

IMPACT OF A TIO2 [NANO] COSMETICS GRADE ON THE CUTANEOUS MICROBIOTA: NANOPARTICLES BEHAVIOR IN EMULSION AND BACTERIOTOXICITY

Laura Rowenczyk, Magalie Barreau, Celine Picard, Cécile Duclairoir-Poc, Nicolas Hucher, Nicole Orange, Marc G J Feuilloley, Michel Grisel

▶ To cite this version:

Laura Rowenczyk, Magalie Barreau, Celine Picard, Cécile Duclairoir-Poc, Nicolas Hucher, et al.. IMPACT OF A TIO2 [NANO] COSMETICS GRADE ON THE CUTANEOUS MICROBIOTA: NANOPARTICLES BEHAVIOR IN EMULSION AND BACTERIOTOXICITY. 29th Congress of the IFSCC, Oct 2016, Orlando, United States. hal-02468129

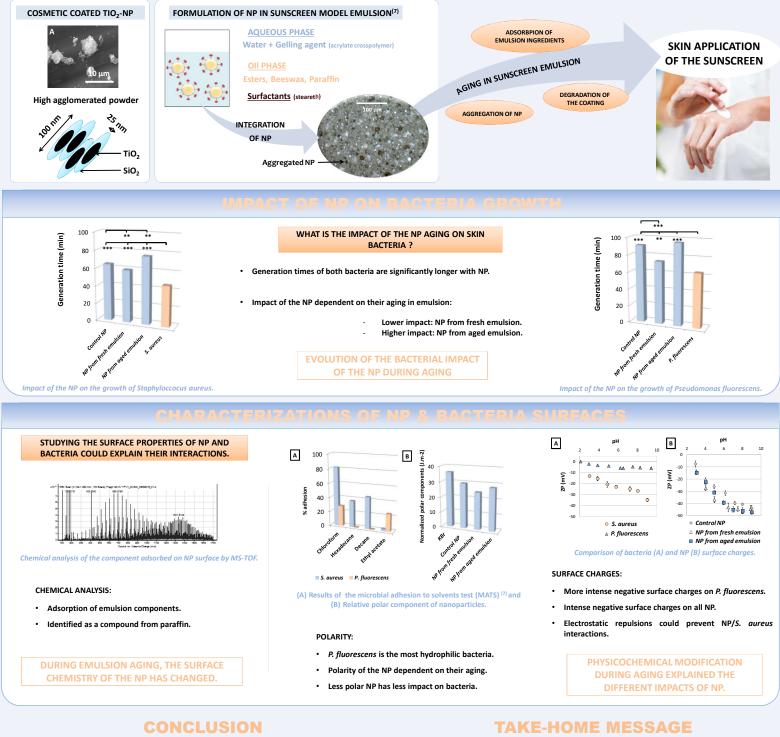
HAL Id: hal-02468129 https://normandie-univ.hal.science/hal-02468129

Submitted on 5 Feb 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Laura Rowenczyk^{a,b}, Magalie Barreau^b, Céline Picard^a, Cécile Duclairoir-Poc^b, Nicolas Hucher^a, Nicole Orange^b, Marc Feuilloley^b and Michel Grisel^a

a. Normandie Univ, ULH, CNRS, URCOM, 76600 Le Havre, France.


b. Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, 55 rue saint Germain 27000 Evreux, France

Titanium dioxide (TiO₂) nanoparticles (NP) are commonly used in cosmetics as UV filters (1,2). For cosmetic grades, coatings (silica or alumina) are applied to prevent TiO₂ from forming radicals. These coatings procure to the NP their surface properties (polarity, charge) and impose their behavior in emulsion.

During formulation and storage, cosmetic emulsions are exposed to aggressions which can accelerate aging. NP in emulsion may aggregate, adsorb formula's compounds or be deteriorated⁽⁵⁾. Hence, the chemical and physicochemical characteristics of these NP could be modified before the skin exposure.

Herein the surface modifications of the NP are studied during aging in emulsion. Then, these modifications are related to the impact of the NP on two cutaneous bacteria. Hence, bacteria are known to compose the first skin barrier.

In this study, the aging of a coated TiO2-NP was studied in emulsion and gave important information concerning the NP behavior under use conditions.

When measuring the impact of coated-NP on biological models, it is necessary to study their aging under use condition as their surface properties could quickly evolve.

A.; Lademann, J.; Myllyla, R. J. of Phys D Appl. Phys. 2005, 38, 2564–2570. Wang, S. Q. Nanotechnology in photoprotection. Carls and Carl

The surface chemistry of the NP quickly evolved once in emulsion as the particles adsorbed emulsion ingredients. This evolution induced a modification of the physicochemistry of the NP surface (polarity, charges...) and changed the NP impact toward the cutaneous bacteria.

Whereas the surface charges were not shown to have a significant impact, the polarity of the NP is a key parameter that strongly modifies the interaction NP/bacteria.

ov, A.; Pietzhev, A.; Lademann, J.; Mylthja, N.; All *ange or spectra stress stress stress stress*, and and a stress of the stre

ut. 2010. 3482–3489