Modulation of metallic oxide particle behaviour in a formulation: physicochemical and/or sensory properties of emulsions as a tool to identify particles interactions within the matrix

Daria Terescenco, Géraldine Savary, Nicolas Hucher, Celine Picard

To cite this version:
Daria Terescenco, Géraldine Savary, Nicolas Hucher, Celine Picard. Modulation of metallic oxide particle behaviour in a formulation: physicochemical and/or sensory properties of emulsions as a tool to identify particles interactions within the matrix. 32nd Conference of The European Colloid and Interface Society (ECIS2018), Sep 2018, Ljubljana, Slovenia. hal-02468429

HAL Id: hal-02468429
https://normandie-univ.hal.science/hal-02468429
Submitted on 8 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modulation of metal oxide particle behavior in a formulation: physicochemical and sensory properties of emulsion as a tool to identify particles interaction within the matrix

Teressceno Daria*, Savary Géraldine*, Hucher Nicolas*, Picard Céline*

[1] Normandie Univ, UNILEHAVRE, FR 3838 CNRS, URCOM, 76600 Le Havre, France

The aim of this study lays on the fundamental approach in the understanding of the behavior of the systems containing solid particles. Two metallic oxides were selected depending on their different physicochemical properties and introduced in a formulation. Then, stable, homogeneous and totally emulsified systems, never discussed in the literature before, were described through a fundamental, multiscale characterization. Rheological, thermal and sensory behavior, as well as emulsion colloid size and size distribution, were used as a tool to identify the role of the particles on the matrix organization.

Particles covering the water droplets

Microscopic scale
- Particles promoted the emulsion formation through the stabilization of the oil/water droplets inside the matrix.
- Droplets visual aspect is influenced by the particle type.

O/W spherical droplets and distorted droplets

Macroscopic scale
- Oscillatory rheology: Short G' plateau - immediate response of the product to the increasing deformation.
- Flexible structure.

O/W spherical droplets

Emulsification

Thermogravimetric analysis
- O/W TiO₂ emulsion: water free evaporation (continuous phase).
- W/O ZnO emulsion: water retained as internal phase.

Thermal response
- W/O ZnO emulsion: oil freeze stage.
- O/W TiO₂ emulsion: W/O internal phase.

Resistance to the deformation
- Rapid emulsions destruction.

Sensory perception

Conclusion

This study showed that emulsions stabilized with solid particles:

- Can be oil on water or water in oil type, depending on the particle properties (hydrophobic or lipophilic);
- Posses specific thermal behavior, due to the particle strong adhesion on the droplet surface;
- Show individual macroscopic response and sensory perception, governed not only by the emulsion type, but also by the particles individual properties.

The chosen particle type clearly impacted the properties of the system at microscopic and macroscopic level. This impact should be taken into account when discussing classical emulsions containing particles in their composition. The next step of this work will be to complete the studied range of particles with other metal oxides to achieve the fundamental understanding of the particles role in the matrix.
