
HAL Id: hal-02463468
https://normandie-univ.hal.science/hal-02463468

Submitted on 5 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Data Mining Techniques for Compressing
Table Constraints

Soufia Bennai, Kamal Amroun, Samir Loudni

To cite this version:
Soufia Bennai, Kamal Amroun, Samir Loudni. Exploiting Data Mining Techniques for Compressing
Table Constraints. IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI),
Nov 2019, Portland, Oregon, United States. �10.1109/ICTAI.2019.00015�. �hal-02463468�

https://normandie-univ.hal.science/hal-02463468
https://hal.archives-ouvertes.fr

Exploiting Data Mining Techniques for
Compressing Table Constraints
Soufia Bennai

LIMED – Faculty of Exact Sciences, University of Bejaia
Bejaia, Algeria

sofia.bennai21@gmail.com

Kamal Amroun
LIMED – Faculty of Exact Sciences, University of Bejaia

Bejaia, Algeria
kamalamroun@gmail.com

Samir Loudni
GREYC (CNRS UMR 6072), University of Caen Normandy

Caen, France
samir.loudni@unicaen.fr

Abstract—In this paper, we propose an improvement of the
compression step of sliced table method proposed by Gharbi
et al. [1] for compressing and solving table constraints. We
consider only n-ary CSP defined in extensional form. More
precisely, we propose to use the cover of an itemset in the FP-
tree instead of its frequency to improve the construction step
of the resulting compressed tables. Moreover, we propose to
exploit the compression rate metric instead of savings to compute
frequent itemsets relevant for compression. This allows higher
compression and leads to an efficient resolution of compressed
tables by identifying more accurate frequent itemsets necessary
for compression. Experimental results show the effectiveness and
efficiency of our approach.

I. INTRODUCTION

Many real world applications can be formulated as Con-
straint Satisfaction Problems (CSPs). A CSP can be defined
as a set of variables with finite domains of possible values
and a set of constraints defined on subsets of variables.
Constraints defined in extension (table constraints) are widely
used (database, configuration problems, etc.). A list of tuples
of allowed or forbidden values of a set of variables is given.
The size of table constraints can be very large, especially
with the advent of Big Data. So, very large table constraints
can be an obstacle for the solving process. Many works have
been proposed in the literature to compress CSP in order to
facilitate their solving. We can cite Sliced tables [1], Multi-
valued Decision Diagrams (MDD) [5], micro-structure based
compression [4], etc.
In this work, we present an improvement of the compression
step of sliced table method (called in this work Frequent
Pattern Tree Compression Method (FPTCM)) which uses an
FP-Tree structure to enumerate the frequent itemsets relevant
for compressing table constraints [1]. Mainly, we proceed as
follows:
• First, we construct the FP-Tree in another way. Instead of

considering only the frequencies of items in the header
table and in the FP-Tree, we also exploit the notion of
coverage which consists on all the tuples in which an item
appears. This allows to reduce the time of construction
of the compressed relation.

• Second, we propose to compute the compression rate pos-
sible with an itemset u instead of its savings (|u|∗(f−1)
where f is the frequency of u) to decide wether u is
relevant for compression or not. Because computing the
savings of a node and its parent does not consider the
same number of tuples.

We evaluated our proposition on some bench-
marks, downloaded from https://www.cril.univ-
artois.fr/ lecoutre/benchmarks, and the obtained results
are very promising.

The rest of this paper is organized as follows. In Section II
we give some definitions in Constraint Satisfaction Problems
(CSPs) and frequent itemsets mining. Section III reviews some
related works. In Section IV, we present the compression step
of the sliced table method proposed by Gharbi et al. [1].
Mainly, we also give its weakness. Section V is devoted to our
proposition. Experiments carried out in this work are presented
in Section VI. We conclude with some remarks and avenue for
future works.

II. BACKGROUND

A. Constraint Satisfaction problem

A CSP [2] consists of a finite set of variables V =
{v1, · · · , vn} with finite domains D = {D1, . . . , Dn} such
that each Di is the set of values that can be assigned to vi,
and a finite set of constraints C. Each constraint ci ∈ C is
defined as a pair (S(ci), R(ci)), where S(ci) (the scope of
the constraint ci) is the set of variables involved in ci and
R(ci) is a relation that defines the set of tuples allowed for
the variables of ci. We define the arity of ci as the size of its
scope. The objective is to find an assignment (vi = di) with
di ∈ Di for i = 1, . . . , n, such that all constraints are satisfied.

Example 1: Let be the following CSP:
V = {v0, . . . , v5}, D = {D0 . . . , D5} where,
D0 = D1 = D2 = D3 = D4 = D5 = {1, . . . , 7}.
C = {c0} where, c0 = {(v0, v1, v2, v3, v4, v5), R(c0)} and
R(c0) = {(1 2 1 1 1 1), (1 2 1 2 1 1), (1 2 1 3 1 1), (1 3 1
1 1 1), (1 3 2 1 1 1), (1 3 1 2 1 1), (1 3 1 3 1 1), (1 3 1 3

TID v0 v1 v2 v3 v4 v5
t0 1 2 1 1 1 1
t1 1 2 1 2 1 1
t2 1 2 1 3 1 1
t3 1 3 1 1 1 1
t4 1 3 2 1 1 1
t5 1 3 1 2 1 1
t6 1 3 1 3 1 1
t7 1 3 1 3 1 2
t8 1 4 2 1 1 1
t9 1 4 2 2 1 1
t10 1 5 2 1 1 1
t11 2 3 1 1 1 1
t12 2 3 1 3 1 1
t13 2 4 2 1 1 1
t14 2 4 2 2 1 1
t15 2 4 2 3 1 1
t16 3 3 1 1 1 1
t17 4 3 1 1 1 1
t18 4 3 1 2 1 1
t19 5 4 2 1 1 1
t20 7 4 2 3 2 2

(a) Transactional dataset T Dc0 .

v0 v2 v1v3 v4 v5
2 1 1 1
2 2 1 1

1 1 2 3 1 1
3 1 1 1
3 2 1 1
3 3 1 1
3 3 1 2

(b) An entry of R(c0).

TABLE I: Running example.

1 2), (1 4 2 1 1 1), (1 4 2 2 1 1), (1 5 2 1 1 1), (2 3 1 1 1
1), (2 3 1 3 1 1), (2 4 2 1 1 1), (2 4 2 2 1 1), (2 4 2 3 1 1),
(3 3 1 1 1 1), (4 3 1 1 1 1), (4 3 1 2 1 1), (5 4 2 1 1 1), (7
4 2 3 2 2)}.

B. Frequent itemset mining

Let I be a set of n distinct literals called items, an itemset
(or pattern) is a non-null subset of I. The language of itemsets
corresponds to LI = 2I\∅. A transactional dataset is a
multi-set of m itemsets of LI . Each itemset, usually called
a transaction or object, is a dataset entry.

Let T a transaction dataset, p ∈ LI be an itemset, and
match1 : LI×LI 7→ {true, false} a matching operator. The
cover of p w.r.t T , denoted by cov(p), is the set of transactions
in T that p matches: cov(p) = {t ∈ T | match(p, t) = true}.
The frequency of p is the size of its cover: f(p) = |cov(p)|.

Let Smin be a minimal support threshold. The frequent
itemset mining problem consists in computing the set of all
patterns p having a number of occurrences in the dataset
exceeding Smin : f(p) ≥ Smin.

C. Constraint based compression by itemset mining

In this subsection we show how a constraint relation R(ci)
defined over a constraint ci can be represented as a transna-
tional dataset T Dci . Then, we show how to compress R(ci)
using itemset mining techniques.

Let P = (V,D, C) be a CSP and R(ci) be a constraint
relation associated with a constraint ci ∈ C. The transactional
dataset T Dci is defined as follows: (i) the union of the
domains of the variables in the scope of ci represent the set of
items of I, (ii) the set of values involved in the tuple t ∈ R(ci)
forms a transaction in T . Table Ia shows the transactional
dataset associated with the constraint relation of R(c0) of
Example 1.

1For an itemset p ∈ LI and a transaction t, match(p, t) = true iff p
covers transaction t.

In this context, an itemset u of a constraint relation R(ci)
is an assignment of some variables involved in the scope of
ci.

Example 2: In Table Ia, u = {v0 = 1, v2 = 1} is an
itemset. The cover of u is cov(u) = {t0, t1, t2, t3, t5, t6, t7}
and f(u) = 7.

The main idea behind the use of pattern mining to derive
a compact representation of the constraint relation is to use
frequent itemsets extracted from the transaction dataset as
a summary of a set of transactions. These transactions are
replaced by each frequent itemset that covers them. The result-
ing compressed constraint relation consists of a set of entries
where each entry contains an itemset and its corresponding
sub-table.

Definition 1: The sub-table St associated with an itemset u
of a constraint ci is the set of tuples of R(ci) containing u
after removing u from them.

Definition 2: An entry for a constraint relation R(ci) is
a pair (u, St) such that u is a frequent itemset and St its
corresponding sub-table.

Example 3: Table Ib shows the entry corresponding to the
itemset u = {v0 = 1, v2 = 1} and its resulting sub-table.

Let u be a frequent itemset, f its frequency and T the set of
compressed transactions. Let sizea (resp. sizeb) be the size of
T after (resp. before) compression. To assess the quality of a
summary u of a set of transactions T , we define the following
metric:

Definition 3 (Compression rate): The compression rate of a
set of transactions T w.r.t. itemset u is defined as follows:

Rate = 1− sizea
sizeb

(1)

where sizeb = arity ∗ f .

III. RELATED WORKS

Katsirelos and Walsh [3] proposed a first approach for
compressing large arity table constraints using decision trees.
The tuples of the original table constraints are replaced by a
set of compressed tuples, leading to a more compact repre-
sentation. Jabbour et al. [4] proposed a SAT based approach
for compressing table constraints of a CSP. They proposed
two new rewriting rules for reducing the size of the constraint
network as well as the size of the constraint relations while
preserving the original structure of table constraints. They
used closed itemsets to compute a summary of tuples of each
table constraint. Another form of compression that uses Multi-
valued Decision Diagrams (MDD) was proposed by Cheng et
al. [5]. It enumerates the frequent itemsets and replaces each
occurrence of an itemset by a unique symbol. The frequent
itemsets are independent of their initial position in the tuples.
Mairy et al. [9] proposed a new compressed form of table
constraints called smart tables which is a set of smart tuples.
Smart tuples contain simple arithmetic constraints. Nightingale
et al. [10] also proposed a new representation of table

t0 v4=1:20 v5=1:19 v2=1:12 v0=1:11 v3=1:10 v1=2:3
t1 v4=1:20 v5=1:19 v2=1:12 v0=1:11 v3=2:5 v1=2:3
t2 v4=1:20 v5=1:19 v2=1:12 v0=1:11 v3=3:6 v1=2:3
t3 v4=1 (20) v5=1:19 v2=1:12 v0=1:11 v1=3:10 v3=1:10
t4 v4=1:20 v5=1:19 v0=1:11 v1=3:10 v3=1:10 v2=2:9
t5 v4=1:20 v5=1:19 v2=1:12 v0=1:11 v1=3:10 v3=2:5
t6 v4=1:20 v5=1:19 v2=1:12 v0=1:11 v1=3:10 v3=3:6
t7 v4=1:20 v2=1:12 v0=1:11 v1=1:10 v3=3:6 v5=2:2
t8 v4=1:20 v5=1:19 v0=1:11 v3=1:10 v2=2:9 v1=4:7
t9 v4=1:20 v5=1:19 v0=1:11 v2=2:9 v1=4:7 v3=2:5
t10 v4=1:20 v5=1:19 v0=1:11 v1=5:10 v3=1:10 v2=2:9
t11 v4=1:20 v5=1:19 v2=1:12 v1=3:10 v3=1:10 v0=2:5
t12 v4=1:20 v5=1:19 v2=1:12 v1=3:10 v3=3:6 v0=3:5
t13 v4=1:20 v5=1:19 v3=1:10 v2=2:9 v1=4:7 v0=2:5
t14 v4=1:20 v5=1:19 v2=2:9 v1=4:7 v0=2:5 v3=2:5
t15 v4=1:20 v5=1:19 v2=2:9 v1=4:7 v3=3:6 v0=2:5
t16 v4=1:20 v5=1:19 v2=1:12 v1=3:10 v3=1:10 v0=3:1
t17 v4=1:20 v5=1:19 v2=1:12 v1=3:10 v3=1:10 v0=4:2
t18 v4=1:20 v5=1:19 v2=1:12 v1=3:10 v3=2:5 v0=4:2
t19 v4=1:20 v5=1:19 v3=1:10 v2=2:9 v1=4:7 v0=5:1
t20 v2=2:9 v1=4:7 v3=3:6 v5=2:2 v0=7:1 v4=2:1

TABLE II: Tuples sorted according to decreasing frequencies.

constraints called short tables, where the authors identify short
supports that are a generalization of the supports of tuples.

Finally, the authors of [1] introduced a new compression
method based on FP-Tree structure to enumerate the frequent
itemsets necessary for compressing table constraints. They
proposed to use a saving function to decide if a frequent
itemset is needed for compression or not. The compressed
table constraint consists of a set of entries where each entry
contains an itemset and its corresponding sub-table. Our
approach improves the method proposed by [1] in several ways
(see Section V).

IV. FREQUENT PATTERN TREE COMPRESSION METHOD

In this section we briefly describe the approach of Gharbi
et al. [1], called FPTCM (Frequent Pattern Tree Compression
Method), for compressing table constraints. Then, we discuss
its main weaknesses.

A. FPTCM in nutshell

The principle of FPTCM is to enumerate only frequent
itemsets relevant for compression. Such itemsets are obtained
as follows: first, FPTCM computes the frequency f of each
item, then it sorts each tuple in decreasing order of frequency
values. Items which have a frequency below the threshold
Smin are removed from the tuple because they cannot appear
in a frequent itemset. In the rest of this paper, we will consider
Smin = 2. The result of this reduction on transactional
dataset T Dc0 is given by Table II where the number after
(:) represents the frequency of an item.

Second, once a tuple is sorted and possibly reduced, it is
inserted in the FP-Tree which is essentially a tree where each
branch represents the frequent part of a tuple and each node
contains the number of branches which share that node (details
of the construction of an FP-Tree can be found in [8]). Each
edge from a parent to its child is labeled with a value. The
root node does not have any label. Figure 1 represents the

FP-tree obtained on our running example. Here, we give the
modified FP-tree obtained by our approach (see Section V for
more details). In the original FP-tree, each node contains the
number of transactions containing the itemset represented by
the path from the root to the node in question.

Third, nodes that save less values than their parents are
removed from the tree. The savings of an itemset u is |u| ∗
(f − 1) values, where f is the frequency of u. The remaining
itemsets are those relevant for compression.

Finally, FPTCM creates an entry for each frequent itemset
u by scanning the relation to find the tuples that contain
u, removes u from them and adds the reduced tuples to
the corresponding sub-table. Tuples that do not contain any
frequent itemset are added to a default table. Algorithm 1
summarizes the steps of FPTCM.

B. Weaknesses of FPTCM

FPTCM computes the number of items to save by compress-
ing f tuples using the frequent itemset u, and compares it to
the number of items to save by compressing f ′ tuples using
the frequent itemset u′ where u′ is the parent of u (f ′ ≥
f). If the savings of u is greater than the savings of u′, then
u is considered as relevant for compression. However, if the
number of items to save using u is fewer compared to the
number of items to save using u′ this does not mean that u
is not relevant for compression because the two savings are
computed using different number of transactions, leading to a
less accurate approximation of the gain of compression.

Let us consider the FP-tree of Figure 1. We can see that
itemset u′ = {v4 = 1, v5 = 1} can save 36 items. Consider
again the following four itemsets u0 = {v4 = 1, v5 = 1, v2 =
1}, u1 = {v4 = 1, v5 = 1, v2 = 2}, u2 = {v4 = 1, v5 =
1, v3 = 1} and u3 = {v4 = 1, v5 = 1, v0 = 1}. u0 has
a frequency equal to 11 and can save 30 items. u1 has a
frequency equal to 2 and can save 3 items. u2 has a frequency
equal to 2 and can save 3 items. u3 has a frequency equal to 4
and can save 9 items. As itemset u′ is a parent node and can
save more items than each of its specialization (i.e., itemsets
u0, u1, u2 and u3), FPTCM will consider u′ as relevant for
compression. However, considering together itemsets u0, u1,
u2 and u3 for compressing tuples can save 45 items.

To create the compressed relation, FPTCM scans the relation
and for each tuple ti, it browses the selected frequent itemsets
to find which frequent itemset contains the tuple ti, then
adds the rest of the tuple to the corresponding sub-table. By
doing so, FPTCM may require lot of time to complete the
compression.

V. FREQUENT PATTERN TREE COMPRESSION METHOD+

(FPTCM+)

In this section, we present our compression method, called
FPTCM+, which improves FPTCM in two ways:
• FPTCM+ uses a header table to store single items and

their cover. Moreover, each node of the FP-Tree com-
puted by FPTCM+ contains the cover of the itemset
represented by the path from the root to that node.

Fig. 1: FP-tree obtained on the example of Table II.

Algorithm 1: FPTCM (T Dc. : table, Smin: integer)
Data: LFItemsets: set of itemsets
Result: Rc(ci) Compressed relation

1 create the header table corresponding to T Dc;
2 foreach tj ∈ T Dc do
3 sort tj by decreasing order of value frequency of

items and remove values less frequent than Smin;
4 add tj to the FP-Tree T ; // the nodes

represent the frequencies of items
5 end
6 Reduce T by removing the nodes with frequency less

than the threshold Smin or the gain that can be
obtained by each node (|u| ∗ (f(u)− 1)) is less than
the one obtained by its parent;

7 foreach tuple tj ∈ Rci do
8 Search in the tree T if tj begins with a frequent

itemset then add it to the corresponding sub-table
else add it to the default table.

9 end

This greatly improves the construction of the compressed
relation, since the cover of each frequent itemset is
known. Consequently, FPTCM+ does not need to verify
for each tuple which frequent itemset is contained in.

• Instead of computing the savings for a frequent itemset
u, we propose in FPTCM+ to consider the compression
rate metric (see Definition 3). As for FPTCM, we compare
the estimate compression rate with the itemset u against
the estimate compression rates with specializations (i.e.
super-itemsets2) of u. If the estimate compression rate
with itemset u is lower than the one obtained with its fre-
quent super-itemset, then u will be considered as relevant
for compression; otherwise the set of its frequent super-
itemsets will be considered. This process is repeated for

2A frequent super-itemset of u is obtained by adding to u a frequent item
ei such that ei /∈ u and ei is the label of the edge from u to its child in the
FP-Tree.

Algorithm 2: FPTCM+ (T Dc. : table, Smin: inte-
ger)

Data: LFItemsets: set of itemsets
Result: Rc(ci) Compressed relation

1 create the header table corresponding to T Dc;
foreach tj ∈ T Dc do

2 sort tj by decreasing order of value frequency of
items and remove values less frequent than Smin;

3 add tj to the FP-Tree T ; // the nodes
represent the covers of itemsets
instead of the frequencies

4 end
5 reduce T by removing nodes with frequency less than

Smin;
6 foreach child node n of the root node of T do
7 MFItemset(n, Smin, LFItemsets);
8 end
9 foreach itemset ∈ LFItemsets do

10 compress the tuples that contain itemset,
11 end

each frequent super-itemset of u.

A. FPTCM+ in nutshell

In this section, we present the basic steps of our method (see
Algorithm 2). The difference between FPTCM+ and FPTCM
are highlighted in bold.

First, a header table associated with the transactional dataset
T Dc of the constraint relation Rc is created. It is represented
as a matrix in which single items and their covers are stored.
This step requires one scan of the table. Table III shows the
header table associated with the dataset T Dc0 of Table II and
corresponding to the constraint relation R(c0) of our running
example. Then, in the second scan, each transaction is scanned,
the set of frequent items in it is sorted in decreasing order of
frequency of values and then inserted into the FP-tree T as
a branch (see lines 2-3, Algorithm 2). If an itemset shares a

Algorithm 3: MFItemset (n: node, Smin: integer,
LFItemsets: set of itemset)

Result: LFItemsets: set of itemsets
; // Let u be the itemset
corresponding to the path from the
root node to n

1 if n is a leaf node then
2 Add u to LFItemsets;
3 else
4 add to childn the child nodes of n with a

frequency greater than or equal to Smin ;
5 sumf ←

∑
v∈childn

f(v);
6 compute the compression rate value Rate using

itemset u ;
7 compute the compression rate value ChRate using

the set of frequent super-itemsets of u;
8 if (ChRate < Rate) then
9 Add the itemset u to LFItemsets ;

10 else
11 foreach v ∈ childn do
12 MFItemset (v, Smin, LFItemsets);
13 end
14 if sumf < f then
15 Add the itemset u to LFItemsets ;
16 end
17 end
18 end

prefix with an itemset already in the tree, this part of the branch
will be shared. In addition, each node in the tree stores the
identifiers of transactions containing the itemset represented
by the path from the root to the node in question. Figure 1
shows the FP-tree obtained on the dataset of Table II. In the
end, nodes with a frequency below the threshold Smin are
removed from T , because they cannot be frequent itemsets
(line 6, Algorithm 2). In Figure 1, nodes in bold are those
having a frequency greater than or equal to Smin = 2.

Now, the constructed FP-tree contains all frequency infor-
mation of the dataset. Algorithm 3 summarizes the different
steps to identify in the FP-tree itemsets that are relevant for
compression using the compression rate metric. First, for each
node n that is not a leaf node, we store in a list Childn (let
nbrCh be its length) all its children having a frequency (the
frequency is given by the node itself) greater than or equal to
Smin (line 4 of Algorithm 3). Let u be the frequent itemset
corresponding to the branch from the root to node n and f its
frequency. Second, the sum of frequencies of these children is
computed (let sumf be this sum) (line 5 of Algorithm 3).

To decide which itemset is relevant for compression, we
compare the compression rate values between itemset u (de-
noted Rate) and its super-itemsets (denoted ChRate) (lines
6-8 of Algorithm 3). If the value of ChRate is below the
value of Rate, then the current itemset u is considered as
relevant for compression, else we consider its super-itemsets

(loop of lines 8-17). For each super-itemset ch, a recursive
call to procedure MFItemsets is performed. In line 14, all
transactions that are not covered by the super-itemsets of u
(i.e., sumf < f) will be compressed using u (line 15 of
Algorithm 3). In the case where the node n is a leaf one, the
associated itemset is considered as relevant for compression
(lines 1-2 of Algorithm 3).

To complete the compression, we create an entry (u, St)
for each frequent itemset u we have identified. For each
transaction ti in cover(u), we remove u from ti and we add
it to its corresponding sub-table St. Example 4 details the
different steps of Algorithm 3 on our running example.

B. Summarization using compression rate

To identify itemsets in the FP-tree that are relevant for
compression, we propose to use the compression rate metric.
Let u be the frequent itemset corresponding to the path from
the root note to current node and arity be the arity of the
constraint relation to compress. We have two cases :

1) If the compression is achieved using itemset u, the size
sizea of the transactions after their compression is equal
to the length of u plus the size of its corresponding
sub-table. The size of the sub-table is obtained by
multiplying the arity of the sub-table (arity − |u|) by
the frequency of u : sizea = |u|+(arity−|u|)∗f . The
size sizeb of the transactions before their compression
is sizeb = arity ∗ f . By applying Definition 3, we have

Rate = 1− |u|+ (arity − |u|) ∗ f
arity ∗ f

2) if the compression is achieved using the set of frequent
super-itemsets of u, the size sizea of the transactions
after their compression is defined as follows : sizea =
sizesup + sizesub + sizetcmp, where
• sizesup is the size of super-itemsets of u used for

compression: sizesup = nbrCh ∗ (|u|+ 1);
• sizesub is the size of all the sub-tables obtained

after compression by super-itemsets of u : sizesub
= (arity − (|u|+ 1)) ∗ sumf ;

• sizetcmp corresponds to the size after compression
of all transactions not covered by any super-itemset
of u : sizetcmp = (f − sumf) ∗ |u|+ |u|.

By applying Definition 3, we have

ChRate = 1− suzesup + sizesub + sizetcmp

arity ∗ f (2)

Using the compression rate metric allows us to evaluate
accurately the real gain that can offer the compression of
f transactions using itemset u against the gain offered by
considering super-itemsets of u. Indeed, we consider exactly
the same number of transactions in the two cases. In contrast,
FPTCM compares the savings obtained when using both the
frequent itemset u and the parent of u. However, both cases
use different sets of transactions to compute this savings. This
gives a less accurate result in terms of compression gain.

Item v0 v1 v2 v3 v4 v5
1 t0, ...,

t10

∅ t0, ...,
t3, t5,
t6, t7,
t11,
t12,
t16,
t17,t18

t0, t3,
t4, t8,
t10,
t11,
t13,
t16,
t17,
t19

t0, ...,
t19

t0, ...,
t6, t8,
..., t19

2 t11, ...,
t15

t0, t1,
t2

t4, t8,
t9, t10,
t13,
t14,
t15,
t19,
t20

t1, t5,
t9, t14,
t18

t20 t7, t20

3 t16 t3, ...,
t7, t11,
t12,
t16,
t17,
t18

∅ t2, t6,
t7,t12,
t15,
t20

∅ ∅

4 t17,
t18

t8, t9,
t13,
t14,
t15,
t19,
t20

∅ ∅ ∅ ∅

5 t19 t10 ∅ ∅ ∅ ∅
7 t20 ∅ ∅ ∅ ∅ ∅

TABLE III: Header table associated with dataset T Dc0 .

Example 4: In our example, the node corresponding to itemset
(v4 = 1) will be explored first. Only the child node (v5 = 1)
has a frequency greater than Smin = 2. Therefore, super-
itemset (v4 = 1,v5 = 1) will be considered (nbrCh = 1 and
sumf = 19). For itemset (v4 = 1), the value of Rate is equal
to 0.15, while for itemset (v4 = 1,v5 = 1), ChRate = 0.3.
As (ChRate > Rate), the child node (v5 = 1) becomes the
current node. It has four child nodes (nbrCh = 4) and the
sum of their frequencies sumf is equal to 19. The value of
Rate for itemset (v4 = 1,v5 = 1) is equal to 0.31, while the
value of ChRate for its four super-itemsets is equal to 0.39.
As again (ChRate > Rate), the child nodes of the node
(v5 = 1) will be considered. We start by the child (v0 = 1);
all its child nodes are not frequent. So, transactions stored in
the node (v0 = 1) (i.e., t4, t8, t9 and t10) will be compressed
using the frequent itemset (v0 = 1, v4 = 1, v5 = 1). When
the algorithm completes the exploration of all the nodes of the
FP-tree, we get the following set of frequent itemsets used for
the compression and the associated compressed transactions:
• (v1 = 3, v2 = 1, v4 = 1, v5 = 1), {t11, t12, t16, t17, t18}.
• (v0 = 1, v2 = 1, v4 = 1, v5 = 1), {t0, t1, t2, t3, t5, t6}.
• (v0 = 1, v4 = 1, v5 = 1), {t4, t8, t9, t10}.
• (v1 = 3, v2 = 2, v3 = 1, v4 = 1, v5 = 1), {t13, t19}.
• (v1 = 4, v2 = 2, v4 = 1, v5 = 1), {t14, t15}.
Table IV shows the different entries corresponding to the

five frequent itemsets.
To evaluate the savings in terms of items that can be

obtained by our approach on the running example, we evaluate
the size of the constraint relation before and after the compres-
sion. Let arity = 6 be the arity of R(c0) and nbrTup = 21
be the number of tuples in R(c0). The size of R(c0), denoted
by size(R(c0)), is size(R(c0)) = arity∗nbrTup = 126. The
size of the compressed relation is equal to 86 items. So, the
savings that can be obtained is 40 values.

v1 v2 v4 v5 v0 v3
2 1

3 1 1 1 2 3
3 1
4 1

(a) First entry.

v0 v2 v4 v5 v1 v3
2 1
2 2

1 1 1 1 2 3
3 1
3 2
3 3

(b) Second entry.

v0 v4 v5 v1 v2 v3
3 2 1

1 1 1 4 2 1
4 2 2
5 2 1

(c) Third entry.

v1 v2 v3 v4 v5 v0
4 2 1 1 1 2

5

(d) Forth entry.

v1 v2 v4 v5 v0 v3
4 2 1 1 2 2

2 3

(e) Fifth entry.

TABLE IV: Compressed relation R(c0).

Algorithm 4: Solve (P : CSP)
Data: P : CSP to solve
Result: sol: solution of CSP if it exists

1 Compress Constraints relations of P using FPTCM+

algorithm (resp. FPTCM algorithm);
2 Order the variables of the CSP using the MaxDeg

heuristic;
3 Solve the compressed CSP with GBJ algorithm;

When considering FPTCM approach, two itemsets are used
for compressing the constraint relation R(c0) :
• (v1 = 4, v2 = 2, v3 = 1, v4 = 1, v5 = 1) that compresses

two transactions t13, t19,
• (v2 = 1, v4 = 1, v5 = 1) that compresses the set of

transactions {t0, t1, t2, t3, t5, t6, t11, t12, t16, t17, t18}.
The size of the relation R(c0) after compressing it using the

two frequent itemsets is equal to 94 items. So, we can see that
FPTCM+ provides a good compression compared to FPTCM.

C. Solving the compressed constraint relations

The structure of the compressed relations is exactly the same
as the one proposed in [1]. So, to solve compressed CSP, we
used in this work, the MaxDeg heuristic [6] to sort the
variables of the CSP and the Graph− based− backjumping
algorithm [7] (GBJ) to fix the variable choice during the
resolution process. Note that the difference between the two
methods (FPTCM and FPTCM+) is just at the compression
step.

VI. EXPERIMENTS

In this section we present an experimental evaluation of
our method. The experiments have been performed on Intel
Core i5 2.5 GHz. We compare our approach FPTCM+ with
FPTCM method on the same benchmarks3 used in [1]. Table
VI shows the characteristics of these benchmarks. For each
benchmark, we give the number of instances that it contains
(nbrins), the maximum number of variables (V), the greatest
value of domains (|D|), the largest number of relations (nbrR),
the size of the largest constraint relation (Rmax), the largest
constraint arity (arity), the greatest number of constraints
(nbrC). All methods have been implemented in Java and use

3Datasets available at https://www.cril.univ-artois.fr/∼lecoutre/#/
benchmarks

Datasets
Modified-
Renault

Renault ukVg ogdVg Rand10-
20-10

wordVg

insres
FPTCM+ 44/50 2/2 23/65 17/65 20/20 33/65
FPTCM 44/50 2/2 19/65 17/65 20/20 33/65

Tcmp
FPTCM+ 6.8 5.58 2.28 13.37 5.2 0.77
FPTCM 6.7 8.62 11.41 19.7 9.35 1.09

Trs
FPTCM+ 217.52 0.68 146.71 52.41 3.4 31.97
FPTCM 279.58 1.21 187.04 70.2 6.48 46.96

Ttot
FPTCM+ 224.34 6.26 148.99 65.78 8.6 32.74
FPTCM 286.28 9.83 198.45 89.9 15.83 48.05

Rate
FPTCM+ 79.18 80.08 28.24 38.45 18.93 22.67
FPTCM 37.06 37.69 21.97 23.7 18.07 18.84

TABLE V: Comparing FPTCM+ FPTCM in terms of average
compression rate and resolution time. Line insres gives the
number of instances solved within the time limit of one
hour, line Tcmp shows the average CPU time (in second) to
compress an instance, line Trs reports the average CPU time
for succeeded instances, line Ttot shows the average global
CPU time for the two steps, and line Rate gives the average
compression rate (in percentage).

Benchmark nbrins V |D| |nbrR| |Rmax| arity nbrC
Modified
Renault

50 111 42 142 48721 10 159

Renault 2 101 42 117 48721 10 134
ukVg 65 320 26 2 32865 19 36
ogdVg 65 320 26 2 68064 20 36
Rand10-
20-10

20 20 10 5 10000 10 5

wordsVg 65 320 25 2 68064 20 36

TABLE VI: Characteristics of datasets.

the same resolution approach for solving the compressed CSP.
For our experiments, we fixed Smin to 2 and considered for
compression only relations with at least 10 tuples and with
arity greater than 2. Table V compares the performance
of the two methods. For each method and each dataset, we
report the number of instances solved within the time limit of
1h (insres), the average CPU time (in second) to compress
an instance (Tcmp), the average CPU time for succeeded4

instances (Trs), the average global CPU time for the two steps
(Ttot = Tcmp + Trs), and the average compression rate (in
percentage) obtained (Rate). The average compression rate
for an instance is the size of relations after their compression
over the size of the original relations. For each dataset, the
average compression rate is computed by dividing the sum
of compression rates obtained for each instance by the total
number of compressed instances.

As we can see, both methods perform similarly in terms
of number of instances solved except on crossword-uk-vg
dataset where FPTCM+ succeeded to solve 4 more instances
than FPTCM. When comparing the average compression rate,
we can observe that FPTCM+ performs better, particularly on
the two instances Modified−Renault and Renault where
the gain in terms of compression rate is greatly amplified;
it reaches on average 80% against about 37% for FPTCM.
Table V also shows that FPTCM+ takes less time than FPTCM

4An instance is succeeded if it can be solved within the time limit.

Fig. 2: The average total time required by FPTCM and
FPTCM+ for solving each datasets.

Benchmarks
Modified-
Renault

Renault ukVg ogdVg Rand10-
20-10

wordVg

FPTCM+ nbrf 478097 18143 408507 429754 248129 201980
Entries 478097 18143 408507 429754 248129 201980

FPTCM
nbrf 148237 2807 221444 198315 80577 115838
Entries 120207 2038 116963 65757 68408 73870

TABLE VII: Comparing FPTCM with FPTCM+: frequent item-
sets vs. entries.

to compress the different datasets. Moreover, we can see that
the average resolution times required to solve the compressed
datasets with FPTCM+ are lower compared to the average
resolution times required to solve the same datasets com-
pressed with FPTCM. This confirms the impact of achieving
higher compression rates. We can deduce that our compres-
sion method FPTCM+ enables to accelerate considerably the
resolution of CSPs compared to FPTCM.

Figure 2 shows the average total time required by both
methods to solve each dataset. We can see that FPTCM+

outperforms FPTCM on each dataset.
Finally, Table VII shows the number of frequent itemsets

relevant for compression (nbrf) that FPTCM+ and FPTCM
enumerated for each dataset and the number of that frequent
itemsets used for compressing each benchmark (this number
represents the number of resulting entries in each benchmark).
We can observe that, for all datasets, the number of entries
created by FPTCM+ is equal to the number of enumerated
frequent itemsets relevant for compression. Contrary to FPTCM
where the number of resulting entries is lower than the number
of enumerated frequent itemsets relevant for compression.
Indeed, FPTCM does not use all the enumerated frequent
itemsets to create the different entries because some frequent
itemsets are a specialization of some others. The number
of frequent itemsets relevant for compression extracted by
FPTCM+ is greater in comparison to the number of frequent
itemsets relevant for compression extracted by FPTCM. This is
due to the fact that our compression method is more accurate,
thus leading to higher compression rates in favour of FPTCM+

method.

VII. CONCLUSION

In this paper, we have proposed a new approach based on
data mining techniques for compressing constraint relations.
Our approach improves the one proposed by Gharbi et al.
[1] in two ways: (i) the use of the cover of an itemset
in the FP-tree instead of its frequency, thus enhancing the
construction of entries since the cover of each frequent itemset
is known, (ii) the use of compression rate metric instead of
savings to compute frequent itemsets relevant for compression,
thus allowing higher compression and efficient resolution
of compressed tables by identifying more accurate frequent
itemsets. we have implemented the MaxDeg heuristic and
the backjumping algorithm to solve the compressed CSPs and
we evaluated our approach on some benchmarks. Experiment
results showed that our approach (called FPTCM+) offers
better compression rates compared to the approach of [1].
Moreover, our approach obtains better CPU times for both
compression and solving steps.

REFERENCES

[1] N. Gharbi, F. Hemery, C. Lecoutre, and 0. Roussel, Sliced table
constraints: Combining compression and tabular reduction, International
Conference on AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, pp. 120–135, May 2014.

[2] U. Montanari, Networks of constraints: Fundamental properties and
applications to picture processing, Information sciences, Vol. 2, PP. 95–
132, 1974.

[3] G. Katsirelos and T. Walsh, A compression algorithm for large arity ex-
tensional constraints, International conference on principles and practice
of constraint programming, pp. 379–393, 2007.

[4] S. Jabbour, S. Roussel, L. Sais and Y. Salhi, Mining to Compress Table
Constraints, IEEE 27th International Conference, Tools with Artificial
Intelligence (ICTAI), 2015.

[5] K. Cheng, CK. Kenil and RHC. Yap, ‘An MDD-based generalized arc
consistency algorithm for positive and negative table constraints and
some global constraints, Constraints. J, Vol. 12, N. 2, PP. 265–304,
2010.

[6] R. Dechter, I. Meiri, Experimental evaluation of preprocessing algo-
rithms for constraint satisfaction problems, Artificial Intelligence.J, Vol.
136, N. 2, PP. 211–241, 1994.

[7] R. Dechter, D. Frost, Backjump-based backtracking for constraint satis-
faction problems, Artificial Intelligence. J, Vol. 136, N. 2, PP. 147–188,
2002.

[8] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data Mining and
Knowledge Discovery, 8(1):5387, 2004.

[9] J. Mairy, Y. Deville and C. Lecoutre. The smart table constraint, Interna-
tional Conference on AI and OR Techniques in Constriant Programming
for Combinatorial Optimization Problems, pp. 271–278, 2015.

[10] P Nightingale, IP Gent, C Jefferson, I Miguel. Short and long supports
for constraint propagation, Artificial Intelligence Research.J, Vol. 46, PP.
1–45, 2013.

