Sy & xC | Cy & xP | Sy & xP ; F → xF | F y | O i y & xC j for 1 ≤ i, j ≤ k and i = j.

The language of Čulik and the Firing Squad Synchronization Problem

This long section is dedicated to our most elaborate expression (programming) of a specific problem in one of our logics, here incl-ESO-IND. In [START_REF] Culik | Variations of the firing squad problem and applications[END_REF], Čulik exhibited a trellis automaton that recognizes the language

Culik = {a i b k a k-i | 0 < i < k}
He noticed that on a word a k b k a k , the sites corresponding to the words a i b k a k-i with 0 < i < k are the sites resulting of a synchronization (depicted by in Figure 15a). The synchronization is a problem specific to parallel devices. On CA, it consists of all cells reaching at the same time a new state never reached. Figure 15a shows the Čulik's trellis automaton. The idea is to use a firing squad with two generals set on the sites corresponding to the factors ab 3 and b 3 a. So, unless explicitly stated otherwise, k will be greater than or equal to 3 (the case k ≤ 2 will be the subject of special treatment). Figure 15b shows the GRID 3 version 3k × 3k of the automaton. 

i b k a k-i | 0 < i < k and k ≥ 3}
The main idea of the recognition is a recursive process starting from the factor ab k a. We call the potential of a factor a i b k a j the difference k -i -j between its number of b and its number of a. In this way, the synchronized factors are the factors of potential 0. The goal is to characterize the factors with potential 1: the ones adjacent to the factors of potential 0. This is done by recursively adding to the left or to the right of a factor, a block of a's of size half its potential until it reaches 1. Any factor corresponding to a step of this recursive process is called a marked factor.

Of course, the recurrence uses a discrete division method. The floor operation is used when adding a block of a's to the left and the ceiling operation is used when adding a block of a's to the right. Thus we obtain the following recurrence scheme:

• The factor ab k a is a marked factor ;

• if a i b k a j is a marked factor with i, j ≥ 0 and k -(i + j) ≥ 2 then both a l a i b n a j and a i b n a j a r with l = k-(i+j) An example of the tree corresponding to this recurrence scheme is depicted in Figure 16a: the left (resp. right) son of a marked factor is the one obtained by the floor (resp. ceiling) operation. The potential tree is a synthetic view of the marked factors tree which only takes into account the potential of the factors. On this tree the height of a node is given by its potential. The distance between a node of potential p and its left (resp. right) son is p 2 (resp. p 2 ) since the left (resp. right) son of a node with potential p has a potential p 2 (resp. p 2 ) as depicted on Figure 16b.

Figure 16c shows the embedding of the potential tree on GRID 3 . For convenience, we will call by the same name, the potential tree, denoted T , the "marked factors" tree, the corresponding potential tree, and its embedding in the grid.

Fact. The marked factors of the form a i b k a k-i-1 , for 1 ≤ i ≤ k -2, correspond to the k -2 leaves of the potential tree: the nodes of T with potential 1.

Construction of the potential tree

In this section we will detail the process leading to the construction of the potential tree T in GRID 3 . The tree is obtained by a recursive construction of its branches. The leftmost and rightmost branches of the tree are built first. Then, from a node (starting node) we build the leftmost branch starting from its right son and the rightmost branch starting from its left son. We will denote r 0 , r 1 , r 2 . . . the potentials of the successive nodes of a leftmost branch and l 0 , l 1 , l 2 . . . the potentials of the successive nodes of a rightmost branch. Recall that by definition of the potential tree, we have: r i+1 = ri 2 and l i+1 = li 2 . We present the construction of the two branches first in the case of even starting node (i.e., of even potential), secondly in the case of odd starting node that requires some adjustments to handle the asymmetry between the two branches. Then, we carry out the construction of the leftmost and rightmost branches of the potential tree. Finally, we show how to characterize the leaves of the potential tree, i.e., the marked nodes of potential 1.

A. Construction of the leftmost and rightmost branches for an even node Construction of the leftmost branch of the right son. We now describe the construction of the leftmost branch originating from the right son of a node of even potential 2p. It involves the starting node (the node with potential 2p) and its right son (see Figure 17a). It makes use of a family of lines initialized from the starting node that cross the leftmost branch originated from the right son at the desired spots. The construction on the grid is shown Figure 17b. By convenience we use the following coordinate system (X, Y ): the starting node is on the site (p, p) and the right son is on the site (p, 0). In this way, the sites we want to characterize are of the form (r i , 0). In order to characterize the site (r i , 0), the i-th line starts from (p, p) and moves in this way: one vertical move (0, -1) followed by alternations between 2 i -1 diagonal moves (-1, -1) and a vertical move (0, -1). Let (X i , 0) be the intersection between this i-th line and the leftmost branch. Let us verify that X i = r i . Denoting α the number of times the phase composed by 2 i -1 diagonal moves and a vertical move is done, and β < 2 i the number of diagonal moves left. We have the following equality: (X i , 0) = (p, p) + (0, -1) + α(-2 i + 1, -2 i + 1) + α(0, -1) + β(-1, -1) From this equality we deduce that α is the quotient of the euclidean division of p -1 by 2 i and β the remainder: α = (p -1)//2 i and β = (p -1)%2 i . This gives us the following expression for X i :

X i = p -2 i α + α -β = 1 + 2 i α + β -2 i α + α -β = 1 + α = 1 + (p -1)//2 i
First, using the identity a b = 1 + (a-1) b we have X i = p 2 i . Second, recall that the potentials r 0 , r 1 ,. . . of the nodes of the leftmost branch follow the recurrence: r 0 = p and r i+1 = ri 2 . Since a b /c = a bc , we get r i = p 2 i = X i . Now that we have proved the correctness of the construction of the leftmost branch using a family of lines, we will detail the local process building them. The construction of a family of lines of slopes 2 i is standard [START_REF] Mazoyer | A six-state minimal time solution to the firing squad synchronization problem[END_REF]. It uses two types of signals: the clock signals and the filter signals. The clock signals are emitted from the right side of the square on every site (p, p -y) with y even and greater than 0, and runs leftward. They are symbolized by on Figure 18. The filter signals alternate two phases: cross and delete. They are symbolized by (cross phase) and (delete phase) on Figure 18. One diagonal signal starts on the site (p, p -1) and goes diagonally along (-1, -1). Each time a clock signal intersects with this diagonal signal, a new filter signal in cross phase is initialized. The diagonal signal is also used to characterize the leaf of the branch.

The clock signals and the filter signals interact with each other in order to build the desired slopes for filter signals. By default a filter signal goes diagonally and deviates from its trajectory by a unitary vertical move each time it meets a clock signal. Moreover, at each intersection, the filter signal swaps from delete to cross or conversely from cross to delete, and the clock signal goes through the intersection when the filter signal is in cross phase or stops when the filter signal is in delete phase. Construction of the rightmost branch of the left son. As shown on Figure 19, the construction of the rightmost branch of the left son of a node of even potential 2p is similar to the leftmost branch case. It involves the starting node (the node with potential 2p) and its left son. We use the same coordinate system (X, Y ) as previously: the starting node is on the site (p, p) and the left son is on the site (0, p). The sites we want to characterize are therefore of the form (0, l i ) with l 0 = p and l i+1 = li 2 . Since a b /c = a bc , we get l i = p 2 i for all i. In order to characterize the site (0, l i ), the i-th line starts from (p, p) and alternates between 2 i -1 diagonal moves (-1, -1) and one horizontal move (-1, 0). Let (0, Y i ) be the intersection between the i-th line and the rightmost branch. Let us verify that Y i = l i . Let α be the number of runs (composed by 2 i -1 diagonal moves and one horizontal move) made, and β < 2 i be the number of diagonal moves left. We have the following equality: (0, Y i ) = (p, p) + α(-2 i + 1, -2 i + 1) + α(0, -1) + β(-1, -1)

From this equality we deduce that α is the quotient and β the remainder of the euclidean division of p by 2 i : α = p//2 i and β = p%2 i . Thus:

Y i = p -2 i α + α -β = 2 i α + β -2 i α + α -β = α = p//2 i = l i
The construction is basically the same as in the previous case: the lines are built using clock signals and filter signals. In order to characterize the site (0, l i ) of the rectangle, we relate to the square case by simulating a starting node on the site (p + 1, p + 1). Starting from the site (p, p + 1), the line characterizing the site (0, l i ) moves this way: one vertical move (0, -1) followed by 2 i -2 diagonal moves (-1, -1) and then alternations between an horizontal move (-1, 0) and 2 i -1 diagonal moves (-1, -1). The Figure 23 depicts this construction in the rectangle. The construction of the leftmost (resp. the rightmost) branch of the tree starts from the site corresponding to the factor abbb (resp. bbba). In this way, the distance between this starting site and the site corresponding to the factor ab k a (the root of the tree) is k -2 which is the potential of this factor (see Figure 24). Therefore we can use the same family of lines that in the even potential case with the left (resp. right) general as the starting node and the root ab k a as its right (resp. In order to end the recursive building process of the potential tree, we need to locally characterize its leaves. With the usual coordinate system on the grid, this characterization is given by the following lemma.

Lemma 12 (leaf characterization). Suppose the potential tree T has at least 2 nodes. Then, a node (x, y) of T is a leaf iff either one of the following conditions holds:

(1) The potential of the node (x, y) is odd and the site (x + 1, y) is a node of T ;

(2) The site (x, y -1) is a node of T ;

(3) The potential of the node (x, y) is odd and the site (x, y -2) is a node of T .

Proof. Let p denote the potential of the node (x, y). Then, the potentials of the sites (x + 1, y), (x, y -1) and (x, y -2) are p + 1, p + 1, and p + 2, respectively.

If the node (x, y) is a leaf then its potential p is 1. In case of (x, y) is a left leaf, its parent node is of potential q that verifies q 2 = 1. Then q = 2 and the parent node is (x + 1, y). In case of (x, y) is a right leaf, the parent node is of potential q that verifies q 2 = 1. Then q ∈ {2, 3} and its parent node is either (x, y -1) or (x, y -2). Conversly, if condition (1) holds, then the potential p + 1 of the node (x, y -1) is even. So the potential of its left son (x, y) satisfies p = p+1 2 . This implies p = 1 and (x, y) is a leaf. If condition (2) holds, then the potential of its right descendant (x, y) satisfies p = p+1 2 . This implies p = 1 and (x, y) is a leaf. If condition (3) holds, then the potential p + 2 of the node (x, y -2) is odd.

So the potential of its right descendant (x, y) satisfies p = p+2

2 i = p+1
2 i for some integer i. This implies i = 1, p = 1 and (x, y) is a leaf.

An inclusion inductive formula defining the language Culik

The previous section describes the characterization of all factors belonging to the language {a i b k a k-i | 0 < i < k and k ≥ 3} inside the grid 3k × 3k with the word a k b k a k as the input word. In this section we detail the clauses expressing that a word w ∈ {a, b} + belongs or not to this language. For this purpose, we consider the GRID 3 n × n with the input word w = w 1 . . . w n ∈ {a, b} + written on the diagonal y = x.

For a lighter presentation of the formulas, we will simplify the presentation of inclusion clauses by adopting the following conventions: R(x+a, y -b) is written in place of x+a ≤ y -b∧R(x+a, y -b).

In the same spirit, we write x = 1 ∧ y = n instead of x ≤ y ∧ x = 1 ∧ y = n.

Structure of the logical definition of Culik within the language a + b + ba + . In order to define Culik inside the language a + b + ba + , we will use 20 binary predicates: Convention: We add the two general sites ab 3 (left general) and b 3 a (right general) as nodes of the tree T . The tree is no more an usual rooted tree, i.e. with only one root. We have now three initial nodes: ab 3 , b 3 a and ab k a with k ≥ 3. For convenience in the logical construction, we admit that the "tree" has two root ab 3 and b 3 a and that the node ab k a is both the right son of the node ab 3 and the left son of the node b 3 a.

Clauses defining the initialization and the end of the recurrence The parity predicates: Even and Odd. During the inductive construction of the potential tree, we need to know for each node the parity of its potential. The potential of a factor being the difference between its number of b and a, the parity of its potential is the same as the parity of its length. In this way, the parity of the site (x, y) is the parity of y -x + 1 and in particular the parity of diagonal sites is odd.

The following clauses define inductively the parity of each site (x, y) with x ≤ y from the diagonal:

• x = y → Odd(x, y); x < y ∧ Odd(x, y -1) → Even(x, y); x < y ∧ Even(x, y -1) → Odd(x, y).

  :
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 12 RealTime CA = RealTime OIA ; RealTime IA ; 3. Trellis = RealTime OCA .
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 531 Figure 1: The three ways to arrange the input on the grid
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 1 The first steps of the computation on the initial configuration . . . 11011010000111 . . . are depicted in the following space-time diagram.Let us look at another cellular automaton T = ({d, p, s, r}, {-1, 0}, f) where f : {p, s, d, r} 2 → {p, s, d, r} is presented in the table below. On the right, the space-time diagram depicts the beginnings of the computation on the input . . . psspsppspss.

  , the time-space diagram of a RealTime OCA is topologically equivalent to what is called a Trellis. Just to recapitulate, we have exactly three distinct real-time classes of cellular automata: 1. RealTime CA = RealTime OIA ; 2. RealTime IA ; 3. Trellis = RealTime OCA .
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 5552 Figure 2: The space-time diagrams of the three natural real-time classes

  for s ∈ Σ and an integer a ≥ 0, • U (x -a), ¬U (x -a), U (y -a) or ¬U (y -a), for U ∈ {min, max} and an integer a ≥ 0, 2. or a computation atom of the form S(x -a, y -b) or S(y -b, x -a), for S ∈ R and some integers a, b ≥ 0.

δ i is 1 .

 1 either an input literal of the form 5 U (x + a), ¬U (x + a), U (y + a) or ¬U (y + a), for U ∈ {(Q s ) s∈Σ , min, max} and an integer a ∈ Z, 2. or an (in)equality x = y or x < y 6 , 3. or a conjunction of the form S(x + a, y -b) ∧ x + a ≤ y -b for S ∈ R and some integers a, b ≥ 0. Let incl-ESO-HORN denote the class of inclusion Horn formulas and, also, the class of languages they define. Note that the "inclusion" meaning of logic incl-ESO-HORN is given by the hypotheses x ≤ y and x + a ≤ y -b. It means that the inductive computation of each value R(x, y), for x ≤ y and R ∈ R, only use values of the form S(x + a, y -b), for S ∈ R and an included interval [x + a, y -b] ⊆ [x, y].
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 3 Figure 3: Computation of ΦUnbordered on the word abbaabb

Example 4 .

 4 The language Disj is the set of words w = w 1 . . . w n ∈ {0, 1} + of even length n = 2k, w = x 1 . . . x k y 1 . . . y k , such that x i y i = 11, for all i ∈ [1, k].

Figure 4 :

 4 Figure 4: Computation of ΦDisj on the word 1101000110 / ∈ Disj
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 71 y), for s ∈ Σ; 0.c: max(y) ∧ Border(x, y) → ⊥. Since Border(x, y) implies 2 ≤ x < y ≤ n, hence x < n, clause (0.c) can be replaced by the equivalent clause 0.c': max(y) ∧ Border(x -1, y) → ⊥. Processing the contradiction clause. In order to push the contradiction to the vertex (n, n), we introduce the binary predicate R max(y) ⊥ of intuitive meaning: R max(y) ⊥ (x, y) ⇐⇒ (max(y) → ⊥). For this purpose, we replace clause (0.c') by the following three clauses: 1.a: ¬min(x) ∧ Border(x -1, y) ) ∧ Border(x -1, y) → (max(y) → ⊥), equivalent to clause (0.c')); 1.b: ¬min(x) ∧ R max(y) ⊥ (x -1, y) → R max(y) ⊥ (x, y) (clause transporting R max(y) ⊥ to the side x = n); 1.c: max(x) ∧ max(y) ∧ R max(y) ⊥ (x, y) → ⊥ (clause giving the meaning of R max(y) ⊥

Figure 5 :

 5 Figure 5: Behaviour of W x s and W y s after the folding

Figure 6 :

 6 Figure 6: Computation of the word abbaabb / ∈ Unbordered

7 .

 7 Folding the domain. Let us fold the square domain {(x, y) ∈ [1, n] 2 } along the diagonal x = y on the overdiagonal triangle

ϕ 1

 1 is trivially true in the minimal model ( w , R) of ϕ . Recurrence step: Suppose ( w , R) |= ϕ t-1 , for an integer t ∈ [2, 2n]. It is enough to show that, for each couple (a, b) ∈ [1, n] 2 such that a + b = t, we have ( w , R) |= i∈[1,k] (α i (a, b) → θ i (a, b)). Let J a,b be the set of indices i ∈ [1, k] such that the couple (a, b) satisfies α i : J a,b := {i ∈ [1, k] | ( w , R) |= α i (a, b)}. Recall that each α i (a, b) is a (possibly empty) conjunction of atoms R(a , b ) with (a , b ) = (a -1, b) or (a , b ) = (a, b -1), therefore such that a + b = t -1. This is the basis of the inductive construction of the minimal model ( w , R) of the Horn formula ϕ t and of the proof by recurrence. Let a set J ⊆ [1, k]. Let us examine the two possible cases:

  ,b . Consequently, for all h ∈ [1, m], the minimal model ( w , R) of the Horn formula ϕ satisfies the atom R h (a, b) iff h belongs to K J a,b . By definition,K J a,b := {h ∈ [1, m] | i∈J a,b θ i (x, y) → R h (x, y) is a tautology}.As a consequence of Lemma 3, the two conjunctions i∈J a,b θ i (a, b) and h∈K J a,b R h (a, b) have the same minimal model, which is also the restriction of the minimal model ( w , R) of ϕ to the set of atoms R h (a, b), for h ∈ [1, m]. Therefore, if i ∈ J a,b , then ( w , R) |= θ i (a, b). If i ∈ [1, k] \ J a,b , then we have ( w , R) |= ¬α i (a, b), by the definition of J a,b . Therefore, for all i ∈ [1, k], we get ( w , R) |= ¬α i (a, b) ∨ θ i (a, b). In other words, for all (a, b) such that a + b = t:

x

  = y and in the forms Q s (x -a) and Q s (y + b) only (for a, b ≥ 0), by introducing new computation predicates W x+a s and W y+a s

  y); Transport clauses: for a ∈ Z, x < y ∧ W x+a s (x, y -1) → W x+a s (x, y), and x < y ∧ W y+a s (x + 1, y) → W y+a s (x, y). This allows to replace each input atom Q s (x + a) (resp. Q s (y + a)), a ∈ Z, by the computation atom W x+a s (x, y) (resp. W y+a s (x, y)), in all the clauses, except in the initialization clauses.

  2. a computation clause of one of the forms (a,b,c): (a) x < y ∧ S(x + 1, y) → R(x, y); (b) x < y ∧ S(x, y -1) → R(x, y);

  x = a (a ≥ 1) and y = n -b (b ≥ 0), in the initialization clauses. Let A (resp. B) be the maximum of the integers a (resp. b) that occur in the equalities x = a (resp. y = n -b) of the clauses. For each R ∈ R, we introduce the new predicates R x=a ← , R y=n-b ← and R x=a,y=n-b ← , for all a ∈ [1, A] and b ∈ [0, B], whose intuitive meaning has been announced. For example, we should have R x=a,y=n-b ← (x, y) ⇐⇒ (x = a ∧ y = n -b → R(x, y)).

1 ←

 1 Transforming the computation clauses: For each clause (a) x < y ∧ S(x + 1, y) → R(x, y), add the clauses x < y ∧ S x=a,y=n-b ← (x + 1, y) → R x=a-1,y=n-b ← (x, y), for all a ∈ [2, A] and b ∈ [0, B] (justification: the hypothesis x + 1 = a is equivalent to x = a -1). Similarly, for each clause (b) x < y∧S(x, y-1) → R(x, y), add the clauses x < y∧S x=a,y=n-b ← (x, y-1) → R x=a,y=n-(b-1) ← (x, y), for all a ∈ [1, A] and b ∈ [1, B]. Also add for clauses (a,b) the similar (simpler) clauses with only one (instead of two) equality hypothesis. For example, for clause (a) we add the clauses x < y ∧ S x=a ← (x + 1, y) → R x=a-(x, y), for all a ∈ [2, A], and x < y ∧ S y=n-b ← (x + 1, y) → R y=n-b ← (x, y), for all b ∈ [0, B]. For each clause (c) x y ∧ S(x, y) ∧ T (x, y) → R(x, y), where ∈ {<, =}, add clauses that cumulate the hypotheses as long as they are compatible. More precisely, for all a ∈ [1, A] and b ∈ [0, B] and any two compatible (possibly empty) subsets η, θ of the set of two hypotheses {x = a, y = n -b}, we have the clause x y

2 .

 2 or an (in)equality x = y or x < y, 3. or a conjunction of the form S(x, y) ∧ x ≤ y or (¬)S(x + a, y -b) ∧ x + a ≤ y -b, for S ∈ R and a, b ≥ 0 such that a + b > 0.

1 .

 1 an initialization clause of one of the two forms: min(x) ∧ η(y) → R(x, y) with η(y) ∈ {(Q s (y)) s∈Σ , (¬)min(y), (¬)max(y)}; min(y) ∧ η(x) → R(x, y) with η(x) ∈ {(Q s (x)) s∈Σ (¬)min(x), (¬)max(x)}; 2. "the" contradiction clause max(x) ∧ max(y) ∧ R ⊥ (x, y) → ⊥; 3. a computation clause of one of the following forms: (a) (¬)S(x -1, y) ∧ ¬min(x) → R(x, y); (b) (¬)S(x, y -1) ∧ ¬min(y) → R(x, y);

Folding the initialization clauses:

  Each clause of the form min(x) ∧ η(y) → R(x, y) (with η(y) ∈ {Q s (y)|s ∈ Σ} ∪ {(¬)min(y), (¬)max(y)}) is unchanged ; each clause of the form min(y) ∧ η(x) → R(x, y) (with η(x) ∈ {Q s (x)|s ∈ Σ} ∪ {(¬)min(x), (¬)max(x)}) is replaced by its folded version min(x) ∧ η(y) → R inv (x, y).
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 557 Figure 7: Neighborhood's change: from {-1, 0, 1} to {-2, -1, 0}

Lemma 7 .

 7 normal-pred-ESO-IND ⊆ RealTime OIA Proof. We convert a formula Φ ∈ normal-pred-ESO-IND into a one-way iterative array A = (S, S accept , {-1, 0}, f, f input ) ∈ RealTime OIA .

Figure 8 :

 8 Figure 8: Geometrical interpretation of the transition from GRID1 to RealTimeOIA

The proof is close to the one of Theorem 1 .

 1 It is obtained by the following inclusion scheme:pred-dio-ESO-IND = normal-pred-dio-ESO-IND ⊆ RealTime IA ⊆ pred-dio-ESO-HORN.The equality pred-dio-ESO-IND = normal-pred-dio-ESO-IND has been proved in Section 5. The two remaining inclusions are proved in the next two lemmas. Lemma 8. RealTime IA ⊆ pred-dio-ESO-HORN.

5 AFigure 9 :

 59 Figure 9: Neighborhood's change: from {-1, 0, 1} to {-2, -1, 0}

  )) for Σ the input alphabet This conjunction tells that the cell c is in the state w c ∈ Σ at time c. Let ψ be the conjunction ψ input ∧ψ compute . The formula ψ of pred-dio-ESO-HORN expressing the computation of A is ψ := ψ ∧ ψ output . For each word w = w 1 . . . w n ∈ Σ + , we have the following equivalences: With w as input, A enters an accepting state on cell 1 at time n ⇐⇒ With w as input, A enters an accepting state on cell n at time n ⇐⇒ The conjunction q∈S \ Saccept ¬R q (n, n) is true in the minimal model ( w , R) of ∀c∀tψ (c, t) ⇐⇒ w satisfies the formula ∃R∀c∀tψ(c, t). This proves L(A) ∈ pred-dio-ESO-HORN. Lemma 9. normal-pred-dio-ESO-IND ⊆ RealTime IA .
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 510 Figure 10: Variable change and grouping
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 122 Figure 12: A computation example of ΦPrime on GRID2

  depicts the successive steps resulting in this partition. not a Dyck factor Dyck factor suffix and prefix suffix and not prefix prefix and not suffix not prefix and not suffix starts with an unmatched opening parenthesis (i starts with a closing parenthesis or a matched opening parenthesis ends with an unmatched closing parenthesis )i ends with an opening parenthesis or a matched closing parenthesis

Figure 13 :

 13 Figure 13: Partition obtained from the formula ΦDyck k

Figure 15 :

 15 Figure 15: Both trellis and GRID 3 versions of Čulik's automaton recognizing the language {a i b k a k-i | 0 < i < k and k ≥ 3}

2

  and r = k-(i+j) 2 are marked factors.
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 234566789 Embedding of the tree on GRID3

Figure 16 :

 16 Figure 16: Example of the recurrence with k = 11

Figure 17 :

 17 Figure 17: Construction of the leftmost branch starting from the right son of an even node

Figure 18

 18 depicts the construction of these signals, where the family of lines are drawn by the filter signals.

Figure 18 :

 18 Figure 18: Construction of the leftmost branch originated from the right son of a starting node of potential 2p = 40

Figure 19 :

 19 Figure 19: Construction of the rightmost branch when the starting node is even

  Figure 20 depicts the construction. The clock signals are emitted from the bottom side of the square on each site (p -y, p) where y is odd, and runs upward. The filter signals still have two phases cross and delete. They interact with the clock signals in the same way as before but the intersection results now in an horizontal move for the filter signal. One diagonal signal emitted from the site (p, p) and moving along the vector(-1, -1) is used to initialize the filter signals.

Figure 23 :

 23 Figure 23: Construction of the rightmost branch as the left side of a rectangle

Figure 24 :

 24 Figure 24: Construction of the rightmost and leftmost branches of the tree

• 8

 8 initial global predicates: parity predicates Even and Odd; border predicates (between a and bbb or between bbb and a) LeftBorder (resp. RightBorder) only true on the last (resp. the first) a of the first (resp. second) sequence of a of the input word belonging to a + b + a + ; generals LeftGeneral and RightGeneral and external branches StartLeftBranch and StartRightBranch (this predicates only have a meaning if the number of b is greater or equal to 3 i.e. for an input word belonging to a + b + bba + ); • 4 recursive global predicates: nodes Node, leaves Leaf and branches LeftBranch and RightBranch. • 8 local predicates labeled by either Up or Low: diagonal predicates UpDiag and LowDiag, clock predicates UpClock and LowClock, filter predicates UpCross, UpDelete, LowCross and LowDelete.

•

  R generates the set of Dyck factors which are neither prefix nor suffix: {R min ⊥ , R max ⊥ };• O i generates the set of Dyck factors starting with an unmatched opening parenthesis (

i : {R (i };

• C i generates the set of Dyck factors ending with an unmatched closing parenthesis ) i : {R )i };

• P generates the set of not suffix Dyck factors starting with a closing parenthesis or a matched opening parenthesis: {R max ⊥ };

• S generates the set of not prefix Dyck factors ending with an opening parenthesis or a matched closing parenthesis: {R min ⊥ };

• F generates the set of not Dyck factors: {R ⊥ }.
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By default, a CA has a two-way communication and a parallel input mode. Any CA (resp. one-way CA or OCA) with sequential input mode is also called an iterative array or IA (resp. one-way IA or OIA).

The neighborhood of a CA is the finite set of integers N such that the state of any cell x at any non-initial instant t is determined by the states of the cells x + d, for d ∈ N , at instant t -1. A neighborhood is admissible with respect to a fixed output cell (in general the first or the last cell) if it allows to communicate each bit of the input to the output cell.

This equivalence is the consequence of Step 7 (folding the domain) in the proof of Lemma 1 below.

Without loss of generality, we assume that there is no negation on a predicate Qs.

Then, the hypothesis x ≤ y is redundant.

As Remark 5 says, we use the semantics of the minimal model of Horn formulas. Here, we assert that the equivalence R x-a,y-b (x, y) ⇐⇒ R(x -a, y -b) holds in the minimal model of the Horn formula we construct.

For example, forF := p 1 ∧ p 3 ∧ (p 1 ∧ p 3 → p 5 ) ∧ (p 1 ∧ p 2 → p 4 ),we have F := p 1 ∧ p 3 ∧ p 5 which has the same minimal model I as F ; this model is given by I(p 1 ) = I(p 3 ) = I(p 5 ) = 1 and I(p 2 ) = I(p 4 ) = 0.

Note that an initialization clause of the form x = y → R(x, y) can be rewritten s∈Σ (x = y ∧ Qs(x) → R(x, y)) (case analysis).

We only shift the data from x + 1 to x using the equivalences:x + 1 = a ⇐⇒ x = a -1; Qs((x + 1) -i) ⇐⇒ Qs(x -(i -1)); x + 1 > A ⇐⇒ x > A -1.

Then, it will be sufficient to prove the equality incl-ESO-HORN = Trellis (Theorem 3) since the class of languages Trellis is obviously closed under complement.

where N now denotes the set of computation predicates associated to the nonterminal symbols of N . Clearly, Φ G belongs to incl-ESO-HORN and the following equivalence holds for each w ∈ Σ + : w ∈ L(G) ⇐⇒ w |= Φ G .

Conversely, to each formula Φ = ∃R∀x∀yψ(x, y) in normal-incl-ESO-HORN, associate the linear conjunctive grammar G Φ = (Σ, N, P, S) defined as follows: N := R and S := R ⊥ ; the set of rules P is the following: to each input clause x = y ∧ Q s (x) → R(x, y) of Φ associate the rule R → s, and to each computation clause x < y ∧ i=1 S i (x + 1, y) ∧ Proof. Let A = (S, S accept , {-1, 0}, f) be a trellis automaton that accepts some language L ⊆ Σ + in real-time and let w = w 1 . . . w n be a word on Σ. The final state q of A acting on the word w x . . . w y is completely determined by the final state q l of A acting on the word w x . . . w y-1 and the final state q r of A acting on the word w x+1 . . . w y . Therefore, we introduce the set of binary predicates R = {R q | q ∈ S} with intuitive meaning: R q (x, y) is true ⇐⇒ the final state of A acting on the subword w x . . . w y is q. The functional dependence ((x, y -1), (x + 1, y)) → (x, y) will then be exactly expressed by our computation clauses.

The following clauses describe the computation of A.

Input clauses:

Computation clauses:

ψ compute := (q l ,qr)∈S 2 (x < y ∧ R q l (x, y -1) ∧ R qr (x + 1, y) → R q (x, y)) where q = f(q l , q r ).

Contradiction clauses:

(min(x) ∧ max(y) ∧ R q (x, y) → ⊥).

Let ψ := ψ input ∧ ψ compute and ψ := ψ ∧ ψ output . For each word w = w 1 . . . w n ∈ Σ + we have the following equivalences:

A accepts w in time n ⇐⇒ The conjunction q∈S \ Saccept ¬R q (1, n) is true in the minimal model ( w , R) of ∀x∀yψ (x, y) ⇐⇒ w satisfies the formula ∃R∀x∀yψ(x, y).

This proves L(A) ∈ incl-ESO-HORN.

Lemma 11. normal-incl-ESO-IND ⊆ Trellis.

Proof. Let Φ be a formula of normal-incl-ESO-IND. We establish a natural bijection between the sites (x, y) of the domain of the formula and the sites (c, t) of the space-time diagram of a OCA running in real-time: see Figure 11. The transition function of this automaton is then deduced from the computation clauses of Φ as in the proofs of Lemma 7 in Section 6.1 and of Lemma 9 in Section 6.2. 

Programming some reference problems in our logics

In this section, we will exhibit natural inductive definitions within our logics for some famous problems of the literature. By the results of the previous sections, such a logical definition can be automatically translated into a program of a real-time cellular automaton of the appropriate type: CA, IA or trellis automaton.

Defining in predecessor Horn logic the product of integers

We now show that school multiplication is naturally described in logic pred-ESO-HORN. Since our logics only define decision problems, the problem should be formalized as , where t x = (a x , b x , p x ), for x ∈ [1, n]. This word is naturally translated into the input structure of domain [1, n] a, b, p := ([1, n]; A 0 , A 1 , B 0 , B 1 , P 0 , P 1 , min, max, pred) where the input predicates A i , B i , P i , for i ∈ {0, 1}, are defined as

The school multiplication. Let us define the successive partial sums, for 1

If, for x ≥ 1, we define e(x) := a × 2 x-1 and d(x) := b x × e(x), then one can write c(x) = c(x -1) + d(x).

Computation predicates. We use the six binary predicates C i , D i , E i , for i ∈ {0, 1}, defined on [1, n] by the equivalence:

Clauses defining predicates E i by expressing e(x) = a × 2 x-1 .

• clauses expressing e(1) = a: x = 1 ∧ A i (y) → E i (x, y), for i ∈ {0, 1};

• clauses expressing e(x) = 2 × e(x -1), for x > 1:

Clauses defining predicates D i by expressing d(x) = b x × e(x).

It remains to implement the induction: c(1) = d(1) and c(x) = c(x -1) + d(x), for x > 1. We use for that the classical addition algorithm.

Addition algorithm Add. Let us define the sum w = w n . . . w 1 = u + v of two integers u = u n . . . u 1 and v = v n . . . v 1 , written with n bits, for length(u + v) ≤ n. Let r 1 , . . . , r n denote the sequence of carries of this addition, with r i ∈ {0, 1}. We have the equalities Add: u 1 + v 1 = r 1 w 1 , and u y + v y + r y-1 = r y w y , for y > 1, with r n = 0 (since w < 2 n ).

Clauses defining predicates C i and the carry predicates R i .

• the following clauses express c(x) = c(x -1) + d(x), for 1 < x ≤ n, by implementing the addition algorithm Add and using the new computation predicates R 0 , R 1 for carries, with h, i, j ∈ {0, 1}:

Remark: For a better reading, we have written the conclusion of clauses ( 1) and (2) as a conjunction of two atoms. Such a clause can be trivially rewritten as the conjunction of two Horn clauses.

Clauses that check c(n) = p.

• x = n ∧ C i (x, y) ∧ ¬P i (y) → ⊥, for i ∈ {0, 1} (meaning: C i (n, y) → P i (y)).

Let Φ Product denote the formula ∃C 0 , C 1 , D 0 , D 

Expressing in logic the set of primes by Fischer's algorithm

Fischer's algorithm [START_REF] Patrick | Generation of primes by one-dimensional real-time iterative array[END_REF] generates in real-time on a cellular automaton the set of prime numbers denoted Prime by the sieve of Eratosthenes: that means there is some state q Prime of the automaton such that at each instant t, the state of the first cell of the automaton is q Prime iff t ∈ Prime. We now want to reformulate Fischer's algorithm in logic. Let us identify each positive integer n and its unary notation 1 n ; so, Prime is the language of words 1 p of length p ∈ Prime. We will define Prime in pred-ESO-IND, or, here in an equivalent way, in pred-dio-ESO-IND.

Let us classify the clauses defining Prime and the predicates they use in two parts:

• the clauses defining Prime by the sieve of Eratosthenes and by using two pre-definite predicates Square and Rail: those clauses construct two new predicates called suggestively Multiple and Rebound;

• the more technical clauses defining the predicates Square and Rail and three auxiliary predicates denoted HalfSlope, Vertical and Horizontal. In order to characterize the sites (r i , 0) of the rectangle, we simulate the square case by doing a bigger vertical move (0, -2) before starting alternations between the 2 i -1 diagonal 1655 moves (-1, -1) and the vertical move (0, -1) (see Figure 22). 

The border predicates and the two generals: LeftBorder, RightBorder, LeftGeneral and RightGeneral.

The left (resp. right) border is defined on the diagonal x = y as the last (resp. first) a in the first (resp. second) sequence of a of a word belonging to a + b + bba + . By means of the left (resp. right) borders we characterize the left (resp. right) general site corresponding to the factor ab 3 (resp. b 3 a).

• LeftBorder(x, y -3) → LeftGeneral(x, y); RightBorder(x + 3, y) → RightGeneral(x, y).

The two external branches: StartLeftBranch and StartRightBranch. The ray defining the external right (resp. left) branch is emitted vertically (resp. horizontally) from the left (resp. right) general.

• LeftGeneral(x, y) → StartRightBranch(x, y); StartRightBranch(x, y -1) → StartRightBranch(x, y);

The first three nodes: Node. The left general and the right general are nodes of the tree:

The intersection between the two external branches marks also one node of the tree:

Remark: The two generals are not empty singletons sets only if the sites ab 3 and b 3 a exist. Therefore, the three initial nodes are created if and only if ab 3 and b 3 a are factors of the input word.

The branches predicates: RightBranch and LeftBranch. From each node of the tree start an horizontal leftward ray symbolizing its left branch and a vertical upward ray symbolizing its right branch.

• Node(x, y) → LeftBranch(x, y); LeftBranch(x + 1, y) → LeftBranch(x, y);

• Node(x, y) → RightBranch(x, y); RightBranch(x, y -1) → RightBranch(x, y).

The leaf predicate: Leaf. According to Lemma 12, a node (x, y) is a leaf of T iff either one of the following conditions holds:

The potential of the node (x, y) is odd and the site (x + 1, y) is a node of T :

• Node(x, y) ∧ Odd(x, y) ∧ Node(x + 1, y) → Leaf(x, y);

The site (x, y -1) is a node of T :

The potential of the node (x, y) is odd and the site (x, y -2) is a node of T :

Remark: When w ∈ a + b 3 a + the first (or second) clause above defines the only leaf of the tree.

Clauses defining the nodes of the potential tree A. Even case, the nodes of the left branches (upper triangles).

The upper diagonal predicate: UpDiag. When the site (x, y) is an even node, an upper diagonal is initialized on the site (x, y + 1).

• Node(x, y -1) ∧ Even(x, y -1) → UpDiag(x, y)

Once initialized, the diagonal follows a trajectory along the vector (-1, 1) until it crosses a left branch, ensuring that no node is created outside the working space of each starting node.

The upper clock: UpClock. The first tick of the upper clock begins two sites above an even starting node. In other terms, a site (x, y) will be the start of the first tick of the upper clock if and only if the site (x, y -2) is an even node:

Once the first tick of the clock emitted, a new tick is initialized every two sites of the right branch of the starting node until its right son is reached:

An upper clock signal runs leftward until it crosses a filter signal in delete phase or the upper diagonal:

The upper filters: UpCross and UpDelete. The two phases cross and delete of an upper filter signal are symbolized by the predicates UpCross and UpDelete. An upper filter signal is initialized in cross phase on the site just above every intersection between an upper clock and the upper diagonal, except when the intersection takes place on the left branch:

• UpDiag(x, y -1) ∧ UpClock(x, y -1) ∧ ¬LeftBranch(x, y -1) → UpCross(x, y)

By default, the filter signals move diagonally along the vector (-1, 1) without changing phase until they cross an upper clock signal or the left branch:

The filter signals change phase when they cross an upper clock signal, except when the intersection takes place on the left branch:

• UpCross(x, y -1) ∧ UpClock(x, y -1) ∧ ¬LeftBranch(x, y -1) → UpDelete(x, y); UpDelete(x, y -1) ∧ UpClock(x, y -1) ∧ ¬LeftBranch(x, y -1) → UpCross(x, y)

The nodes of left branches in the upper triangles: Node. A new node is created on each intersection between the left branch and, the upper diagonal or a filter signal in either phase:

• UpDiag(x, y) ∧ LeftBranch(x, y) → Node(x, y);

• UpCross(x, y) ∧ LeftBranch(x, y) → Node(x, y);

• UpDelete(x, y) ∧ LeftBranch(x, y) → Node(x, y).

Remark: If ab 3 and b 3 a are not factors of the input word, all the predicates above are empty (except Odd and Even) and no nodes (and therefore no leaves) are created.

B. Even case, the nodes of the right branches (lower triangles).

The lower diagonal: LowDiag. When the site (x, y) is an even node, a lower diagonal is initialized on the site (x -1, y + 1):

Like the upper diagonal the lower diagonal follows a trajectory along the vector (-1, 1), this diagonal stops when it crosses a right branch:

The lower clock: LowClock. When the starting node is even, the first tick of the lower clock is always initialized on the site directly on the left of this starting node:

As for the upper clock, a new tick of the lower clock is initialized every two sites of the left branch of the starting node until its left son is reached:

• LeftBranch(x, y) ∧ LowClock(x + 2, y) ∧ ¬Node(x + 1, y) ∧ ¬Node(x + 2, y) → LowClock(x, y).

A lower clock signal runs upward until it crosses a filter signal in delete phase or the lower diagonal:

The lower filters: LowCross and LowDelete. The construction of the lower filter signals is similar to the upper one. A filter signal in cross phase is initialized on the site just to the left of an intersection between the lower clock signal and the lower diagonal only if this intersection is not on the right branch:

Then it moves diagonally and alternates between the cross and delete phases:

• LowCross(x+1, y-1)∧¬LowClock(x+1, y-1)∧¬RightBranch(x+1, y-1) → LowCross(x, y); LowDelete(x+1, y-1)∧¬LowClock(x+1, y-1)∧¬RightBranch(x+1, y-1) → LowDelete(x, y);

The nodes of right branches in the lower triangles: Node. Contrary to the left branch case, the intersection between the lower diagonal and the right branch does not create a new node. Therefore there are only two clauses defining the creation of a node at each intersection between a filter signal and the right branch.

• LowCross(x, y) ∧ RightBranch(x, y) → Node(x, y);

• LowDelete(x, y) ∧ RightBranch(x, y) → Node(x, y).

C. Odd case, the nodes of both left and right branches (upper and lower triangles) . In this section we detail the construction of nodes on both right and left branches when the starting node is odd. Since we do not want leaves to create new nodes, we will use the conjunction Node(δ) ∧ Odd(δ) ∧ ¬Leaf(δ) to refer to odd nodes which are not leaves.

Initialization of diagonals: UpDiag and LowDiag. The diagonal behavior of both upper and lower diagonals stays the same when the starting node is odd. The only change is their initialization: both diagonals are initialized a site higher than in the even starting node case:

• Node(x, y -2) ∧ Odd(x, y -2) ∧ ¬Leaf(x, y -2) → UpDiag(x, y)

Initialization of clocks: UpClock, LowClock and LowCross. The general behavior of upper clocks and lower clocks does not change when the starting node is odd. The initialization change of the upper clock is the same as the upper diagonal, the first tick of the upper clock begins one site higher than in the even starting node case.

• Node(x, y -3) ∧ Odd(x, y -3) ∧ ¬Leaf(x, y -3) → UpClock(x, y)

The initialization change of the lower clock is a bit different, in order to simulate a first clock tick on the starting node itself, the first clock tick of the lower diagonal begins two sites to the left of the starting node and a lower filter signal in cross phase is initialized on the site just to the up left of the starting node.

• Node(x + 2, y) ∧ Odd(x + 2, y) ∧ ¬Leaf(x + 2, y) → LowClock(x, y)

To recap, after this long sequence, we have all the clauses defining the potential tree and its leaves. Next, from the leaves, we will characterize the language Culik.

Clause defining the language Culik within the language a + b + ba + Lemma 13. Let w be a word of

Proof.

If w is of size n ≤ 4, then w = abba is both the only word of a + b + ba + and the only word of Culik's language.

If w is of size n > 4, then

• either w is of the form a i b 2 a j , for i + j > 2, and therefore w is not a word of Culik and does not generate any nodes or leaves because ab 3 and b 3 a are not factors of w,

• or w is of the form a i b k a j , for k ≥ 3 and i, j ≥ 1, and we have the equivalence:

It remains to prove that a + b + ba + belongs to incl-ESO-IND (actually, to incl-ESO-HORN).

Clauses defining the language a + b + ba + . Essentially, the clauses mimic the finite automaton A recognizing the regular expression a + b + ba + Predicates that transport the input through the grid: T s for s ∈ Σ.

Predicates that simulate the automaton A = (Σ, S, 0, F, δ): R q for q ∈ S.

The conjunction of these clauses ensures that the input word belongs to a + b + ba + .

Clause defining the language Culik

Let ψ denote the conjunction of the previous clauses and σ Culik denote its set of computation predicates {Even, Odd, LeftBorder, RightBorder, LeftGeneral, RightGeneral, StartLeftBranch, StartRightBranch, Node, Leaf, LeftBranch, RightBranch, UpDiag, LowDiag, UpClock, LowClock, UpCross, UpDelete, LowCross, LowDelete, 

Conclusion

We believe that this paper contributes to the knowledge of cellular automata, their complexity classes and the design of their programs in two ways:

Descriptive complexity: We establish the first logical characterizations of the classical real-time complexity classes of cellular automata.

Programming: We give a methodology for programming problems on cellular automata from the inductive logical definitions of those problems.

Regarding this last point, we recall that it is difficult to design programs for parallel computers. We lack general tools to design them. Our programming methodology seems to be the first general method for a parallel and local computation model such as the cellular automaton.

Descriptive versus computational complexity of cellular automata

It was known that the three complexity classes studied in this paper, RealTime CA , RealTime IA and Trellis, are the only distinct and natural complexity classes for minimal time, so-called real-time, of one-dimensional cellular automata. In various articles from the 1960s to 2000s, it has been established that each of those classes is robust, in particular with respect to the chosen neighborhood [START_REF] Poupet | Cellular automata: Real-time equivalence between one-dimensional neighborhoods[END_REF], and has several equivalent characterizations in other frameworks: e.g, Trellis is the class of linear conjunctive languages [START_REF] Okhotin | On the equivalence of linear conjunctive grammars and trellis automata[END_REF] and also the class of linear Boolean languages [START_REF] Okhotin | Conjunctive and boolean grammars: The true general case of the contextfree grammars[END_REF].

In this paper, we have presented a unified view of the three real-time classes as part of descriptive complexity. More precisely, we have introduced three logics, pred-ESO-HORN, pred-dio-ESO-HORN and incl-ESO-HORN, which are essentially Horn logics with two first-order variables, applied to a square grid structure, i.e., a structure using the successor and predecessor functions and the minimum and maximum predicates, as its only built-in objects. We have defined the syntax of each of our logics as large (flexible) as possible so that it can express problems in the most natural way. At the same time, a normal form of each logic has been defined so that each normalized formula "mimics" a grid automaton. For each logic, we have given a general algorithm which transforms a formula into its equivalent normal form. Finally, we have proved that those three "grid" logics (or grid automata) whose only difference is the placement of the input word on the square grid, on a side which contains the output vertex, or on the diagonal that contains or does not contain the output vertex, exactly characterize RealTime CA , RealTime IA and Trellis, respectively. In this paper, the successive steps of the normalization algorithms of the logics and the equivalences of these logics with the real-time complexity classes are fully described and proved while they are sometimes more sketchy in [START_REF] Grandjean | Descriptive complexity for minimal time of cellular automata[END_REF].

Logic as a programming language of cellular automata

We believe that the main contribution of this long paper compared to its conference version [START_REF] Grandjean | Descriptive complexity for minimal time of cellular automata[END_REF] is the following:

• We describe a general methodology for programming problems on cellular automata from the inductive logical definitions of these problems;

• The method is applied to a number of specific problems.

For this purpose, we have extended the Horn logics introduced in [START_REF] Grandjean | Descriptive complexity for minimal time of cellular automata[END_REF] as (now called) inductive logics by allowing limited use of negation on hypothesis computation atoms (it is comparable to Stratified Datalog which extends Datalog). Note two essential points: our inductive logics characterize exactly the same real-time complexity classes as the Horn logics; they still have normal forms that mimic grid automata. Regarding our method, the reader may ask the question: What is the real interest of logic to program cellular automata?

The interest of our programming method is evidenced in this paper by the application that we make of it for a representative choice of classical problems (seven examples) that we explicitly express in our logics (Sections 3, 7 and 8) and translate in normal form to illustrate the normalization method for a specific problem (Subsection 3.2). Let us now argue for our logic programming method.

First, in a general setting, logic programming has proven to be a useful paradigm to program several tasks, for example, compiling or database queries, as evidenced in the languages Prolog and Datalog. It allows to define concepts (represented by predicates) inductively, as we have shown here, e.g., for the problems Palindrome, Unbordered and Product.

Second, note that the programming method most used in the literature to program cellular automata is the geometric method of signals and collisions [START_REF] Atrubin | A one-dimensional real-time iterative multiplier[END_REF][START_REF] Patrick | Generation of primes by one-dimensional real-time iterative array[END_REF][START_REF] Cole | Real-time computation by n-dimensional iterative arrays of finite-state machine[END_REF][START_REF] Smith | Real-time language recognition by one-dimensional cellular automata[END_REF][START_REF] Dyer | One-way bounded cellular automata[END_REF][START_REF] Mazoyer | A six-state minimal time solution to the firing squad synchronization problem[END_REF][START_REF] Culik | Variations of the firing squad problem and applications[END_REF][START_REF] Delorme | Signals on cellular automata[END_REF][START_REF] Delorme | Algorithmic tools on cellular automata[END_REF]. We think that our logical description of signals (by predicates) and of their collisions and transformations (by implication clauses often using negation) is both more intuitive (more readable) and more precise (more formal) than their direct encoding by states of the final automaton that literature only sketches in general. Logic both is flexible -it is a high-level programming language -and allows for formal proofs as we have shown in the seven examples that we have studied in detail. This is especially important for the most elaborate problems: the multi-parenthesis language Dyck k recognition (Subsection 7.3) and overall the Culik language recognition (Section 8), which involves synchronization by the "divide and conquer" method.

Note that logic is a more synthetic language to describe a problem than the cellular automaton that decides it. Indeed, it is shown in Section 6 that one state of the automaton is translated into one predicate of the corresponding formula, so that each transition rule of the automaton is expressed by one Horn clause; conversely, a logical formula is converted to an automaton whose set of states is the power set of the set of predicates of the formula, so that the size of the automaton is exponential in the size of the initial formula.

In summary, logic is a nice intermediate language: it links the geometry of signals to cellular automata, while preserving complexity.

Solved questions versus open problems

It seems that the main questions concerning the mutual relationships between the three real-time CA does not depend on the neighborhood chosen for the d-dimensional cellular automata provided it is complete [START_REF] Grandjean | A linear acceleration theorem for 2d cellular automata on all complete neighborhoods[END_REF], i.e., allows to reach by iteration all the points of Z d .

How do the results of this paper extend to the real-time complexity classes of cellular automata of dimension 2 or more? Considering that the normalized versions of our logics, identified to square grid circuits, offer a new view of the real-time complexity classes of dimension 1, it is natural to ask the following questions: What are the complexity classes that correspond to cubic grid circuits? How robust are those classes?

They seem difficult questions in case the input is a 2-dimensional picture. Indeed, a number of papers [START_REF] Terrier | Two-dimensional cellular automata recognizer[END_REF][START_REF] Terrier | Two-dimensional cellular automata and deterministic on-line tessalation automata[END_REF][START_REF] Grandjean | Differences between 2d neighborhoods according to real time computation[END_REF][START_REF] Grandjean | Comparing 1d and 2d real time on cellular automata[END_REF] have shown that real-time complexity of 2-dimensional languages is very sensitive to the neighborhood chosen. This contrasts with the robustness of linear time complexity in any dimension and of real-time complexity classes for dimension 1.

Therefore, a more promising line of research would be to study, starting from the results of [START_REF] Terrier | Low complexity classes of multidimensional cellular automata[END_REF], the descriptive complexity of the classes of languages (sets of words) decided in real-time on a cubic grid (or, more generally, on a grid of dimension d ≥ 3) in comparison to real-time on multidimensional cellular automata.